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SELECTION FUNCTIONS FOR RECURSIVE FUNCTIONALS*

THOMAS J. GRILLIOT

Many of the interesting results in the study of recursive functions of
finite higher types owe their existence to the way that partial recursive
functions can be defined inductively by schemes. However, the profusion of
notation sometimes clouds the techniques involved in working with higher
types. For greater clarity and possible generalization it is natural to
reinvestigate these results in the setting of inductively defined sets. In
particular, the selection functions of Gandy [l, p. 14], Moschovakis [3, (I)
of p. 270] and Platek [4, pp. 178-182] are basically functions that choose
from a countable set of trees of computation (indexed by numbers) those
trees that are the shortest. More abstractly, they are functions that choose
from some objects (some of) which belong to an inductively defined set
those objects that are placed in the set at the earliest stage. We prove the
existence of such functions in Theorems 1 and 2. Our Theorems 3 and 4
are analogues (in the setting of inductively defined sets) of two results
related to selection functions; namely, that sets r.e. in En+2 (n >0) are not
closed under type-?z quantification (proved by Moschovakis [3, Theorem 10]
for the case n = 1), and that predicates r.e. in En+2 can be characterized by
a bounded existential-quantifier form (proved by Gandy [l, p. 17] for the
case n = 0 and by Moschovakis [3, Theorem 9] for the case n = 1). By
showing in Theorem 5 that the inductive definition of partial recursive
functions fits the hypotheses of Theorems 1 through 4, we are able to obtain
the known theorems related to selection functions (Theorems 6, 7 and 8) for
all higher types, plus a generalization to selections from uncountable sets
(Theorem 6). This generalization enables us to characterize the types of
quantification under which r.e. predicates are closed (Theorem 9).

We assume that the reader is familiar with the notation of the first half
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of Kleene's 1959 paper [2] on recursive functions of higher types. En+2 will
denote the type-(n + 2) object that introduces type-rc quantification. Since
we will use variables of types n and n - 1 rather often, we reserve
nonsuperscripted a, β, y, δ, ε for type-w variables, nonsuperscripted ζ, η, ξ
for type-(w - 1) variables and S, T for sets of type-w objects. We use p, σ, τ
for ordinals. We regard the predicate P(α) v Q(α) as being computed from
left to right so that Q(α) need not be computed (and hence need not be
defined) when P(α) is true. A similar remark holds for P{a) & Q(α) and
P(a) -> Q{a).

Let J be an operation that maps sets of type-n objects into sets of
type-w objects. For each ordinal σ, we define a set Sσ of type-n objects
inductively by the formula

Sσ = Ur<σJ(Sr)

The set S = [JσSσ is called the set inductively defined with respect to J, and
Sσ is called the σth stage of S. An ordinal \a\ can be assigned to each
type-w object a as follows: if aeS, let \a\ be the smallest ordinal σ such
that aeSσ+1; if α/S, let \a\ be the smallest ordinal σ such that Sσ = Sσ+1. The
simplest type of selection function for an inductively defined set S is a
partial function that selects from two objects the one (if any) that is put into
S at an earlier stage. Thus a partial function φ{a, β) is a selection function
for the set S if

( 1 ) <K«,β)<*\1 if | β | < | α | & β e S .

We now prove the existence of relatively simple selection functions of this
sort.

Theorem 1. Lets be inductively defined with respect to an operation
J, and let P(α, β) have the property that, if aeS, then

(2) |α | =suP{|β| + l :P(α, jS)}.

Then there exists a partial function φ(a, β), partial recursive in P, J and
Ew+2, such that equation (1) holds.

Proof. Let [a] be the ordinal defined by the equation

[a]= suP{|/3| + UP(a, j3)}.

