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EXISTENCE AND IDENTITY IN QUANTIFIED
MODAL LOGICS

R. ROUTLEY

§1. The aim of this paper is to present a way in which philosophical objec-
tions to the development of a combined quantification and modal logic based
on S5 can be overcome. In more detail, the objectives are to show that S5
is immune to criticisms directed at those theorems which distinguish it
from S4 and T; that problematic theorems' of modalised predicate logic
like the Barcan formulae [O(3x)f(x) D (3x)Of(x)] and [O(3#)glx, #) D (34)
Oglx, )] can be appropriately qualified once existence is explicitly
treated; that puzzles over identity can be escaped by a more elaborate
treatment of identity than the standard treatment; and that difficulties as-
sociated with quantification into modal sentence contexts can be cleared
away given these treatments of existence and identity. A combination of
these moves suffice, so it will be argued, to meet standard objections, most
forcefully presented by Quine®, to quantified modal logics. Admittedly a
full elaboration of these moves calls for some sentence/statement distinc-
tion, some analytic/synthetic (or necessary/contingent) distinction, and
some sense/designation (or connotation/denotation) distinction: but al-
though, consequently, it is not to be expected that a combination of these
moves will satisfy Quine, they may satisfy some who have been disturbed
by the objections Quine raises.

§2. Existence in a first-ovder modalised predicate logic. A semantical
system S5R* is obtained by adjoining modal postulates for S5 (with primi-
tive symbol ‘00°) to a system R* of first-order predicate logic (with prim-
itive quantifier ‘II’). R* differs from usual quantification theory in having
the predicate constant ‘E’, read ‘exist(s)’, added to its primitive symbols,
and in interpretation: in place of the frequent interpretation - [(Tx)f(x)] is
true if f is true of all existent items of the domain selected - the following
interpretation - [(IIx) f(x)] is true if f is true of all possible (consistently
describable or designable) items of the domain selected - is preferreda.
The postulate set of R* is as follows:

RO. If A is truth-functionally valid, then A is a theorem.
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R1. (Tix) (A D B)>. A D (Ix)B, provided individual variable x does not
occur free in A.

R2. (mx)A > é; Al, where y is an indiidual variable or a consistent
individual constant.

RR1. A, A D B— B (Modus ponens)

RR2. A — (Ix)A (generalisation)

An individual constant g is consistent if ‘a’ has a possible referent, i.e.
‘a’ can, logically, have a referent. (With respect to a given domain, a is
consistent if [(Zx) (x = a)] is true: see section 4.)

The postulate set for SSR* is obtained by adding to the postulate set
for R* the Gddel postulates:

R3. OADA

R4. ~OA DO~DA

RS. 0(A > B) o (0A D OB)
RR3. A — DA (necessitation)

A system SS5R,* is obtained by adding to S5R* the axiom:

R6. (lx) (~ O ~ E(x) & ~ OE(x)), i.e. existence of individual items is
always contingent.

The syntax of R* is simply that of an applied first-order functional
calculus: it is as a semantical system that R* differs importantly from
usual quantificational theories. In terms of ‘II’ read ‘for all’ or ‘for all
possible’ and ‘>’, read ‘for some (possible)’ and defined:

(ZDAE) =5y ~()~A(),

quantifiers ‘v’ read ‘for all existing’ and ‘3’, read ‘there exists’ or ‘for
some existing’, can be defined thus:

(Vx)A(x) =p; (TIx) (E(x) D Alx))
(3x)Ax) =p; (2x) (E(x) & Alx))

(Better definitions of ‘¥’ and ‘3’ can be obtained using restricted variables
but under the limits of S5R* these reduce to the above definitions.) The
V —3 subsystem of R* which has as wif all (definitional abbreviations of) wiff
of R* which contain only quantifiers ‘v’ and ‘3’ and which do not (in abbre-
viated form) contain ‘E’, and which has as theorems all theorems of R¥*
which are wff of the subsystem, coincides with quantification theory as fre-
quently interpreted when the further postulate [(Ilx)E(x)] is added to R*.
But except when, under interpretation, only a restricted class of individual
domains is admitted, [(TIx)E(x)] and [(TI¥) O FE (x)], which would follow using
necessitation, are both false.

