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SUPERINDUCTIVE CLASSES IN CLASS-SET THEORY

ROBERT H. COWEN

1. Introduction1 Many definitions of the (von Neumann) ordinals have been
given in set theory, but the one which seems most natural to us is that
which parallels Frege's definition of the natural numbers, as the intersec-
tion of all inductive classes. This definition of ordinals as the intersection
of all 'superinductive* classes has been proposed and its virtues discussed
by Sion and Wilmot [3] and Smullyan [4], In [4] a more general process of
superinduction is discussed and the resulting minimally superinductive
classes play a key role in particularly elegant proofs of Zorn's lemma, the
Well-ordering theorem, and the Transfinite recursion theorem. Methods of
establishing the existence of this minimally superinductive class in ver-
sions of Class-Set theory such as GodeΓs [2], where we cannot assert the
existence of classes defined by formulas containing bound class variables,
have been briefly described in [4], In Smullyan [5] a proof is given of the
existence of the minimally superinductive class in GodeΓs Class-Set theory
which though proving a slightly more general theorem than the one we
present here, requires both the axiom of substitution and the axiom of
choice. In section 2, we present a new proof which avoids using the axiom
of substitution and the axiom of choice. In addition as a by-product of our
proof we obtain yet another definition of ordinal and a new definition of con-
structible set. In section 4, we present a proof that the minimally super-
inductive class under an arbitrary progressing function is well-ordered
under inclusion. This theorem is given in [4] for slowly progressing func-
tions. Again our proofs avoid using the axiom of substitution.

2. Existence of Minimally Superinductive Classes

Definition. A function # is called progressing if xQg(x) for all x in the
domain of g.

Definition. A function g is slowly progressing if g is progressing and g(x)
contains at most one more element than x.

1, The results presented here are contained in the first chapter of the author* s
thesis [1], written under the supervision of Professor Raymond Smullyan at
Yeshiva University.
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Definition. A set B is called a chain if x,yeB implies xQy or yζx.

Definition. Let A, B be classes and ^ a function. Then the class S is
super inductive with respect to {A7g, B) if

(i) AQSQB
(ii) xeS and g(x) e B implies g(x) e S

(iii) D a chain of Sand \JDeB implies UDeS, where \JDis the union of
all sets in D.

Definition. S is super inductive under g if S is superinductive with respect
to ({A}, g, V), where A and V are the empty and universal class, respec-
tively.

Definition. M is minimally superinductive with respect to (A, g9 B) if M is
the intersection of all classes which are superinductive with respect to
<A,g,B).

Remark. Clearly M is superinductive with respect to (A, g, B).

Definition. M is minimally superinductive under g if M is minimally super-
inductive with respect to ({A}, g, V).

Remark. In general it is not true that the minimally superinductive class
with respect to (A, g, B) is the same as the union of all the minimally
superinductive classes with respect to ({a}, g, B)9 where aeA. However for
finite classes, A, it is true, for one can easily prove (by 'superinduction')
that the minimally superinductive class with respect to (U^iA,-, g7 B) is the
union of the minimally superinductive classes with respect to (At , g, B),
i = 1,...,&.

For the remainder of this section, we shall only be concerned with pro-
gressing functions, so we shall assume that all functions, unless otherwise
noted, are progressing (the proof of the existence of the minimally super-
inductive class in [5], though using the axioms of choice and substitution
holds for arbitrary functions). This should not be thought of as being an
arbitrary restriction; in fact condition (iii) in the definition of superinduc-
tive class seems unnatural unless we assume g is progressing. Assume,
then, that g is a fixed progressing function, A and B fixed classes and that
all superinductive classes mentioned are superinductive with respect to
<Λ,g,B).

The definition of the minimally superinductive class involves quantify-
ing over classes, so its existence is not immediately apparent if we
restrict our comprehension axioms to formulas without bound class vari-
ables. The next definitions serve to define the minimally superinductive
class without bound class variables; we then prove the definitions equiva-
lent.