Thus [a] = |α | whenever aeS. Suppose that φ(α, β) has been defined by a
recursion (which we will exhibit presently) so that φ(α, β) satisfies (1) for
all a, β for which inf(|α|, |β | ) < σ. Let one of a and β be in S and let
inf(|α|, Ij3|) = σ. We will show that (1) holds. If [α]< σ, then, by the induc-
tion hypothesis, we see that

δeS[a] «-> | δ | <[a]

(3) <-> 3y[P(α, y ) & | δ | < \γ\]

<-> 3y[P(α, γ)& Φ(δ,y) = 0 ] .



SELECTION FUNCTIONS FOR RECURSIVE FUNCΊΊONALS 227

Note that φ(δ, γ) is computed only when P(a, γ) is true and hence only when
\γ\ < [o?]< σ. Also, by the induction hypothesis, we obtain

(4x H ^ IJ3] <-> Vy[P(α, γ) -> 3δ(P(β, δ) & \γ\ < | δ | ) ]

<-> Vy[P(α, γ) -> 3δ(P(β, δ) & φ(γ, δ) = 0)].

Since

\a\ ^ Ij8| <-> [α]< [8]& αeJ(S[αj),

φ(α, ]3) can be defined by the recursion

β γ ^ ί ° */ H ^ D3]&αeJ(S[β]),
p r \l if not,

where for the expressions [a] < \β] and S[a] we use the equivalent expres-
sions given in (3) and (4) involving φ, P and type-ra quantifiers. The only
thing left to verify is that equivalence (3) is used only when [a] < σ (since,
otherwise, the expression replacing S[a] may be undefined). However, we
compute J(S[α]) only when [α]< [β], and hence only when [α]< inf( |α|, Iβl) =
σ. This completes the proof.

The preceding theorem proves the existence of selection functions
that select from two objects the one that is put into an inductively defined
set at an earlier stage. Now we will prove the existence of selection
functions that select from larger collections. In the following ctζ will be an
abbreviation for ληa(< ζ, η >). This allows us to think of the type-w object
a as an abbreviation for an infinite collection of objects of the form ctζ.

Theorem 2. Let n > 0. Let S be inductively defined with respect to an
operation J, and let P(a, β) have the property that, if aeS, then

(5) I of I = sup {inf̂  Iβ̂ -I + l:P{a,β)}.

Then there exists a partial function ψ(ζ, ά)} partial recursive in P, J and
En+2, such thaty if a^eS for some ξ9 then

ΨK^ } (lifnot.

Thus ψ specifies which c^ are put into S at the earliest stage.

Proof. Let a* be some object such that a£ = a for all ζ; for instance,
let a* = λζaiiζ)^. It is easily seen that the set Sτ = {a: 3ζ(c^eS)} is induc-
tively defined with respect to the operation Jτ defined by the equivalence

αeJ'(Γ) <-» lζ(aζeJ(\β:β*eT}))

in such a way that the σth stage Si is the set {a: lξ(aζeSσ)}. Thus, for all
a, | # | τ = ϊnf^lα^l where \a\ (respectively, | t f | f ) denotes the least ordinal σ
such that aeSσ+1 (respectively, aeS'σ+1). Using the fact that any function
F(ζ, β) into the ordinals satisfies

infj supβF(ζf β) = supβ\nfζF(ζ,βζ)f
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we obtain

1 of 1' = infjαfl
= i n f ζ sup { i n f ξ \βξ\ + l:P(aζ, β)}
= sup {\nϊζ \nfξ \γξξ\ + 1 : VζP{θίζ, γξ)}

= sup {|δ| τ + l : P τ ( α , δ)},

where

P'(α, δ) <-» 3y[ VζP(^, γξ) & VζVξ(y^ = δ < w > ) ] .

By the preceding theorem, there exists a partial function φ{a, β), partial
recursive in P\ Jτ and Ew+2 (and hence partial recursive in P, J and En+2)
such that

< ^ ^ { i </ l β h < l « h * β e s : •

Since | « | ' = inf̂  | α f | and | α f * | ' = |α^|, the function ψ(ξ, α) « φ(α^*, α) is the
desired function.