§2.1 Kripke’s quantified extensions of normal modal systems* can be de-
veloped as subsystems of SSR*. The postulates of the most comprehensive
of these systems, Kripke’s quantified S5, consist of all Kripke closures of
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the following schemata (where the Kripke closure of A is any wif without
free variables obtained by prefixing V-quantifiers and necessity symbols in
any order to A):;

KO: Truth-functional tautologies

K1: OADA

K2: 0O >B)D.0ADDOB

K3: A D(VxA, where x is not free in A
K4: (Vx) (4 D B) D. (Vx)A D (Vx)B

K5:  (vy) (Vx)A(x) D A(y))

K6: ~O0AD0O ~0OA

Modus ponens for material implication is the only rule of inference. Exis-
tence is introduced by Kripke closures of schemata:

K7: (Vx)A(x) & E(y) D. A(y)
K8: (Vx)E(x)

Metatheorem: Every theovem of Kripke's quantified S5 with existence is
(an abbreviation of) a theovem of S5R*.

Proof: Since modus ponens is a rule of S5R* it suffices to show. that the
schemes KO0-K8 are derivable in S5R*. Schemes KO0, K1, K2, K6 are
theorem-schemes of S5R*. K3 follows from [A D A] and the scheme:

(vx) (A D B) D.AD (Vx)B, provided ¥ is not free in A. This scheme,
(Ix) (E(x) >.ADB) D. A O(Ilx) (E(x) > B)), with x not free in A, followsin
S5R* using commutation and R1. K4 follows from [(E(x) >. A D B) D. E(x)
D A D. E(x) O B] by generalisation and distribution of ‘II’.

K5: =(Iy) (E(y) D. (Ix) (E(x) D A(x)) D A(y))
= (Ily) ((TIv) (E(x) DA(x)) D.E(y) D A(¥))

K7: =(Ix) (E(x) D> A(x)) D.E(3) D A(»)

K8: =(Ix) (E(x) D E(x)).

Also: A —(Vx)A

For: A —(IIx)A
—(Zx)E(x) D (IIx)A
—(Mx)(E(x) DA, i.e (VX)A.,

Combining this derived rule with the necessitation rule of S5R* it follows
that all Kripke closures of KO-K8 are theorems of S5R*.

The salient difference appears in axiom scheme K5. If null domains
were excluded, it would not be necessary to retain closure requirements
except as specified in K5. So the system could be made to resemble usual
systems by replacing taking of Kripke closures by rules of generalisation
and necessitation: then the system would be tantamount to a quantified
modal logic based on a free logic, for:

(V) (Vx)A(x) D A(p)) =. (Vx)A(x) & E(y) D. A(p).

If, however a null domain’® (not an empty domain) is selected S5R*
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collapses because [(Zx) (f(x)v ~f(x))] fails, whereas Kripke’s system does
not provided further than in K5 x is free in A. An inclusive logic which
holds for null domains as well as for non-null domains can be obtained
from S5R* in various ways. A way closely resembling Kripke’s way leads
to a logic S5R,*. S5R,* has as its axiom schemata all O-TI closures of
axiom schemata of S5R* - with the proviso on R2 supplemented by: and x
is free in A - and as its sole rule modus ponens.’

Metatheovem: FEvery theorem of Kripke’s quantified S5 with existence is
(an abbreviation of) a theorem of SSR,*.

