Notre Dame Journal of Formal Logic Volume X, Number 3, July 1969

A SEMI-COMPLETENESS THEOREM*

STEPHEN L. BLOOM

In [2] and [3] the hyperprojective hierarchy of subsets of \Re (the functions from N, the natural numbers, into N) was constructed using the hyperarithmetic hierarchy as a model. As a consequence, many properties of the hyperarithmetic sets have perfect analogues in the hyperprojective sets. In this paper we consider the problem of finding a "projective analogue" for the following important fact connected with the hyperarithmetic hierarchy:

The set of Gödel numbers of the recursive well-orderings is a complete π_1^1 set of natural numbers (see [5]).

In [2] it was shown that the set of indices of the projective wellorderings¹ of subsets of \Re is a $\Delta_1^2 \sec^2$ and thus cannot be a "complete π_1^2 set" in any natural sense, as our analogy would have it. The difficulty is that in order to express the notion "there is no countable descending chain of functions such that . . ." one needs only a function quantifier, not a quantifier over functions from \Re into **N**. Thus we are led to consider the collection W^* of indices of those projective linear orderings having no *uncountable* descending chains.

In this paper we will show that W^* has a semi-completeness property with respect to a subclass of the π_1^2 sets. Our proof will assume the existence of a projective well-ordering $<^*$ of all of \Re such that \Re in this ordering is order-isomorphic to the first uncountable ordinal Ω . This assumption is consistent with the usual axioms for set theory, since the existence of a Δ_2^1 well-ordering of \Re (of length Ω) follows from the Axiom of Constructibility [1].

Definition. If a subset B of \Re is linearly ordered by some relation $\langle B,$

^{*}This result is contained in the author's Ph.D. dissertation, [2], done under the direction of Hilary Putnam. The preparation of this paper was partially supported by a grant from the Stevens Institute of Technology.

we say B has an uncountable descending chain (UDC) if there is a function f from Ω into B such that if $\mu < \nu$ (< Ω) then $f(\nu) <_B f(\mu)$; i.e. f is order-reversing.

The real numbers **R** in their usual order have no UDC. For suppose that $f: \Omega \to \mathbf{R}$ is order-reversing. For each $\mu < \Omega$ let r_{μ} be a rational number between $f(\mu)$ and $f(\mu + 1)$. Since $\mu \neq \nu$ implies $r_{\mu} \neq r_{\nu}$, the collection $\{r_{\mu}\}$ of rationals must be uncountable, an impossibility.

Since we are assuming \Re and Ω are equivalent as well-ordered sets, we can say that *B* has a UDC if there is function from \Re into *B* which is order-reversing. Using this observation (and the fact cited in note 2) it is not difficult to show that the set W^* of the indices of projective linear orderings having no UDC is π_1^2 .

Definition. A π_1^2 set *B* is said to be *semi-complete* (complete) with respect to a subclass \mathcal{O} of π_1^2 sets if for each set *C* in \mathcal{O} there is a projective function *f* such that $\alpha \in C$ iff $f(\alpha) \in B$ (and *B* is in \mathcal{O} as well).

Definition. A primitive recursive predicate $R(\alpha, \delta, F)$ is called *bounded* if, for fixed α , the arguments of F are all $\leq *\alpha$.

For example, if $R(\alpha, \delta, F)$ is the predicate

$$F(\alpha) = \delta(0)$$

then R is bounded; but if $R(\alpha, \delta, F)$ is the predicate

$$F(\delta) = \alpha(0)$$

R is not bounded. Note that if *R* is bounded, so is the negation of *R*. Let \mathcal{C}_0 be the collection of all sets *C* definable in the form

$$\delta \varepsilon C \longleftrightarrow (\forall F)(\exists \alpha) R(\alpha, \delta, F)$$

where $R(\alpha, \delta, F)$ is a primitive recursive bounded predicate. We can now state our main result.

Theorem. W* is semi-complete with respect to C_0 .