The next theorem shows that, in a few cases, the complement of an
inductively defined set S can be reduced to S by using type-rc quantifiers.
This sort of reduction was proved by Moschovakis [3, Theorem 10] in the
case where S is r.e. in E3. Recall that a predicate P(α) is r.e. in b if
P(α) <-> [{e}(a, b) is defined] for some e. He showed that the negation of a
predicate r.e. in E3 has the form la1 Pία1, •) where P is r.e. in E3.

Theorem 3. Let n> 0. Let S, J and P be as in the preceding theorem.
There exists a predicate R(a, β), r.e. in J, P and Ew+2, such that

af/S <~^ 3j8Λ(α, β).

Proof. For each a, let

H = sup { ί n f ^ l + l:P(a, β)}.

Thus [a] - \a\ whenever aeS. Let

N(a) <-> [αeJ(S[α]) is defined and false],

where for S[α] we use the following equivalent form, which by the preceding
theorem is partial recursive in P, J, En+2 and is defined when [a] <
s u P / 3 f S \ β \ -

δ e S [ a ] < - > 3 y [ P ( α , γ) & | δ | < « n f ζ \ γ ξ \ ] .

If n > 1, in analogy with the familiar notation x * y and seq (x), we
define ζ *η = λε(ζ(e) * η(e)) and seq(ζ) <-> ζ = <(ζ)0, . . . , (ζ)Ί h(O> w h e r e

1 h(ζ) = lh(ζ(λθ)). Suppose atfS. For each ζ satisfying seq(ζ), we can define
an object βtfS inductively as follows. Let £<>= a. Suppose βζ has been
defined so that βtfS. If N{βζ) is true, let β^*<τ?>= βζ for all 77. Otherwise,
S[βy\ must not be defined, which implies that there exists some γ such that
P(βξ, Ύ) & VηirηέS); so let βζ*<η>= γη for all 77. We see that the object β we
have defined satisfies the predicate
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R(a, β) ^ β<>= a8z Vζ[seq(ζ) - N(βζ) v lγ(P(βζ, γ) & Vη(βζ.<η> = Ύη))]

Therefore, otfS -> 3βR(a, β).
Conversely, suppose that γeSr -» i3/3fl(y, β) for all γ and all r < σ.

Let aeSσ, but suppose that R(a, β) is true for some β. By the last clause of
R(a, β) and by equation (5), there exists an object 77 and an ordinal r < σ
such that β<η>eSΓ. Let δ be any object satisfying δ̂  = β<η>*ζ for all ζ. It
follows that R(β<η> δ) is true, contradicting the induction hypotheis. There-
fore, a^S <-> 3j3Λ(α, β). Since N(a) is r.e. in P, J and Ew + 2, R(a, β) is also.

Sets with strong closure properties can often be expressed in terms of

a bounded existential quantifier form. Thus the 1 l x predicates are
precisely those predicates of the form ^a^A

 p(al> ') where P is arithmeti-
cal. The next theorem leads to results of this sort for higher types. The
idea of the theorem is to find some simple conditions that characterize the
stages of an inductively defined set S. We cannot quite do this because in
order to identify some stage we need to know the history of previous
stages. Rather, we will find some simple conditions that characterize the
sets

S* = {<a, β > : \a\ < \β\ < σ } .

Theorem 4. Let S be inductively defined with respect to an operation J.
Let Ta be an abbreviation for the set {β: < β, a > e t} and let Uτ =
{(a)o, (rfx'.ae f\. The sets S* are precisely the sets T satisfying:

(a) T consists of objects only of the form < a, β >;

(b) if ae Uτ, then J(Ta) ^ Uτ;
(c) the relation < on Ur given by the rule a < β <-> ae Tβ is well-

founded, and the relation < on Uτgiven by the rule a < β <—> aeTβ UJ{Tβ)
satisfies a < a and a < β & β < γ —> a < γ.