§2.2 The principal relations on combining quantifiers ‘II’ and ‘%’ with
modal operators ‘0’ and ‘¢’ in S5R* can be diagrammed®:

(Ix)3f (x)
l@
‘////////”f{:::::j;(ny@n
(Zx)aflx) — O (Ex)f(x)\ O (M) flx) = (Mx)Of ()
O(2x) flx)

o
(Zx)Of (%)

The arrows indicate material, or strict, implications. Among examples of
@ might be included: if some item, e.g. Pegasus, is necessarily a horse,
then necessarily some item is a horse; among examples of (D: if it is
logically possible that every item is thought of then every item is possibly
thought of. Moreover neither (2) nor @) seem controversial when quanti-
fiers ‘II’ and ‘T’ are used; consider @ which amounts to: some possible
items are possibly f if and only if possibly some possible items are f.
Relations @ and @ can be given further defences, by using finite models
or, in S5 systems, by resorting to analyses of quantifiers ‘II’ and ‘Z’ in
terms of more comprehensive quantifiers ‘A’ and ‘S’ and the individual
predicate ‘0’7 or by using reductions of modal operators to quantifiers.
For instance, on selecting a finite domain of possibilia, say a,, @,,...ax @
is replaced by

O(fla,) & flas) ... & fla,)) =0f(@,) &0 flaz) ... &0 f(a,),

which holds in virtue of distribution laws for ‘0’. The equivalence, would,
however, break down if appropriate existence requirements on g,,...a,
were added: for both implications in the equivalence:

E(a;) 20 f(a) = O(E@;) 2 f(a;))

\/

can be shown to fail. Again, to illustrate the last method, @ becomes, in a
system based on S5:

(Tx) (Mw) f ;w) = (Mw) () f (x;w);

where ‘w’ is a modal variable (with certain restrictions on its role in sub-
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stitutions) which can be variously interpreted as ranging over possible
worlds, over times, etc. The equivalence follows at once from a theorem
on the interchangeability of quantifiers.

Contrast the problematic analogues of the principal relations; viz.:

1" O(va)flx) o (Va)Of(x)
2" OAx)f %) = Ax)Of (%)
3' (Ax)Of(x) DO0@x)f(x)
4" (Vx)Of (%) = O(Vx)f (x)

These sentences expand to give three pairs of implications:

(a) 1" O(Iyv) (E&) O fx)) D (Tx) (E(x) D Of (x))
3 (xx) (Ek) &DOf(x) 50 (2x) (Ex) & f(x))

(b) 32" O(zx) (E(x) & f(x)) D (2x) (Oflx) & E(x))
34' (Tx) (E(x) 20O f(x)) > O(Ilx) (E(x) D f(x))

(c) 34" O(IIx) (Ek) D f(x)) D (Ix) (Elx) DOf (x))
12! (Zx) (E(x) & Of (%)) D O(Zx) (E(x) & f(x))

Members of each pair are logically equivalent. Now none of these implica-
tions is a theorem of S5R*. That none is a theorem can be demonstrated
by constructing semantic tableaux for each in turn, in which ‘E’ is treated
simply as a predicate constant, and noting that the respective tableaux
constructions are not closed® (see 5.2). Alternatively these results could
be demonstrated by constructing finite countermodels of the sort indicated
above and applying a Skolem-L&wenheim theorem. Thus that none of the
implications are theorems can be indicated by picking suitable counter-
examples; e.g. the last formula can be refuted by replacing /’ by ‘-E’, the
second last by replacing ’ by ‘E’, given that there are no special axioms
for existence. Now 1'-4' could be reinstated as theorems by adding to S5R*
as an axiom the unacceptable [(Ilx)E(x)]. But even [(Zx)E(x)], which would
also be dubious as an axiom since it would give as a theorem [O(Zx)E(x)],
would not suffice to reinstate 1'-4'. Indeed the strongest acceptable axioms
for ‘E’ which can be added to S5R* seem to be equivalents of R5 of S5R;*.
R6 breaks down into the interpretation axiom [(Ix)OE(x)] and Meinong’s
axiom [(IIx)O~ E(x) ]. A case might be made out for adopting the weaker
axiom [(Zx)<O ~ E(x)] in place of Meinong’s axiom.