Before beginning the proof, we introduce some notation. For any function β , let β_n be the function defined by³

$$\beta_n(x) = \beta(\langle n, x \rangle) ;$$

also, let $\beta_n^+(x) = \beta_n(x+1)$.

Let F be any functional (i.e. a function from \Re into N). For a fixed function α , we define a functional F/α and a function $\overline{F}\alpha$ as follows:

$$F/\alpha(\gamma) = \begin{cases} F(\gamma) \text{ if } \gamma \leq *\alpha; \\ 0 \text{ otherwise.} \end{cases}$$

 $\overline{F}\alpha$ is the <*-least function β having the following three properties:

- (i) If $\gamma \leq *\alpha$, then $\gamma = \beta_n^+$, some *n*. (ii) For each *n*, $\beta_n^+ \leq *\alpha$
- (iii) $F(\beta_n^+) = \beta_n(0)$.

Thus F/α is a functional agreeing with F on the segment of functions $\gamma \leq *\alpha$; $\overline{F}\alpha$ is a function which codes the values of F (and F/α) on this segment. Note that this segment contains at most a countable number of functions.

For later reference, we note an important property of bounded predicates.

(a) If F is a functional such that

$$(\forall \beta)_{\leq *\alpha} R(\beta, \delta, F/\alpha)$$

then

$$(\forall \beta)_{\leq *\alpha} R(\beta, \delta, F)$$

and conversely.

We now begin the proof. Let $R(\alpha, \delta, F)$ be any bounded primitive recursive predicate, and let the function δ be fixed. We define a set $U(\delta)$ by

$$U(\delta) = \{\overline{F}\alpha : (\forall \beta)_{\leq *\alpha} R(\beta, \delta, F/\alpha)\}.$$

 $U(\delta)$ is the set of functions coding the functionals that "work" up to α .

We impose a Kleene-Brouwer ordering on $U(\delta)^4$;

(b)
$$\overline{F}\alpha <_{\mathsf{KB}} \overline{G}\beta$$
 iff

(i) $\beta < * \alpha \gamma G/\beta = F/\beta$,

 \mathbf{or}

(ii) $F(\gamma_0) < G(\gamma_0)$, where γ_0 is the <*-least function on which F and G disagree.

The important clause in this definition is (i); if $\overline{F}\alpha$ codes a longer segment of the functional coded by $\overline{G}\beta$, then $\overline{F}\alpha <_{\mathsf{KB}} \overline{G}\beta$. We will denote an UDC in $U(\delta)$ by $\{\overline{F}_{\alpha}\beta_{\alpha}\}_{\alpha}$; i.e. for each $\alpha \in \mathbb{N}$, $\overline{F}_{\alpha}\beta_{\alpha}$ is in $U(\delta)$ and if $\alpha_1 <^* \alpha_2$ then $\overline{F}_{\alpha_2}\beta_{\alpha_2} <_{\mathsf{KB}} \overline{F}_{\alpha_1}\beta_{\alpha_1}$. Our proof will be completed by the following lemmas.

Lemma 1. $U(\delta)$ is a projective set and \leq_{KB} is a projective linear ordering of $U(\delta)$. Moreover, there is a projective function $kb(\delta)$ giving the index¹ of \leq_{KB} as a function of δ ; i.e. \leq_{KB} on $U(\delta) = \mathcal{A}_{kb}(\delta)$.

Lemma. 2. If $(\exists F)$ $(\alpha) R (\alpha, \delta, F)$ then there is an UDC in $U(\delta)$.

Lemma 3. If there is any UDC in $U(\delta)$, then there is one of the form $\{\overline{F}\beta_{\alpha}\}_{\alpha}$, where each function in the chain codes is a segment of the same functional.

Lemma 4. If there is an UDC in $U(\delta)$, then $(\exists F)(\alpha) R(\alpha, \delta, F)$.