Definition. Given a set x, we call S(x) (or equivalently, Sx) 2L superinductive
set for x if

(i) A Π p(x) c Sx c B Π P W , where P (x) is the power set of x
(ii) y eSx and g(y)eBΠ?(x) implies #(3;)eSx

(iii) D a chain of Sx and UDeB implies UDeS*.
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Remark. If S is a superinductive class, then SΠBC\P(x) is & super inductive
set for x\ in particular BΠP(x) is a superinductive set for x.

Definition. Given a set x, we define M(x) (or equivalently, Mx)9 the mini-
mally superinductive set for #, as the intersection of all superinductive sets
for#.

Remark. Since the Sx are sets (SXQ ?(x)) this definition involves only bound
set variableSo Also it is clear that Mx is a superinductive set for x.

Definition. Mf is the union of all the minimally superinductive sets for x9

Mx.

Note. When the definition for Mf is written out as a formula of set theory,
the definition formula contains only set variables.

We now show Mf is the minimally superinductive class. The proof
depends on the following three lemmas.

LEMMA 1. If xQy9thenMxQMy.

Proof. We will show MyΠBΠ P(x) is a superinductive set for x, by verifying
conditions (i)-(iii) of the definition. This will imply MxQMynBΠP(x)9 a
fortiori, M x c My.

Suppose a eA and a e P (x)9 then a e P (y) and so a eMy (since My is a super-
inductive set for 3;). Therefore aeMyΠBΠPix) (since AQB), that is,
A Π P (x) c My ΠBΠ P (x). Also My ΠB Π P (AT) C 5 n P (#). Thus we have verified
condition (i).

Suppose weMyΠBΠP(x) and g(w)eBΠP(x). Then g(w)e P{y). But weMy

and g"(w) e # Π P ( y) implies g(w)eMy. Therefore g(w)eMy ΠBΠ P(x) verifying
condition (ii).

Assume D is a chain of MyΠBΠP(x) and UDeZ?. Then Z> is a chain of
both P(x) and My, and U^eMyΠ^ΠPW, verifying condition (iii) and com-
pleting the proof.

LEMMA 2. IfxeMy, thenxeMx.

Proof. We can assume y^x; for if not let y* = y\jx and then y*^?y and so,
by Lemma 1, #eMy*, ;y*i)#. We shall show that there exists a superin-
ductive set for y, Sy, such that SyΠBΓ\P(x) = Mx and this will imply xeMx,
since xeBΠP(x) and #€Sy because xeMy.

Let Sy= J3ΠP(:y) - (BΓ)P{x) -Mx). Then since BΠP{x)c:Bnp{y)9

SyΓ\BDP(x) = Mx. We now show Sy is superinductive for 3;. Surely
SyQBΠP(y). LetαeAΠP(y). lίαeBΠP(y) andαe^ΠPW, then αeMx (since
Mx is superinductive for x)9 that is αeBDP(y) ~(BΓ\p(x) -Mx)o Therefore
AΠp(y)Q Sy. Thus Sy satisfies condition (i).

For (ii) let weSy and g(w)eBΠp(y). U g(w)eBΠP(x)9 then weBOP(x)9

since g is progressing, and hence, by the definition of Sy9weMx; thus
g[w) eMχo Therefore g(w)eSy9 as required.

Let D b e a chain of Sy and ΌDeBΠp(y). Assume ΌDeBΠP(x); then
weD implies weBΠP(x) which together with weSy implies weMχo Thus D is
a chain of Mx> and UDeMx. Hence \JDeSy9 verifying (iii) and completing the
proof.
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LEMMA 3. If a eA, then aeMa.

Proof. Since Ma is a super inductive set for a and since aeA and {a}e P(a),
we have aeMa.

THEOREM 1. Mf is a super inductive class.

Proof. Surely M'QB. Also, by Lemma 3, A CM'. Thus A<ZM'<^ B. As-
sume xeMf and g(x)eB. Then xeMy,for some y. Let 2 = y\jg(x)\ then λ'eMz,
by Lemma 1. Since Mz is a superinductive set for £ and g(x)eBΠP(z), we
have g{#) eMzQMr.

