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EQUATIONAL POSTULATES FOR THE SHEFFER STROKE

C. A. MEREDITH

1. Notation for equational reasoning. There are two fundamental rules of
equational reasoning: (i) Euclid, i.e.a =8, 2 =y — g =y; (ii) elaboration,
i.e. @ = b —fa = f3 (and indeed @ = B, v =6 — guy = gB5), also given by
Euclid in particular cases.

I number all formulae and deal only with constant terminal functors.

(i) I give as: if m and n are sets of equations, e€mn is the set of
equations @ = R such that, for some P, P= Q is in m and P = R is in .

(ii) I show by the insertion of ‘"’ in the non-argument places of fand the
insertion of (the number of) a = 3 in the argument places.

2. Illustration and explanation.® For example, suppose the equations (or
more accurately, substitution classes of equations) numbered 1 and 2 are

1. RRppRqp = p
2. RpRqRpr = RRRvqqp

Then (a) the equation

RPRRqqRpq = RRRqRqqRqqp is in 2, (since it is 2 q/Rqq, 7/q),

and (b) the equation
RpRRqqRpq = Rpq is in R'1,

since if we have RRqqRpq = q (i.e. 1 p/q, q/p) for our a = 8, we could have
RpPRRqqRpq for our fa (with f of the form R’) and Rpq for our fB, and so the
given equation for our fo = f8. Further, given (a) and (b) we can infer that

(c)
3. RRRqRqqRqqgp = Rpq is in €2R'1,

1. This notation is also used, in a sketchy way, in [1], Section 3.

2. This section is added by A. N. Prior.
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for if we have the equations in (a) and (b) for our P = @ and P = R, 3 will be
our @ = R. And we may compress this whole proof to the line

3. RRRqRqqRqqp= Rpq €2R'1.

Moreover, given this line we can reconstruct the proof. For if 3 is in
€2R'1, the relevant members of 2 and R'l must be of the forms

...... = RRRqRqqRqqp
...... = Rp q,

where both gaps are filled in by the same formula, and from 2 and the first
line we can easily see what this formula must be. (Where alternative
solutions are possible, we may choose the most general one which will give
the same LHS on both sides, i.e. the one with fewest unnecessary identifi-
cations of variables).

The rule @ =8, v =6 —gay = gB6 can be proved from (i) and (ii) of the
previous section, provided that we can prove a = 3 — B = a; for we can
proceed thus:

1. a=p

. v=23

. gay =8By g1’

. &By =gay 3, converted
. gBy =gB6 g2
.gay=gpB5 €4b

DD Ol B W N

The symmetry of = is not in fact provable from (i) and (ii) alone, but it is
provable when these are supplemented by the special axioms used in the
examples below. (See end of next section). And in such cases it will be
useful to refer to 6, in proof formulae, as g12. If 2 is a substitution in 1, 6
will of course be gl1. Cases of this sort will occur below (e.g. R.29.29 in
the proof of thesis 30 in the next section).

3. First abridgement of Sheffer. Using R either for joint or for alternative
denial, the equational axioms

1. RRppRqp = p
2. RRpRqrRpRqv = RRRyYppRRqpD

with the definition
3. Rpp = Np

will yield Sheffer’s original equations for this functor. This result (of about
1949) is provable as follows (Sheffer’s equations being starred):

4. RNpRgqp=p €R3'1
5. RNDNp = p ER'34

*6. NNp =p €35
1. p=p €66 (or €11)
8. RRRvppRRqpp = NRpRqr €23
9. NRpRqq = NRRqpp €83
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10. RRqgpp = RpNq €€ENIJBBR'3
11. RRpNvRpNq = NRpRqr €R.10.10.8
12. RNRgpp = Rqp tR'44
13. RpPpNNRgp = RRqpp €10.R.12.'
14. RRqpp = RpRqp €13.R'6
15. RpRgp = RpNq €14.10
16. RpRqr = NRRPN¥YRpNq €6EN.11.7
17. NRRNpNpRNpNq = p £.16.4
18. NRpPpRNpNq = p e.NR5'.17
19. NNRRpPNNqRpPNNPp = p €.N.16.18
20. NNRRpgqRpp = p €.NNRR'6R'6.19
21. RRpgNp = p €.R'3€6.20
22. NRRRpgNqRRpgNp = NRpq €.16.3
23. NRRqRpgNqRRqRpgNp = RRpgNq £.16.10
24. NRqRRgNpNp = RRpqNq €NR.21.R.15.".23
25. NRqRNpNq = RRpgNq eNR.'.10.24
26. RpRqNp = Np eR6'4
27. RRpgNq = q €EN.26.25.6
28. NRpq = NRqp €£,22.NR.27.21
29. Rpq = Rgp €EN.28.6.6

