A REMARK ON NOTE ON DUALITY

SIBAJBAN

Chandler Works and Wolfgang Yourgrau ([1], p. 284) write:
"Let P be a compound proposition whose truth value is a function of the truth values of the undecomposed mutually independent propositions, $p_{1}, p_{2}, \ldots, p_{k}, \ldots, p_{m}, \ldots$ We represent the truth column for P by $f(P)=\left(a_{1}, a_{2}, \ldots, a_{k}, \ldots, a_{n}\right)$, where $a_{k}=0$ or $a_{k}=1$ and $n=2^{m}$. Similarly, to another compound proposition, say Q, corresponds the numerical function $f(Q)=\left(b_{1}, b_{1}, \ldots, b_{k}, \ldots, b_{n}\right)$ '.

From this they conclude:
'Hence, $P \equiv Q$, if and only if $f(P)=f(Q)$, i.e. if and only if $a_{k}=b_{k}(k=$ $1,2, \ldots, n)$ '.

But this conclusion does not follow because of the following reasons:
(1) Two compound propositions may be equivalent, even though they may not have the same number of 'undecomposed mutually independent propositions'. Thus, for example, $p \equiv: p=q$. p. Here $f(p)=(1,0)$ and $f(p \supset q$. $p)=(1,1,0,0)$; hence $f(p) \neq f(p \supset q . \supset p)$, yet $p \equiv: p \supset q . \supset p$.
(2) Two compound propositions having the same number of 'undecomposed mutually independent propositions' may not be equivalent, even though their 'numerical functions' are identical. Take, for example, the two compound propositions, $p \supset q$ and $r \supset s$. Here $f(p \supset q)=(1,0,1,1)$, and $f(r \supset s)=$ $(1,0,1,1)$, so that $f(p \supset q)=f(r \supset s)$, yet $p \supset q . \neq . r \supset s$.

Thus the conclusion of the authors is not true generally, hence theorem (2), as it stands, is not proved, for the proof used the 'logical equivalence' of ' $P \equiv Q$ ' and ' $f(P)=f(Q)$ ' where P and Q are any two propositions. However, a special case of the theorem can be proved:
(2*) If P and Q contain exactly the same independent propositions, then $P \equiv Q$ if and only if $P^{\mathrm{d}} \equiv Q^{\mathrm{d}}$
for as the authors themselves have stated " P d also depends on the same independent propositions as $P^{\prime \prime}$ (italics ours).

The authors have used theorem (2) in the proofs of theorems (8), (9), (10), (11), (12), (13) and have recommended its use in the proof of theorem (19); hence these proofs are wrong. But it is enough to use theorem (2^{*}) to prove these theorems as they are concerned with the same P and Q, and their duals.

REFERENCE

[1] Works, Chandler and Wolfgang Yourgrau, "Note on duality in propositional calculus," Notre Dame Journal of Formal Logic, vol. IX (1968), pp. 284-288.

The University of Burdwan, Burdwan, West Bengal, India