Let D be a chain of elements of M1 with U£>e£. We shall show
ΌDeM(ΌD). lί yeD, then y eMy, by Lemma 2, and hence yeM(UD), by
Lemma 1. Therefore D is a chain of M{\JD) and hence ΌDeM(\JD) c M\

THEOREM 2. Mf is the minimally superinductive class.

Proof. Let S be superinductive. T h e n ^ e M ' implies x eMy, for s o m e j ' ,
which in turn implies xeSΠB Γ\P(y) (since, as we have remarked SΠBΠP(y)
is a superinductive set for y). Therefore xeS and the theorem now follows
from Theorem 1.

Remark. The only place we really needed the hypothesis that g is pro-
gressing was in the verification of condition (iii) in Lemma 2. It remains
an open question whether the hypothesis can be eliminated entirely.

3. Examples The class of ordinals can now be defined as follows:

Definition. The class of ordinals is the minimally superinductive class
under σ, where σ(x) = x\j{χ}.

The various other definitions can now be proved equivalent to the above
(see Sion and Wilmot [3]).

We can also define many important classes in Class-Set theory,
directly, without resorting to the transfinite recursion theorem. For
example, if S(x) is the set of subsets of x, which are first order definable
over x, then the class of constructive sets, is the union of the minimally
superinductive class under g(x) = xUS(x). If g{x) = x\j P(x), where P(x) is
the power set of x, then the union of the minimally superinductive class
under g is just V, the universal class—if we assume the axiom of regularity.

Because of Lemma 2, we can also define the ordinals or the elements
of any minimally superinductive class by the formula 'xeMx\ In the case
of the constructive sets this condition, when written out in primitive terms,
is more easily proved absolute than the usual transfinite recursion condi-
tion.

4. Well-ordering The most important theorem about minimally super-
inductive classes under progressing functions, is that they are well-ordered
by Q. This result is proved in [4] for slowly progressing g. In this section
we prove this result for arbitrary progressing functions and the proof does
not require the axiom of substitution. Throughout this section let M be a
fixed minimally superinductive class under g9 progressing,.
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Definition. An element m of M is called regular if there is a chain C(m)
(or equivalently, Cm) of elements of M, satisfying:

(i) me Cm and if z eCm then £<Ξ m
(ii) if#eCw and#^ra thengίOe Cm

(iii) if £ is a chain of C^ then \JBeCm

(iv) if £ 6M then either £€ Cw or zΏm.

THEOREM 3. All elements of M are regular.

The proof of the theorem consists of the following three lemmas.

LEMMA 1. The empty set, Λ, is regular.

Proof. It is easily checked that CΛ= {Λ} satisfies conditions (i) - (iv).

LEMMA 2. If y is regular then g(y) is regular.

Proof. Suppose y is regular and let Cy be a chain for y satisfying (i)-(iv).
We will show C(g(y)) =Cy\j{g(y)}, which is a chain since gis progressing,
satisfies (i)-(iv) also.

(i) Clearly g(y)eC(g(y)). If zeCigiy)) and z^g(y), then zeCy and
zQyQgiy).

(ii) Suppose xeC(g(y)) andx/g(y); then#eCy. If χ/y> then g(x)eCy,
and so g(y) e C(g(y)). If x = y, then g(x) = g(y) e C(g{y)).

(iii) Suppose B is a chain of C(g(y)). If all elements of B are inC y ,
then UB e Cy c C(^^)) If not, ^ ) e B and U5 = g(y) e Cfeίy)).

(iv) Suppose z eM and not >ε ̂ (3;) . Ii zeCy, then zeC{g(y)). Assume,
then, ZfίCy; we shall show z =g(y) e C(g(y)). Let S= Cyu{weM\w^g(y)}. If
we can show S is superinductive, we are done, since zeS (because zeM,
minimally superinductive) and z^Cyi hence z^g{y) which together with not
^ ^giy), implies z =^(y).

Surely ΛeS, since ΛeCy. Assume weS. If weCy9g(w)eCy or w= y and
g{w) = ̂ 3;) e S. If w D^(3;), then ^(^) 2 ^ ) and ^(^) e S.

