A SEMI-COMPLETENESS THEOREM*

STEPHEN L. BLOOM

In [2] and [3] the hyperprojective hierarchy of subsets of \Re (the functions from \mathbf{N}, the natural numbers, into \mathbf{N}) was constructed using the hyperarithmetic hierarchy as a model. As a consequence, many properties of the hyperarithmetic sets have perfect analogues in the hyperprojective sets. In this paper we consider the problem of finding a 'projective analogue" for the following important fact connected with the hyperarithmetic hierarchy:

The set of Gödel numbers of the recursive well-orderings is a complete π_{1}^{1} set of natural numbers (see [5]).

In [2] it was shown that the set of indices of the projective wellorderings ${ }^{1}$ of subsets of Ω is a Δ_{1}^{2} set 2 and thus cannot be a "complete π_{1}^{2} set'" in any natural sense, as our analogy would have it. The difficulty is that in order to express the notion 'there is no countable descending chain of functions such that..." one needs only a function quantifier, not a quantifier over functions from \Re into N. Thus we are led to consider the collection W^{*} of indices of those projective linear orderings having no uncountable descending chains.

In this paper we will show that W^{*} has a semi-completeness property with respect to a subclass of the π_{1}^{2} sets. Our proof will assume the existence of a projective well-ordering <* of all of \Re such that \Re in this ordering is order-isomorphic to the first uncountable ordinal Ω. This assumption is consistent with the usual axioms for set theory, since the existence of a Δ_{2}^{1} well-ordering of \Re (of length Ω) follows from the Axiom of Constructibility [1].

Definition. If a subset B of \Re is linearly ordered by some relation $<B$,

[^0]we say B has an uncountable descending chain (UDC) if there is a function f from Ω into B such that if $\mu<\nu(<\Omega)$ then $f(\nu)<_{B} f(\mu)$; i.e. f is orderreversing.

The real numbers R in their usual order have no UDC. For suppose that $f: \Omega \rightarrow \mathbf{R}$ is order-reversing. For each $\mu<\Omega$ let γ_{μ} be a rational number between $f(\mu)$ and $f(\mu+1)$. Since $\mu \neq \nu$ implies $r_{\mu} \neq r_{\nu}$, the collection $\left\{r_{\mu}\right\}$ of rationals must be uncountable, an impossibility.

Since we are assuming Ω and Ω are equivalent as well-ordered sets, we can say that B has a UDC if there is function from Ω into B which is order-reversing. Using this observation (and the fact cited in note 2) it is not difficult to show that the set W^{*} of the indices of projective linear orderings having no UDC is π_{1}^{2}.

Definition. A π_{1}^{2} set B is said to be semi-complete (complete) with respect to a subclass C of π_{1}^{2} sets if for each set C in C there is a projective function f such that $\alpha \varepsilon C$ iff $f(\alpha) \varepsilon B$ (and B is in C as well).

Definition. A primitive recursive predicate $R(\alpha, \delta, F)$ is called bounded if, for fixed α, the arguments of F are all $\leq * \alpha$.
For example, if $R(\alpha, \delta, F)$ is the predicate

$$
F(\alpha)=\delta(0)
$$

then R is bounded; but if $R(\alpha, \delta, F)$ is the predicate

$$
F(\delta)=\alpha(0)
$$

R is not bounded. Note that if R is bounded, so is the negation of R.
Let C_{0} be the collection of all sets C definable in the form

$$
\delta \varepsilon C \longleftrightarrow(\forall F)(\exists \alpha) R(\alpha, \delta, F)
$$

where $R(\alpha, \delta, F)$ is a primitive recursive bounded predicate. We can now state our main result.