Proofs. The proof of lemma 1 is tedious but routine, and is omitted (see [2], section 9). Suppose that F is a functional such that (a) $R(\alpha, \delta, F)$. Then $\{\overline{F}\alpha\}_{\alpha}$ is a UDC in $U(\delta)$; indeed, if $\alpha_1 < *\alpha_2$ then $F_{\alpha_2} <_{\mathsf{KB}} \overline{F}_{\alpha_1}$ by (b), clause (i). This proves lemma 2.

Lemma 3 is the heart of the argument and we postpone its proof until the end. To prove lemma 4, assume that $\{\overline{F}\beta_{\alpha}\}_{\alpha}$ is a UDC in $U(\delta)$. This is no loss of generality by lemma 3. But now we may define a functional F_0 by

$$F_0(\gamma) = m \longleftrightarrow (\exists \beta_{\alpha}) \ (\gamma < \ast \beta_{\alpha} \& \overline{F} \beta_{\alpha}(\gamma) = m)$$

where

$$\overline{F}\beta_{\alpha}(\gamma) = m \longleftrightarrow (\exists n) \ (x) \ (\overline{F}\beta_{\alpha}(< n, \ x + 1>) = \gamma(x) \ \& \ \overline{F}\beta_{\alpha}(< n, 0>) = m).$$

 F_0 is well-defined, since the functions $\overline{F}\beta_{\alpha}$ agree on their common domain. F_0 is defined everywhere since for any fixed γ the set of functions $\leq * \gamma$ is countable. Thus there must be a β_{α} such that $\gamma < * \beta_{\alpha}$.

We claim that (a) $R(\alpha, \delta, F_0)$. Indeed, let γ be any fixed function. As noted above, there is an β_{α} such that $\gamma < *\beta_{\alpha}$. Since $\overline{F}\beta_{\alpha}$ is in $U(\delta)$, $(\beta)_{\leq}*\beta_{\alpha}R(\beta, \delta, F/\beta_{\alpha})$; in particular then, $R(\gamma, \delta, F/\beta_{\alpha})$. But since R is bounded and $F_0/\beta_{\alpha} = F/\beta_{\alpha}$, we have, by (a), $R(\gamma, \delta, F_0)$. Since γ is arbitrary, our claim is proved.

Proof of the Theorem. Let C be some set in \mathcal{C}_0 . Then for some bounded primitive recursive R,

$$\delta \not \in C \longleftrightarrow (\exists F) (\alpha) R(\alpha, \delta, F)$$

Let $kb(\delta)$ be the function of lemma 1. By lemmas 2 and 4

$$\delta \not\in C \longleftrightarrow kb(\delta) \not\in W^*$$
.

or

$$\delta \varepsilon C \longleftrightarrow kb(\delta) \varepsilon W^*$$

which shows that W^* is semi-complete with respect to \mathcal{C}_0 .

Proof of lemma 3. We note first that

(c) if $\overline{F}\beta$ is in $U(\delta)$ and $\gamma < \beta$, then $\overline{F}\gamma$ is in $U(\delta)$ also.

Now suppose that $\mathcal{H} = \{\overline{F}_{\alpha}\beta_{\alpha}\}_{\alpha}$ is some UDC in $U(\delta)$. We will write \overline{F}_{α} for $\overline{F}_{\alpha}\beta_{\alpha}$ and $\overline{F}_{\alpha}(\gamma)$ for the value of the functional $F_{\alpha}/\beta_{\alpha}$ on γ . We will prove the following assertion by induction on $<^*$:

(d) For each α there is a function τ_{α} such that for every γ , $\tau_{\alpha} \leq *\gamma$, the functionals coded by \overline{F}_{γ} agree on the segment of $\mathfrak{N} \leq *\alpha$; i.e. if $\tau_{\alpha} < *\gamma$ and $\xi \leq *\alpha$, then $\overline{F}_{\tau_{\alpha}}(\xi) = \overline{F}_{\gamma}(\xi)$.

Now suppose that (d) holds for all $\beta < \alpha$. We show that (d) holds for α as well. There are three possibilities.