If Z) is a chain of 5 and for some deD9d2giy) then UZ>2^) and UZ>eS.
If not, all elements of D must be in Cy and \JD eCyQS.

Hence 5 is superinductive and (iv) is proved.

LEMMA 3. If D is a chain of regular elements of Mtι then \JD is regular.

Proof. Let D be a chain of regular elements. For each del), let Cd be a
chain for d, satisfying (i)-(iv). We shall show C(\JD) = U^pQ/uίUi)} is a
chain for \JD satisfying (i)-(iv).

We must first show C(\JD) is a chain. We write AT comp y for xc.y or
3; Qx. lί xeCd19 yeCd29 with diC^fe, then xQdxCdz, hence notjv^^, so xeQ2

and since Qg is a chain, ΛΓ comp 3;. If xeCd and 3; = \JD9 thenxQdQ\JD = 3;.
This proves C(ΌD) is a chain.

(i) Clearly ΌDeC(ΌD). If zeC(ΌD) and >ε^U2), then ^eCr f, deD and

(ii) Suppose #eC(Ui>) and^^Ui); then AT eQ, for some deD. lϊx/d,
g(x)eCdQC([JD). Ii x = d, d is not the maximal element of D (for then
# = d = U£>), so there exists df eD, with d'^*x. By condition (iv) this implies
x eCd>, and # ̂ ' . Therefore g(x) e Cd' Q C(ΌD).
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(iii) Let B be a chain of C(\JD). If there is a beB with b = \JD, then
U 5 = UDeCiUD). Suppose, therefore, B is a chain of elements of U^£ DQ.
If UBQd, for some del), 5 is a chain of Cd, and U5eQcC(U£>). So as-
sume that for any deD, there is a beB, with not bQd. This implies that for
any deD, there is a ό e £ , with Zod. For if beCdl, Ietd2= maxid^d), then
b^diQdi, so not 6 3*4 and thus 6e Q 2 ; also deQ2 and since Q 2 is a chain £
comp d; since not 6 c d , we have, finally, b^do Therefore ΌDQΌB; but
beB implies beCd and bQd for some deD, that is l)B QΌD. Therefore
UB= UDeCiUD).

(iv) Suppose zeM and not z^>\JD. If for some deD, not £Dd, then
2eQQC(UZ)). If z^d for all deD, then z^\JD. Since not z^ UD, z = \JD
and £e C(UZ>). This completes the proof of Lemma 3.

Proof of Theorem 3. Since the regular elements of M form a superindue-
tive subclass S of M by the lemmas, and since M is minimally superinduc-
tive S = Mf that is all elements of Mare regular.

COROLLARY 1, If xeM and ye M, then x comp y, that is xQy or yQx.

Proof, If x, yeM, x is regular, so either yeCx and yQx or y^x, that is
X comp y,

COROLLARY 2. If x, yeM, then not xcy cg{x).

Proof. If a;, j eM and ΛΓC V, then xeCy and Λ^ y. Therefore £"(#)€ Cy and
hence ^ Λ Γ J C ^ .

THEOREM 4. !,£* M δ^ minimally super inductive under g, progressing 0

Then M is well-ordered by c .

Proof. We have already shown that M is linearly ordered by c (Corollary 1
of Theorem 3).

Let M ' C M , M ' / Λ . Let L= {xtM\ytM'-*xςLy}. Since M'/Λ, L^M.
Therefore L is not super inductive. However ΛeL and also it is easily
verified that L is closed under chain unions. Therefore there is an element
xeL such that^U) ̂  L. We assert this implies xeMf and hence x is the least
element of M'. For any yeMf either y c:g(x) or gix)^y9 since M is linearly
ordered by <Ξ. Now ^ ) ζ ^ cannot hold for all yeM', since g(x)^L, so there
is an element yeM'with j ; c ^ ) , t h a t is, x^yagix). But ΛΓCJ C^ΛΓ) contra-
dicts Corollary 2 of Theorem 3, hence x =y eMf.
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