Notre Dame Journal of Formal Logic Volume X, Number 4, October 1969

A NOTE ON INDEPENDENCE

ANJAN SHUKLA

Acquaintance with [1] is presupposed and we shall use its numeration of the axioms. At the end of the paper Thacher Robinson states:

'It is interesting to note that the author has verified that *no normal* truth-table in ≤ 5 truth values will suffice for the independence of (2.2). Bernays constructed for the author a six-valued normal truth-table (subsequently lost) which also shows the independence of (2.2).''

The following (see p. 411) six-valued normal truth-table suffices for the purpose. The designated values are 0 and 1. (2.2) takes the value 2 if p = 0, q = 4 and r = 2. See also [2] and [3] where five and six-valued normal truth-tables are used to establish the independence of (2.1) and (2.2) respectively but in a different context, i.e., the connectives used besides implication to obtain formulations of the propositional calculus are not the same as those in [1].

REFERENCES

- [1] Robinson, T. Thacher, "Independence of two nice sets of axioms for the propositional calculus," *The Journal of Symbolic Logic*, vol. 33 (1968), pp. 265-270.
- Shukla, A., "A set of axioms for the propositional calculus with implication and converse non-implication," *Notre Dame Journal of Formal Logic*, vol. 6 (1965), pp. 123-128.
- [3] Shukla, A., "A set of axioms for the propositional calculus with implication and non-equivalence," Notre Dame Journal of Formal Logic, vol. 7 (1966), pp. 281-286.

University of Hawaii Honolulu, Hawaii

Received April 12, 1969

410

A	В	$A \supset B$	A v B	A & B	~A	f
0	0	0	0	0	4	5
	1	0	0	0		
	2	2	0	5		
	3	3	0	5		
	4	3	0	5		
	5	5	0	5		
1	0	0	0	0	4	
	1	0	0	0		
	2	2	0	5		
	3	3	0	5		
	4	5	0	5		
	5	5	0	5		
2	0	0	0	5	3	
	1	0	0	5		
	2	0	5	5		
	3	3	5	5		
	4	3	5	5		
	5	0	5	5		
3	0	0	0	5	2	
	1	0	0	5		
	2	2	5	5		
	3	0	5	5		
	4	2	5	5		
	5	0	5	5		
4	0	1	0	5	0	
	. 1	1	0	5		
	2	1	5	5		
	3	1	5	5		
	4	1	5	5		
	5	1	5	5		
5	0	0	0	5	0	
	1	0	0	5		
	2	0	5	5		
	3	0	5	5		
	4	0	5	5		
	5	0	5	5		

TRUTH TABLE