Case I: α is <*-least. Let $B = \{\overline{F}_{\beta}(\alpha) : \overline{F}_{\beta} \in \mathcal{H}\}$. B is a set of non-negative integers and has a least. Let τ_{α} be a function such that $\overline{F}_{\tau_{\alpha}}(\alpha)$ is least in B.

If $\tau_{\alpha} < *\gamma$, then $\overline{F}_{\gamma} <_{\mathsf{KB}} \overline{F}_{\tau_{\alpha}}$; thus either \overline{F}_{γ} extends $\overline{F}_{\tau_{\alpha}}$ (in which case they agree on α) or at the least function γ_0 on which they differ, $\overline{F}_{\gamma}(\gamma_0) < \overline{F}_{\tau_{\alpha}}(\gamma_0)$. But since $\alpha \leq *\gamma_0$ and $\overline{F}_{\tau_{\alpha}}(\alpha) \leq \overline{F}_{\gamma}(\alpha)$, \overline{F}_{γ} and $\overline{F}_{\tau_{\alpha}}$ must agree on α . (By (c), $\overline{F}_{\tau_{\alpha}} \alpha$ is in $U(\delta)$.)

Case II. α is the <*-successor of α_1 . By assumption τ_{α_1} is defined. Suppose α_2 is the <*-successor of τ_{α_1} . Then \overline{F}_{α_2} in \mathcal{K} must be defined at least up to and including α , since $\overline{F}_{\alpha_2} <_{\mathsf{KB}} \overline{F}_{\tau_{\alpha_1}}$ and \overline{F}_{α_2} agrees with $\overline{F}_{\tau_{\alpha_1}}$ on all function $\leq \alpha_1$. Thus the set B is non-empty, where B is the set $\{\overline{F}_{\beta}(\alpha): \overline{F}_{\beta} \in \mathcal{K} \& \tau_{\alpha_1} < *\beta\}$. Again choose τ_{α} such that $\overline{F}_{\tau_{\alpha}}(\alpha)$ is least in B. Arguing as in case I, we can show that τ_{α} satisfies (d).

Case III. α is a <*-limit. Let $\{\beta_n\}$ be a countable sequence of functions such that $\beta_1 <* \beta_2 <* \ldots$ and $\alpha = \lim_n \beta_n^5$. For each n, τ_{β_n} is defined. Let $\alpha_0 = \sup_n \{\tau_{\beta_n}\}^5$. Then if $\alpha_0 <* \gamma$, \overline{F}_{γ} and F_{α_0} must agree on all function <* α . Indeed, if $\gamma_0 <* \alpha$, there is an n such that $\gamma_0 <* \beta_n$. But all functionals \overline{F}_{γ} for $\tau_{\beta_n} <* \gamma$ agree on γ_0 . Thus if α_1 is the <*-successor of α_0 , $\overline{F}_{\alpha_1}(\alpha)$ must be defined. As before then, we choose τ_{α} such that $\overline{F}_{\tau_{\alpha}}(\alpha)$ is least in the set $\{\overline{F}_{\beta}(\alpha): \overline{F}_{\beta} \in \mathcal{H} \& \alpha_0 \leq * \beta\}$.

This completes the proof of (d). Finally, we choose the chain $\{\overline{F}_{\tau_{\alpha}}\alpha\}$. By (c) and (d) respectively we know that each function $\overline{F}_{\tau_{\alpha}}\alpha$ is in $U(\delta)$ and that if $\alpha_1 < \alpha_2$ then $\overline{F}_{\tau_{\alpha_2}}\alpha_2$ extends $\overline{F}_{\tau_{\alpha_1}}\alpha_1$ so that $\overline{F}_{\tau_{\alpha_2}}\alpha_2 <_{\text{KB}} \overline{F}_{\tau_{\alpha_1}}\alpha_1$. Thus lemma 3 is proved.