Proof. It is evident that S* satisfies (a), (b) and (c). Suppose T
satisfies (a), (b) and (c). It is sufficient to show that

(6) ae Uτ -» aeS & S\a\ = Ta.

If this is the case, then T = S* where σ = supα e t / τ ( |α | + 1). (Condition (b) is
needed to show that S* Q T.) Suppose (6) is false for some a minimal in the
ordering <. If β < a, then βeS\β\+1 and

S\β\ +1 = % UJ(Sl/3,) = TβUJ(Tβ) c r α .

Thus

Tut = UyS<O 5 |/3 |+l,

which implies that Ta = Sτ for some r. Since ae Ta U J{Ta) = Sr+1 and since
aeTa = STy it follows that S\a\ = STf contradicting our supposition that (6) is
false for a.
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Corollary. Let n > 0, and let S, J and P be as in Theorem 2. There
exists a predicate Q(α, T), formed from logical connectives, quantifiers of
type n, the operation J and recursive predicates, such that

*TQ(a,T)-+ aeS -+Q(a,Sfal+ύ.

Hence by Theorem 2,

aeS «-> 3TQ(a,T) <-> 3T[Q(a, T) & T is recursive in a, P, J, E w + 2 ].

Proof. Let Q(a, T) say that (a), (b) and (c) of Theorem 4 hold and that
aeUτ.

We will now apply the previous results to recursive functionals. Let F
be any type-(w + 2) object and let E be an abbreviation for Eμ+2. To each
defined {z}E'F[a°, . . . , an], we associate an ordinal 11{2:}E'F[of°, . . . , an]\\
equal to the supremum of all ordinals of the form ll{y}E'F[j30, . . . , βn]\\ + 1,
where tv}E'F[j3° . . . , βn] is in the tree of computation of {z}E'F[a°, . . . , an].
The idea of the following theorem is to inductively define the set

S = {<«,, z, a0, . . . , α " > : { * } E ' V , . . . , ( * " ] < * » }

with respect to a relatively simple operation so that

| < w , * , « ° , . . . , α " > | = | | { * } E V , . . . , o i " ] \ \ .

One minor complication arises from schemes S4 and S5. These schemes
force us to work with pairings, and so we modify the definition of S
accordingly as follows.

Theorem 5. Let n > 0. The set

S = {<w, y , a0,... , a * x , z , β°, . . . , β n > :

w ~ ω E -v , ...,*•]**« {*}E'V,..., Λ } .
can be inductively defined with respect to an operation J that is Δ 2 in E2

and Ψ, uniformly in F, in such a way that some Σ)i predicate P satisfies

,7» ly l= sup { inf χ |δ j +ί:P(γ, δ)}
(7) = ι ι w E ' V , . . . , α « ] i i v i i { 4 E ' F [ β ° , . . . , / n ι ι

(8) r = < w, y, o?°, . . . , <*w, AT, «, β°, . . . , /3W> e5.

(The notation δx is defined like δ^; i.e., δx = λwδ(< x, ??>)•)

Since the proof of this theorem is tedious and somewhat uninteresting,
we will append it to the end of this paper. In view of this theorem, the
following three theorems are direct consequences of Theorems 2 through 4.

Theorem 6. Let n > 0, and let b be a list of variables of types < n + 2.
There exists θ(z, ξ, b), partial recursive in E, such that, if {z}(ξ, b) is
defined for some ξ, then
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Thus the set U(z, b) = {ξ: θ(z, ξ, b) = 0} satisfies the implication

3ξ [{*}(£, ί>) w defined] ->
Z7(£, b) zs defined and nonempty & Vξ e £/(#, b) [{z}(ξ, b) is defined].

Proof. It suffices to show that there is a partial function 0(ξ), partial
recursive in E and F, uniformly in F, such that, if {e} ' (ξ) is defined for
some ξ, then

β(p) f θ z y l l { e } E ' F ( ξ ) l l ^ i n f , i l f e } E ' F ( ζ ) | | ,
V ζ ; ( 1 if not.