Theorem. W^{*} is semi-complete with respect to \mathcal{C}_{0}.
Before beginning the proof, we introduce some notation. For any function β, let β_{n} be the function defined by ${ }^{3}$

$$
\beta_{n}(x)=\beta(\langle n, x\rangle) ;
$$

also, let $\beta_{n}^{+}(x)=\beta_{n}(x+1)$.
Let F be any functional (i.e. a function from Ω into N). For a fixed function α, we define a functional F / α and a function $\bar{F} \alpha$ as follows:

$$
F / \alpha(\gamma)=\left\{\begin{array}{l}
F(\gamma) \text { if } \gamma \leq * \alpha \\
0 \text { otherwise }
\end{array}\right.
$$

$\bar{F} \alpha$ is the $<*$-least function β having the following three properties:
(i) If $\gamma \leq * \alpha$, then $\gamma=\beta_{n}^{+}$, some n.
(ii) For each $n, \beta_{n}^{+} \leq * \alpha$
(iii) $F\left(\beta_{n}^{+}\right)=\beta_{n}(0)$.

Thus F / α is a functional agreeing with F on the segment of functions $\gamma \leq * \alpha ; \bar{F} \alpha$ is a function which codes the values of F (and F / α) on this segment. Note that this segment contains at most a countable number of functions.

For later reference, we note an important property of bounded predicates.
(a) If F is a functional such that

$$
(\forall \beta)_{\leqslant^{*} \alpha} R(\beta, \delta, F / \alpha)
$$

then

$$
(\forall \beta)_{\leq *_{\alpha}} R(\beta, \delta, F)
$$

and conversely.
We now begin the proof. Let $R(\alpha, \delta, F)$ be any bounded primitive recursive predicate, and let the function δ be fixed. We define a set $U(\delta)$ by

$$
U(\delta)=\left\{\bar{F} \alpha:(\forall \beta)_{\leq *_{\alpha}} R(\beta, \delta, F / \alpha)\right\}
$$

$U(\delta)$ is the set of functions coding the functionals that "work" up to α.
We impose a Kleene-Brouwer ordering on $U(\delta)^{4}$;
(b) $\bar{F} \alpha<{ }_{K B} \bar{G} \beta$ iff
(i) $\beta<* \alpha \gamma G / \beta=F / \beta$,
or
(ii) $F\left(\gamma_{0}\right)<G\left(\gamma_{0}\right)$, where γ_{0} is the $<*$-least function on which F and G disagree.

The important clause in this definition is (i); if $\bar{F} \alpha$ codes a longer segment of the functional coded by $\bar{G} \beta$, then $\bar{F} \alpha<_{K B} \bar{G} \beta$. We will denote an UDC in $U(\delta)$ by $\left\{\bar{F}_{\alpha} \beta_{\alpha}\right\}_{\alpha}$; i.e. for each $\alpha \varepsilon \Re, \bar{F}_{\alpha} \beta_{\alpha}$ is in $U(\delta)$ and if $\alpha_{1}<* \alpha_{2}$ then $\bar{F}_{\alpha_{2}} \beta_{\alpha_{2}}<_{K B} \bar{F}_{\alpha_{1} \beta_{\alpha_{1}}}$. Our proof will be completed by the following lemmas.

Lemma 1. $U(\delta)$ is a projective set and $<_{\text {кв }}$ is a projective linear ordering of $U(\delta)$. Moreover, there is a projective function $\mathrm{kb}(\delta)$ giving the index ${ }^{1}$ of $<_{\mathrm{KB}}$ as a function of δ; i.e. $<_{\mathrm{KB}}$ on $U(\delta)=a_{\mathrm{kb}}(\delta)$.

Lemma. 2. If $(\exists F)(\alpha) R(\alpha, \delta, F)$ then there is an UDC in $U(\delta)$.
Lemma 3. If there is any UDC in U(δ), then there is one of the form $\left\{\bar{F} \beta_{\alpha}\right\}_{\alpha}$, where each function in the chain codes is a segment of the same functional.

Lemma 4. If there is an UDC in $U(\delta)$, then $(\exists F)(\alpha) R(\alpha, \delta, F)$.

Proofs. The proof of lemma 1 is tedious but routine, and is omitted (see [2], section 9). Suppose that F is a functional such that (α) $R(\alpha, \delta, F)$. Then $\{\bar{F} \alpha\}_{\alpha}$ is a UDC in $U(\delta)$; indeed, if $\alpha_{1}<^{*} \alpha_{2}$ then $F_{\alpha_{2}}<_{K B} \bar{F}_{\alpha_{1}}$ by (b), clause (i). This proves lemma 2.