Remark. With only a slight modification of the above proof, one can show that W^* is semi-complete with respect to the class \mathcal{C}_1 of those π_1^2 sets C definable in the form

$$\delta \varepsilon C \longleftrightarrow (\forall F) (\exists \alpha) R (\alpha, \delta, F)$$

where R is primitive recursive and weakly bounded. (We say $R(\alpha, \delta, F)$ is *weakly bounded* if there is a projective function $f(\alpha)$ such that, for fixed α , the arguments of the functional F in R are $\leq * f(\alpha)$.) \mathcal{O}_1 is a much larger collection than \mathcal{O}_0 but is still a proper subclass of π_1^2 . Our method does not apply when we cannot legitimately limit our knowledge of the values of the functional to a proper segment of \mathfrak{N} .

NOTES

1. A subset B of \Re is *Projective* if it is analytic in a finite number of functions; i.e. if there are functions $\Psi_1, \Psi_2, \ldots, \Psi_m$ in \Re and a formula Φ of second order number theory having one free function variable \mathbf{v} and m function constants $\mathbf{w}_1, \ldots, \mathbf{w}_m$ such that for any function $\alpha, \alpha \in B$ iff Φ is true in the standard model of secondorder arithmetic when \mathbf{v} is interpreted as α and $\mathbf{w}_1, \ldots, \mathbf{w}_m$ as Ψ_1, \ldots, Ψ_m respectively. An *index* γ of the projective set B is a function coding in some uniform way a Gödel number of a formula Φ defining B and the parameter functions Ψ_1, \ldots, Ψ_m . We let \mathcal{A}_{γ} be the projective set with index γ . \mathcal{A}_{γ} is a *projective well-ordering* (*linear ordering*) if the relation $\alpha \leq_{\gamma} \beta$ (defined by: $\alpha \leq_{\gamma} \beta \leftrightarrow$ $\langle \alpha, \beta \rangle \in \mathcal{A}_{\gamma}$ (see note 3)) well-orders (linearly orders) the set $\{\alpha: \alpha \leq_{\gamma} \alpha\}$. 2. A relation $R \subset \mathbb{R}^k$ is called π_1^2 if R is definable in the form

 $R(\alpha_1,\ldots,\alpha_k) \longleftrightarrow (\forall G)(\exists \beta) S(\alpha_1,\ldots,\alpha_k,\beta,G)$

where G is a variable over the functions from \Re into N, and where S is primitive recursive [4]. R is called Δ_1^2 if both R and its negation are π_1^2 . In [2] it was shown that the relation $J(\alpha, \beta) \leftrightarrow \alpha \in \mathcal{A}_{\beta}$ is Δ_1^2 .

- 3. $\langle n, x \rangle = 2^n 3^x$; $\langle \alpha, \beta \rangle$ is the function whose value at x is $\langle \alpha(x), \beta(x) \rangle$.
- 4. There are three orderings being used at this point: the projective well-ordering <* of \Re of length Ω ; the Kleene-Brouwer ordering <_{KB} of $U(\delta)$; and the normal ordering < of the natural numbers.
- 5. The sequence $\{\beta_n\}$ and the least upper bound of the set $\{\tau_{\beta_n}: n = 1, 2...\}$ exist since each function in \mathfrak{N} corresponds to a countable ordinal in the well-ordering <*.

REFERENCES

- Addison, J. W., "Some Consequences of the Axiom of Constructibility," Fundamenta Mathematicae, vol. 46, pp. 338-357.
- [2] Bloom, S. L., "The Hyperprojective Hierarchy," Ph.D. Dissertation, M.I.T., January 1968.
- [3] Bloom, S. L., "The Hyperprojective Hierarchy," to appear.
- [4] Kleene, S. C., "Recursive Functionals and Quantifiers of Finite Types I," Transactions of the American Mathematical Society (1959), pp. 1-52.
- [5] Spector, C., "Recursive Well-Orderings," The Journal of Symbolic Logic, vol. 20 (1955), pp. 151-163.

Stevens Institute of Technology Hoboken, New Jersey

308