*30., NRpRqv = RRNqpRNvD €€.29.11.R.29.29
31. RRprRpNq = NRpRqgNr eRR'6'.11
32. RvYRpNq = RRRqppr €R’.10.29
33. RRRqppRpg = NRpRqNq £.32.31
34. RRpRqpRqp = NRpRqNq €R.29.29.33
35. NRpRgNq = p €£.10.34.27

*36. RpRqNq = Np €E6N.35

Note that

ifmisa=8,emlisB=a

if m is Na = NB, eeNm66 is a = 3.

4. Second abridgement of Sheffer (1967). G. Spencer Brown has abridged
Sheffer’s postulates to the pair

1. RNpRNqq = p

2. RpRqv = NRRNvpRNqp
with Np for Rpp. One might try abridging this by replacing Ng by p in 1 and
shifting the initial N to LHS from RHS, which effects a shortening when the
axiom is written out in full. However, this pair

1. RRppRpq = p
2. RRpPpRqvRpRqy = RRRYYpRRqqp

is verified by

N = O|X
- o
DN O =t
(Ol ey I
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for which NNp = p, Rpq = Rqp, ROp =1, R1p = Np, but RpNp = (1,1,2), so
that for p/1, ¢/2, RpND # RqNq. However, a modification of 2 gives a pair
that works, thus:

*
O 0 -0 Ul i W=

10.
11.
12.
13.
14.
15.
*16.
11.

RRppRpq = p

RRPpRpPpRqRYsS = RRRSSqRRYvq
Rpp = Np Df.N

RNpRDq = p eR3'1

RNpNp = p eR'34

NNp = p €35

p=p €66

RRRssqRRvrq = RRPpNpRqR7s
RRpNpRqRvs = RRNsqRNrq

RRPNpRgqNy = RRNvqRNvrq
NRNNvq = RRpNDRqvr
NRrq = RRpNpRqr
RRpPpNpg = Nq

NRqv = NRrq

Rqr = Rvq

RqRpND = Nq

NRqRvs = RRNsqRNvq

5. Thivd abridgement of Sheffer (1967).

*1.
2.

10.
. RRRqqqp = Rpp
12.
13.
14.
15.
16.
117.
18.
19.
20.
21.
22.

S el

RRppRqp = p

RpRqRpY = RRRvqqp

p=>

RRRqRqqRqqp = Rpq
RRRqRqqRqqRRpRppRpp = Rqp
RRpRppRpp = p

Rpq = Rgp

RpRqRpp = Rpp

RRRpqqp = Rpp

RpRqRpg = Rpp

RRRvppRqRvY = RRRYqqRRvpp
RRRvqqRRvvr = RRqRvvRqRvr
RRRv9qRRvqq = RRqRYYRqRvYr
RRvqq = RqRvy

RRqRvvp = RpRqRpr

RpRqRpY = RpRqRYY

RpRqRvDp = RpRqRvr
RRqpRqRYRpp = RRqpRqRvr
RRqRppRqR7Yp = RRqRPpPRqRYY
RPRRqpRqp = Rqp
RRqRvpRqRpp = RRqQRVvpRqRvp

€2RR'3’

e8RR3'R3' (the 3’s
are not
the same)

eR'R'39

€3¢€.10.R'R'6

eENR6'.11

€R'5e.12.N5

€.13.£.12.8

€eN.14.6.6

€.15.13

€.13.9

ell

e2R'1
£e434
€ERH511
€R6'4
gR1'1

€28
eR"ETI
€2.10
€R'R'92
€12.11
€e7.11.13
ceR14.14.1.1
eR15.'€2.3
£€16.7
eR'R™.1T
eR'17.18
ER'R'R'1.19
eTeR1.1
€19.R'R'21
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23. RRqRppRqRvr = RRqRYPRqRYvD £20.e7.22
24. RqRvv = RRvqq €15.3
*25. RRqRvpRqRvp = RRRPpgqRR7vqq £23.R24.24.

(The starred equations are the axioms of Section:3).

Giving this basis as three axioms makes the long one absurdly simple:
RRppRqp = p, RPRqRDY = RpRqRqv, Rpq = Rqp.
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