Lemma 3 is the heart of the argument and we postpone its proof until the end. To prove lemma 4, assume that $\left\{\bar{F} \beta_{\alpha}\right\}_{\alpha}$ is a UDC in $U(\delta)$. This is no loss of generality by lemma 3. But now we may define a functional F_{0} by

$$
F_{\mathrm{o}}(\gamma)=m \longleftrightarrow\left(\exists \beta_{\alpha}\right)\left(\gamma<* \beta_{\alpha} \& \bar{F} \beta_{\alpha}(\gamma)=m\right)
$$

where

$$
\bar{F} \beta_{\alpha}(\gamma)=m \longleftrightarrow(\exists n)(x)\left(\bar{F} \beta_{\alpha}(<n, x+1>)=\gamma(x) \& \bar{F} \beta_{\alpha}(<n, 0>)=m\right) .
$$

F_{0} is well-defined, since the functions $\bar{F} \beta_{\alpha}$ agree on their common domain. F_{0} is defined everywhere since for any fixed γ the set of functions $\leq * \gamma$ is countable. Thus there must be a β_{α} such that $\gamma<{ }^{*} \beta_{\alpha}$.

We claim that (α) R(α, δ, F_{0}). Indeed, let γ be any fixed function. As noted above, there is an β_{α} such that $\gamma<^{*} \beta_{\alpha}$. Since $\bar{F} \beta_{\alpha}$ is in $U(\delta)$, $(\beta) \leqslant_{\beta_{\alpha}} R\left(\beta, \delta, F / \beta_{\alpha}\right)$; in particular then, $R\left(\gamma, \delta, F / \beta_{\alpha}\right)$. But since R is bounded and $F_{0} / \beta_{\alpha}=F / \beta_{\alpha}$, we have, by (a), $R\left(\gamma, \delta, F_{0}\right)$. Since γ is arbitrary, our claim is proved.

Proof of the Theorem. Let C be some set in C_{0}. Then for some bounded primitive recursive R,

$$
\delta \not \subset C \longleftrightarrow(\exists F)(\alpha) R(\alpha, \delta, F)
$$

Let $\mathrm{kb}(\delta)$ be the function of lemma 1 . By lemmas 2 and 4

$$
\delta \not \not C \longleftrightarrow \mathrm{~kb}(\delta) \not \not \not \subset W^{*},
$$

or

$$
\delta \varepsilon C \leftrightarrow \mathrm{~kb}(\delta) \varepsilon W^{*}
$$

which shows that W^{*} is semi-complete with respect to \mathcal{C}_{0}.
Proof of lemma 3. We note first that
(c) if $\bar{F} \beta$ is in $U(\delta)$ and $\gamma<* \beta$, then $\bar{F} \gamma$ is in $U(\delta)$ also.

Now suppose that $\mathscr{K}=\left\{\bar{F}_{\alpha} \beta_{\alpha}\right\}_{\alpha}$ is some UDC in $U(\delta)$. We will write \bar{F}_{α} for $\bar{F}_{\alpha} \beta_{\alpha}$ and $\bar{F}_{\alpha}(\gamma)$ for the value of the functional $F_{\alpha} / \beta_{\alpha}$ on γ. We will prove the following assertion by induction on $<*$:
(d) For each α there is a function τ_{α} such that for every $\gamma, \tau_{\alpha} \leq * \gamma$, the functionals coded by \bar{F}_{γ} agree on the segment of $\Re \leq * \alpha$; i.e. if $\tau_{\alpha}<* \gamma$ and $\xi \leq * \alpha$, then $\bar{F}_{\tau_{\alpha}}(\xi)=\bar{F}_{\gamma}(\xi)$.

Now suppose that (d) holds for all $\beta<* \alpha$. We show that (d) holds for α as well. There are three possibilities.
Case I: α is $<^{*}$-least. Let $B=\left\{\bar{F}_{\beta}(\alpha): \bar{F}_{\beta} \varepsilon \not \approx\right\} . \quad B$ is a set of non-negative integers and has a least. Let τ_{α} be a function such that $\bar{F}_{\tau_{\alpha}}(\alpha)$ is least in B.

