A PARADOX IN ILLATIVE COMBINATORY LOGIC

M. W. BUNDER

Curry, in [1] and [2], has shown the inconsistency of a system of illative combinatory logic containing the axiom:
$\vdash \boldsymbol{H}^{k} \boldsymbol{X}$ for all obs \boldsymbol{X},
for $k=2$ (and 1). ('HX', stands for " X is a proposition'.) He also stated that the inconsistency held for $k>2$, this more general result is proved below. Assume the following:


```
A2 \(\mathrm{H} \boldsymbol{x}, \mathrm{H}()^{2} \vdash \boldsymbol{x} \supset \boldsymbol{y} \supset \boldsymbol{x}\).
A3 \(\boldsymbol{x}, \mathrm{PX}\) 汤
A4 \(\quad x \vdash \mathrm{H}\).
A5 \(\quad \vdash \mathrm{H}^{k+1} \boldsymbol{X}\) for any \(\boldsymbol{x}\) and \(k \geqslant 0\).
A6 トНथ.
A7 If \(\stackrel{\mathrm{H} X}{ }\) and \(\boldsymbol{X} \vdash \mathrm{H}\) ) then \(\stackrel{\mathrm{H}}{ }(\mathrm{PX} \boldsymbol{D})\).
```

From A1, A2, A3 and $A 7$ it follows (as is proved in [4]) that if $\mathbf{T}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right)$ is any theorem of pure implicational intuitionistic propositional calculus for indeterminates $\mathfrak{X}_{1}, \ldots, \mathfrak{X}_{n}$, then

$$
H X_{1}, H X_{2}, \ldots, H X_{n} \vdash T\left(x_{1}, \ldots, x_{n}\right) .
$$

This fact is used in several places below.
Let

$$
G_{0} \equiv[x] . x \supset \boldsymbol{\eta},
$$

and for $n \geqslant 0$ let

$$
G_{n+1} \equiv[x] \cdot \mathrm{H}^{n+1} x \supset G_{n} x .
$$

Now

$$
\begin{equation*}
\mathbf{H}^{n+1} x \vdash \mathbf{H}\left(G_{n} x\right) \tag{1}
\end{equation*}
$$

is proved by induction, thus:
By $A 6$ and $A 7$

$$
\mathbf{H} x \vdash \mathbf{H}\left(G_{0} x\right) .
$$

Now assume

$$
\mathbf{H}^{n+1} x \vdash \mathbf{H}\left(G_{n} x\right) ;
$$

then by A7

$$
\mathbf{H}\left(\mathbf{H}^{n+1} x\right) \vdash \mathbf{H}\left(\mathbf{H}^{n+1} x \supset G_{n} x\right),
$$

so

$$
\mathbf{H}^{n+2} x \vdash \mathbf{H}\left(G_{n+1} x\right) .
$$

This completes the inductive proof of (1). Now let

$$
X \equiv \mathbf{Y} G_{k}
$$

(Y is the paradoxical combinator $W S(B W B$); see [3]), then

$$
X \equiv G_{k} X
$$

But by (1)

$$
\mathbf{H}^{k+1} X \vdash \mathbf{H}\left(G_{k} X\right),
$$

so

$$
\mathbf{H}^{k+1} X \vdash \mathbf{H} X,
$$

so by $A 5$ and $A 4$ for $i \geqslant 1$,

$$
\vdash H^{i} X
$$

Thus also for $i \geqslant 1$, $\vdash \mathbf{H}\left(G_{i} X\right)$.

Now for $j \geqslant 1$,

$$
X \supset G_{j} X \vdash X \supset . H^{j} X \supset G_{j-1} X
$$

so by the propositional calculus, as above noted,

$$
X \supset G_{j} X \vdash \mathrm{H}^{j} X \supset . X \supset G_{j-1} X
$$

Now for $j \geqslant 1$,

$$
X \supset G_{j} X \vdash X \supset G_{j-1} X
$$

and so for $j \geqslant 1$,

$$
X \supset G_{j} X \vdash X \supset G_{1} X
$$

Now as $X=G_{k} X$ and

$$
\begin{align*}
& \vdash H X, \vdash X \supset G_{k} X \\
& \vdash H X \supset: X \supset . X \supset \boldsymbol{\imath} \tag{2}
\end{align*}
$$

as

$$
G_{0} X=X \supset \boldsymbol{q}
$$

Now by the propositional calculus

$$
\vdash X \supset . X \supset \mathfrak{e}: \supset . X \supset \mathfrak{q}
$$

and thus using (2)

$$
\begin{equation*}
\vdash \mathrm{H} X \supset . X \supset \mathfrak{\ell}, \tag{3}
\end{equation*}
$$

that is

$$
\vdash G_{1} X .
$$

But also

$$
\vdash \mathbf{H}^{2} X ;
$$

so by $A 2$ and $A 4$

$$
\vdash \mathbf{H}^{2} X \supset G_{1} X,
$$

that is

$$
\vdash G_{2} X .
$$

Similarly

$$
\vdash G_{3} X, \ldots \quad \vdash G_{k} X
$$

that is

$$
\vdash x ;
$$

and by (3)

Now eliminating assumption $A 6$, we have for any $\%$,

$$
\mathrm{H} \mathfrak{Z} \vdash \boldsymbol{\chi} \text {. }
$$

therefore

$$
\mathbf{H}\left(\mathbf{H}^{k} \mathfrak{Z}\right) \vdash \mathbf{H}^{k} \mathfrak{U},
$$

and by $A 5$

so $\vdash \mathfrak{\chi}$ has been proved for any $\mathfrak{\chi}$.
Of the assumptions used to derive this inconsistency, $A 1, A 2$ and $A 3$ are ordinary propositional calculus results and $A 4$ merely says that if \boldsymbol{X} is true then it is a proposition. Thus it seems that we should reject either $A 5$ or A7. If

$$
\begin{equation*}
H X \cdot H E \vdash H(P X \equiv) \tag{4}
\end{equation*}
$$

is taken instead of $A 7$, the paradox does not go through. However in some systems $A 7$ is preferable to (4) and we have to reject $A 5$.

REFERENCES

[1] Curry, H. B., "Some advances in the combinatory theory of quantification," Proceedings of the National Academy of Sciences, USA, vol. 28 (1942), pp. 564569.
[2] Curry, H. B., "The combinatory foundations of mathematical logic,' The Journal of Symbolic Logic, vol. 7 (1942), pp. 49-64.
[3] Curry, H. B., and R.Feys, Combinatory Logic, North-Holland, Amsterdam (1958).
[4] Bunder, M. W., Set Theory Based on Combinatory Logic, PhD Thesis, Amsterdam (1969).

University of New South Wales
Wollongong, New South Wales, Australia