That the true statement [(Zx)E(x)] cannot be combined with S5R* with-
out leading at once to the unwanted statement [D(Ex)E(x)] is a serious
defect of S5R*. It is a defect shared by many logics which combine modal
operators with quantifiers. So long as necessitation is a derived rule of
such logics the logics cannot serve as satisfactory basic or underlying
logics for empirical theories or, more generally, for theories which
include true contingent statements among their premiss statements. To
rectify this fault of S5R* a more comprehensive logic T*, of which a logic
obtained from S5R,* by O-transformation is a subsystem, is developed. A
logic T, is a O-transform of T, if for every theorem A of T, there is a
theorem OJA of T,: so SS5R* contains a [O-transform itself. Thus S2 is a
O-transform of E2.
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Logic T* also has methodological advantages: for it differentiates
those rules like modus ponens which apply to all sentences of appropriate
form which yield true statements, no matter whether the statements are
analytic or not, from those rules like rules of substitution for propositional
variables and of necessitation which apply only to sentences which yield
analytic statements. But even T* has some drawbacks, reflected in the
interpretation theorem [(I1x)< E(x)], which emerge in philosophical applica-
tions. The interpretation theorem is needed for completeness since it
comes out valid under the intended interpretation. Logic T* violates a
favoured thesis concerning logic, namely that logic is just concerned with
what holds in all possible worlds, with what holds simply in virtue of
(logical) form.

The postulate set of T* is as follows:®

Axioms:

T1 O(p>.g>)p

T2 O@>(p>dqg)D.rDpD.r>Dgq
T3 0O(~pD~gqg D.q DP)

T4 O((M(p > f(a) O. p O (Mx)f k)
TS5 O((Tx)f(*) > f(»)

T6 0O(dp>dp)

T7 00> g . Op>0Og)

T8 O(~0Op o0Q ~0p)

T9 O(x)(~0O~ E(x) & ~OE(x))

TI0 ~(Ix) ~ E(x)

TI1 Opop
Transformation rules:
RTl A, A>B — B (modus ponens)
RT2 A — (IIx)A (generalisation)
RT3 A - B, whe'revB results from A by substituting

for a particular occurvence of C in A, S; Cl, and x is not free in C and ¥y
does not occur in C (changevof bound variable)
RT4 A - S’; Al, where x is an individual variable and y

z’s an individual variable or a consistent individual constant (substitution for
individual variables).

Vv
RTS DA - 0 S’; A| (substitution for propositional variable)
2 flxg... %)
RT6 DA - O S 5 Al (substitution for functional vari-
ables)

Theovems of T*
(1) 0@ >q >(Cp>09)
(i) o(Op>OOp)
(iii) O((Tx)DA = O(TIx)A)
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Derived rules of T*
(i) DA, 0(A4>B~— OB

Proof: (0 o B) 2. 0A D 0B); by T7, RT5
0(A D B) D. OA D OB; by T11
OA, 0(A D B) 7 0A, OA D OB; using RT1

- OB; by RT1
(i) oA = O(Mx)A
DA - (Mx)DA4; by RT2
Result by theorem (iii) and RT1.
(iii) oA - DB\} with same conditions as in RT3.
(ivy DA -0 S:,A], with conditions as in RT4.
(v) oA —0O0A (necessitation)

Proof: Using theorem (ii), RT5, RT1.
Metatheorems

(i) The O-transform of SSR* is a subsystem of T*.
(ii) Every theovem of SSR\* is a theovem of T*.
(iii) Every theorem of S5R* is a theorem of T*.

In applying T* restricted variables are often useful. For instance, the
statement ‘‘All ravens are black’’, although thought to be true of all actual
birds (or even things), presumably does not hold for all possible ravens.
So how is the sentence ‘all ravens are black’ to be symbolised? Using a
restricted variable ‘w’ the sentence can be symbolised:

(Mw)(rav(w) D bl(w)).

In this case the sentence might well enough be alternatively symbolised:
(vx)(rav(x) D bl(x)), so that if added to the axioms the generalisation would
have as an instantiation:

[E(x) & rav(x) D. bl(x)],
or
[rav(w) > bl(w)].