If $\tau_{\alpha}<* \gamma$, then $\bar{F}_{\gamma}<{ }_{\mathrm{KB}} \bar{F}_{\tau_{\alpha}}$; thus either \bar{F}_{γ} extends $\bar{F}_{\tau_{\alpha}}$ (in which case they agree on α) or at the least function γ_{0} on which they differ, $\bar{F}_{\gamma}\left(\gamma_{0}\right)<\bar{F}_{\tau_{\alpha}}\left(\gamma_{0}\right)$. But since $\alpha \leq * \gamma_{0}$ and $\bar{F}_{\tau_{\alpha}}(\alpha) \leq \bar{F}_{\gamma}(\alpha), \bar{F}_{\gamma}$ and $\bar{F}_{\tau_{\alpha}}$ must agree on α. (By (c), $\bar{F}_{\tau_{\alpha}} \alpha$ is in $\left.U(\delta).\right)$

Case II. α is the $<^{*}$-successor of α_{1}. By assumption $\tau_{\alpha_{1}}$ is defined. Suppose α_{2} is the $<{ }^{*}$-successor of $\tau_{\alpha_{1}}$. Then $\bar{F}_{\alpha_{2}}$ in $\not \mathscr{F}$ must be defined at least up to and including α, since $\bar{F}_{\alpha_{2}}<_{K B} \bar{F}_{\tau_{\alpha_{1}}}$ and $\bar{F}_{\alpha_{2}}$ agrees with $\bar{F}_{\tau_{\alpha_{1}}}$ on all function $\leq * \alpha_{1}$. Thus the set B is non-empty, where B is the set $\left\{\bar{F}_{\beta}(\alpha): \bar{F}_{\beta} \varepsilon \mathbb{K} \& \tau_{\alpha_{1}}<* \beta\right\}$. Again choose τ_{α} such that $\bar{F}_{\tau_{\alpha}}(\alpha)$ is least in B. Arguing as in case I, we can show that τ_{α} satisfies (d).

Case III. α is a $<^{*}$-limit. Let $\left\{\beta_{n}\right\}$ be a countable sequence of functions such that $\beta_{1}<^{*} \beta_{2}<^{*} \ldots$ and $\alpha=\lim _{n} \beta_{n}{ }^{5}$. For each $n, \tau_{\beta_{n}}$ is defined. Let $\alpha_{0}=\sup _{n}\left\{\tau_{\beta_{n}}\right\}^{5}$. Then if $\alpha_{0}<* \gamma, \bar{F}_{\gamma}$ and $F_{\alpha_{0}}$ must agree on all function $<{ }^{*} \alpha$. Indeed, if $\gamma_{0}<* \alpha$, there is an n such that $\gamma_{0}<\beta_{n}$. But all functionals \bar{F}_{γ} for $\tau_{\beta_{n}}<^{*} \gamma$ agree on γ_{0}. Thus if α_{1} is the $<^{*}$-successor of $\alpha_{0}, \bar{F}_{\alpha_{1}}(\alpha)$ must be defined. As before then, we choose τ_{α} such that $\bar{F}_{\tau_{\alpha}}(\alpha)$ is least in the set $\left\{\bar{F}_{\beta}(\alpha): \bar{F}_{\beta} \varepsilon \not \approx \& \alpha_{0} \leq * \beta\right\}$.
This completes the proof of (d). Finally, we choose the chain $\left\{\bar{F}_{\tau_{\alpha}} \alpha\right\}$. By (c) and (d) respectively we know that each function $\bar{F}_{\tau_{\alpha}} \alpha$ is in $U(\delta)$ and that if $\alpha_{1}<* \alpha_{2}$ then $\bar{F}_{\tau_{2}} \alpha_{2}$ extends $\bar{F}_{\tau_{\alpha_{1}}} \alpha_{1}$ so that $\bar{F}_{\tau_{\alpha_{2}} \alpha_{2}}<_{K B} \bar{F}_{\tau_{\alpha_{1}}} \alpha_{1}$. Thus lemma 3 is proved.