Assume that {e} ' (ξ) is 0 whenever it is defined. Let S be as in Theorem
5 and ψ as in Theorem 2. Let a be the recursive object

λζ < 0, e, ( >» . . . , ( Γ 2 , <(ζ)0>, ( )",
o,e,()o,...,(rs,<{ζ)0),(r>((ζ)1),

which satisfies

aξeS<r+ {e}E'F(ξ) is defined - | ^ | = | | {e}E'F(|)|| .

Then #(ξ) ̂  ψ(ξ, α) is the desired partial function.

Corollary 1. Let <i be a well-ordering of tyPe-k objects, where k + 1
< w, «w<2 Zeί b be a list of variables of types < n + 2. i/ ί/zere exists an
object εk such that {z} (εk

f b) is defined, then there exists one that is
recursive in <, E and b, uniformly in b.

Proof. Consider the case when k = n - 1. Let ε*5 be the <-smallest
element of U(z9 b), which is defined in the preceding theorem.

In the particular case when < is the natural ordering of the natural
numbers, we obtain the selection-function theorems of Moschovakis and
Platek.

Corollary 2. Let n > 0. The predicates, with arguments of types
< n + 2, that are r.e. in E are closed under existential quantification of
types < n - 1.

Proof. It suffices to show that, if P( | , vn+2) is r.e. in E, then 3ξP(ξ, v)
is r.e. in E. Let e be an index such that

Hi, vn+2)«- {ef v(ΰ - o.

and let #(ξ) be as in the proof of Theorem 6. Let
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Then

3ξ^ξ, vn+2)^ Ew+1(λξX(ξ, vn+2))~0.

As we have already mentioned, the next theorem was proved in the
case n = 1 by Moschovakis.

Theorem 7. Let w>0. Every predicate, with arguments of types
< n+ 2, whose negation is r.e. in E can be expressed in the form 3aP(a, •)
where P is r.e. in E.

Proof. This result follows immediately from Theorems 3 and 5 in the
same manner that Theorem 6 followed from Theorems 2 and 5.

Corollary. Let n> 0. There is a predicate P(x9 a), r.e. in E, such
that laP(x, a) is not r.e. in E.

The next theorem was proved by Moschovakis for the case n = 1. Prior
to this, Gandy proved an analogous theorem for the case n = 0.

Theorem 8. Let n > 0. Let b be a list of variables of types < w + 2.

Γ&ere exists a predicate Q(zf b, T) that isLL2 in E2 such that

{z}E (b) is defined <-> 3TQ(z, b, T)
<-> 3Γ [Q (ε, b, Γ) & Γ is rec. in b and E ].

(Note: the condition "in E 2 " may be dropped if the set quantifer 3Γ is
replaced by a function quantifer of the same type.)

Proof. This result is immediate from Theorem 5 and the corollary of
Theorem 4. One need only verify that Q in the corollary of Theorem 4 is

Πa (in E2, b) when J is Δ 2 (in E2, b).

Theorem 8 has a converse in that predicates of the form

3εw+1[ρ(b, εw+1) & εn+1 is recursive in b, E]

are r.e. in E whenever Q is r.e. in E. This follows from Corollary 2 of
Theorem 6. We summarize some of the preceding results in the following
characterization of the types of quantifiers under which r.e. predicates are
closed.

Theorem 9. Predicates (with arguments of types < n + 2) that are r.e.
in Ew+2 are closed under conjunctions, disjunctions, universal quantification
of types < n and existential quantification of types < mαχ(0, n - 1), but not
closed under higher type quantification.

Proof, (a) Closure under universal quantification of types < n: this
follows from a use of scheme SO.

(b) Closure under existential quantification of types < mαx(0, n - 1): if
n = 0, this follows from Gandy's selection-function theorem [1, p. 14]; if
n > 0, this follows from Corollary 2 of Theorem 6.