Remark. With only a slight modification of the above proof, one can show that W^{*} is semi-complete with respect to the class \mathcal{C}_{1} of those π_{1}^{2} sets C definable in the form

$$
\delta \varepsilon C \longleftrightarrow(\forall F)(\exists \alpha) R(\alpha, \delta, F)
$$

where R is primitive recursive and weakly bounded. (We say $R(\alpha, \delta, F)$ is weakly bounded if there is a projective function $f(\alpha)$ such that, for fixed α, the arguments of the functional F in R are $\leq * f(\alpha)$.) C_{1} is a much larger collection than C_{0} but is still a proper subclass of π_{1}^{2}. Our method does not apply when we cannot legitimately limit our knowledge of the values of the functional to a proper segment of Ω.

NOTES

1. A subset B of \mathfrak{N} is Projective if it is analytic in a finite number of functions; i.e. if there are functions $\Psi_{1}, \Psi_{2}, \ldots, \Psi_{m}$ in \Re and a formula Φ of second order number theory having one free function variable v and m function constants w_{1}, \ldots, w_{m} such that for any function $\alpha, \alpha \in B$ iff Φ is true in the standard model of secondorder arithmetic when v is interpreted as α and $w_{1} \ldots, w_{m}$ as $\Psi_{1}, \ldots, \Psi_{m}$ respectively. An index γ of the projective set B is a function coding in some uniform way a Gödel number of a formula Φ defining B and the parameter functions $\Psi_{1}, \ldots, \Psi_{m}$. We let a_{y} be the projective set with index $\gamma . a_{\gamma}$ is a projective well-ordering (linear ordering) if the relation $\alpha \leq_{\gamma} \beta$ (defined by: $\alpha \leq_{\gamma} \beta \leftrightarrow$ $\langle\alpha, \beta\rangle \in a_{\gamma}$ (see note 3)) well-orders (linearly orders) the set $\{\alpha: \alpha \leq \gamma \alpha\}$.
2. A relation $R \subset \Re^{k}$ is called π_{1}^{2} if R is definable in the form

$$
R\left(\alpha_{1}, \ldots, \alpha_{k}\right) \leftrightarrow(\forall G)(\exists \beta) \mathrm{S}\left(\alpha_{1}, \ldots, \alpha_{k}, \beta, G\right)
$$

where G is a variable over the functions from \Re into N, and where S is primitive recursive [4]. R is called Δ_{1}^{2} if both R and its negation are π_{1}^{2}. In [2] it was shown that the relation $J(\alpha, \beta) \leftrightarrow \alpha \in a_{\beta}$ is Δ_{1}^{2}.
3. $\langle n, x\rangle=2^{n} 3^{x} ;\langle\alpha, \beta\rangle$ is the function whose value at x is $\langle\alpha(x), \beta(x)\rangle$.
4. There are three orderings being used at this point: the projective well-ordering $<^{*}$ of Ω of length Ω; the Kleene-Brouwer ordering $<_{K B}$ of $U(\delta)$; and the normal ordering < of the natural numbers.
5. The sequence $\left\{\beta_{n}\right\}$ and the least upper bound of the set $\left\{\tau_{\beta_{n}}: n=1,2 \ldots\right\}$ exist since each function in Ω corresponds to a countable ordinal in the well-ordering <*.

REFERENCES

[1] Addison, J. W., 'Some Consequences of the Axiom of Constructibility,' Fundamenta Mathematicae, vol. 46, pp. 338-357.
[2] Bloom, S. L., "The Hyperprojective Hierarchy," Ph.D. Dissertation, M.I.T., January 1968.
[3] Bloom, S. L., "The Hyperprojective Hierarchy," to appear.
[4] Kleene, S. C., 'Recursive Functionals and Quantifiers of Finite Types I," Transactions of the American Mathematical Society (1959), pp. 1-52.
[5] Spector, C., "Recursive Well-Orderings,'" The Journal of Symbolic Logic, vol. 20 (1955), pp. 151-163.

Stevens Institute of Technology
Hoboken, New Jersey

[^0]: *This result is contained in the author's Ph.D. dissertation, [2], done under the direction of Hilary Putnam. The preparation of this paper was partially supported by a grant from the Stevens Institute of Technology.