(c) Non-closure under type- max (1, n) existential quantification: if
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n = 0, this follows from Kleene's quantifier forms for r.e. predicates
[2, p. 32]; if n> 0, this follows from the corollary of Theorem 7.

(d) Non-closure under type-(w + 1) quantification: if n> 0, this follows
from Kleene's quantifier forms for r.e. predicates [2, p. 32]; if n = 0, if we

suppose the contrary, we would infer from [2, p. 32] that the ίl1 predicates
with arguments of types <2—which do not satisfy the reduction principle by
Tugue* [5, p. 112]—are identical with the predicates r.e. in E2—which do
satisfy the reduction principle.

Theorem 9 indicates that predicates r.e. in Ew+2 have moderately
strong closure properties. (Another indication is that sets inductively

defined with respect to Π i operations are always r.e. in Ew+2, though the

Π n in

! is replaced by ZA2.) On the other hand,
mere r.e. predicates are not even closed under disjunctions. For example,
let φ and ψ satisfy

ΦU, <*2) - βy[a\λx{z} (*)) = 0]
ψ(z, a2) is defined <e-> 3 x[{z} (x) is not defined].

Such a ψ exists by Gandy [l, p. 19]. Then no partial recursive function
θ(z, a2) defined exactly when either φ(z, a2) or ψ(z, a2) is defined. To
show this one supposes the contrary and then finds an index e of a total
function such that θ(e, XξO) and 9{e, F2) have identical trees of computation,
where F 2 is a type-2 function that is identically 0 except at the argument
λx{e}(x).

We conclude with a proof of Theorem 5. To see how to define P and J,
suppose that the stages Sτ are properly formed for r < σ. Suppose that (8)
holds where

σ = I I M E l F [ « ° , •..,<**} II v \ \ { z f ' ? [ β ° , . . . , β n ] \ \ .
Consider the case where ( y)o = 4 (application of scheme S4) and (^)0 = 0
(evaluation of E or F). By the induction hypothesis, we have

\\{y}E P[a°,...,a"]\\ = i n f , U t f , y ) I ,

where

A (t, γ)=< (t)0, (y)9, a0, . . . , a", (t)h (y)2, < 0 ) o > * a0, a\ . . . , a" > .

Similarly

| | { * } E ' V , ...,β"]\\ = supe inf, I B(ε,t,Ύ) I ,

where

B{ε, t, γ)=<t, (z)s, β°, . . . , βn~\ < ε > * βn,
t, (z)3,β°, . . . , ί T \ < ε > * β w > .

T h u s

σ = supjinf, |δ, I + l:P(γ, δ)},
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where

P(y, δ) <-+ Vt[δt =A(t, y)] v 3εVt[δt = J5(ε, t, y)].

Additional but similar clauses can be adjoined for the cases where (3O0 Φ 4

or (z)o Φ 0. In this way a Σ> x P can be defined. Next we consider the three
tests that should be made before putting y into Sσ+ί. First, we check that y
and z are indices; second, that the previous history of y is already in S (in
particular, this tests whether {y}E'F[a°, . . . , an] and {z}E'F[β°, . . . , βn]
are defined); third, that w and x are the correct values of {v}E/F[o'0, . . . , otn]
and {ε}E'F[β°, . . . , βn]. Thus we can define J by the rule

γeJ(T) <-> [w and z are indices of functions partial recursive in E, F]
& Vδ[P(y, δ)-> 3ί(δ,e T)]
& w = (μ«A(ί, y) e Γ)i
& fe)2 = 2 - * = F(λeμί(B(ε, t, γ) e T))

& f e x _ . ίθi/3ε(B(ε, 0,y)€Γ)

Additional but similar clauses can be adjoined for the cases where (;y)o Φ 4
or (̂ )o Φ 0. To prevent the possibility of J being undefined because of some
"μt", we may replace each "μtQ" by "μt(Q vVtlQ)". Thus J will be

Δ 2 in E2 and F, uniformly in F.
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