It is not so simple when physical laws like Newton’s first law, formulated
‘All bodies not acted on by external forces continue in their state of rest or
of uniform rectilinear motion’, where referring expressions refer to ideal
bodies, are introduced. For here the required referent class is more ex-
tensive than the class of all actual bodies (or things) but less extensive than
the class of all possible items. To symbolise the law of inertia either the
law sentence must somehow be substantially transformed or paraphrased
initially, or individual item universes used for interpretation must be
appropriately selected, or some new symbolism is needed, e.g. a nomo-
logical implication or a symbol like ‘<j> read ‘is an actual or ideal physical
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item’. Given the symbol ‘<1>’ semantics of which can be explicated (rather
unilluminatingly) using a class of physically possible worlds, the law
sentence can be symbolised: (Ix) Kp>(x) D. bod(x) D mov(x)). Repetition
of the hypothesis ‘@(x)’ could be avoided with restricted variables.

§3 Identity in = SSR* and in = T* When identity is grafted onto a quantified
modal logic based on S5 further difficulties, some attributed to S5, some
attributed to the combining of modalities with quantifiers, are encountered.
If identity is axiomatised using, as is customary, the Leibnizian indiscern-
ibility of identicals principle, two related difficulties arise. First, modal
paradoxes, the most famous of which is the morning star paradox, appear
(on these paradoxes see section 5). Secondly not only is

(1) (x=9)=0@k=y)

a theorem - a result which holds in weaker systems based on T - Lut worse
(2) (x#y)=0k#3

is a theorem.'® In combating this difficulty various moves are possible:

(A) to eliminate (2) by weakening the modal logic at least to $4, but to
keep (1). But since defences of (1) have little more plausibility than de-
fences of (2) and most defences of (1) can be transformed into defences of
(2), and since even (1) is rejected by philosophers on various grounds', the
source of the trouble does not appear to be S5. And S5 has not just an alibi
but also a good defence (see section 7).

(B) to retain, at least in appearance, the customary (substitution or
Leibnizian) identity criterion along with consequences, in an S5-modalised
theory, like (1) and (2); to argue that (1) and (2) are correct, and that
apparent counterexamples are only reached by misconstruing the range-
values of variables occurring in (1) and (2). By way of restriction it is
proposed either

(B;) to restrict the class of expressions, which can be substituted in the
identity schemes provided by the usual identity criterion, and which can be
substituted in (1) and (2), to merely referring or naming expressions; in
other words, to narrow drastically both the class of items to which individ-
ual expressions ‘a’, ‘0’, etc. can legitimately refer and the range of
individual variables. Recalcitrant expressions which are not merely re-
ferring are replaced by definite descriptions. Or

(B;;) to replace (for certain sentence contexts) the items to which individ-
ual expressions refer and over which individual variables range, viz.
individuals, by different items, e.g. individual concepts.

These moves, which are discussed in more detail below, both in effect
rveject the Leibnizian identity criterion for familiar referring expressions,
such as ‘Venus’ and ‘the evening star’, which refer to individuals but which
do not merely refer. Moreover they are compatible with the revision of the
Leibnizian criterion as applied to familiar referring expressions.

(C) to revise the identity criterion.'? After all, why should an analysis of
identity, like the substitution analysis, which is carried straight over from
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extensional logics where all properties are extensional, be expected to hold
without qualification for modalised logics? Here the standard analysis of
identity in restricted predicate logics is challenged'® and a different treat-
ment, under which various identity criteria are distinguished, presented.
Even so the appearance of the Leibniz principle could be kept by adopting a
high redefinition of ‘property’ under which only extensional attributes
qualify as properties. But other than ‘‘saving Leibniz’’ the redefinition
lacks virtues; thus a different course is pursued. In a quantified modal
logic which contains no intensional operators other than modal operators,
two identity criteria are distinguished: extensional identity, and strict
identity. A logic =S5R*, restricted quantified modal logic S5R* with ex-
tensional and strict identity, will now be developed.

Extensional identity: To S5R* is added the binary predicate constant ‘=,
read ‘is identical with (under the extensional criterion)’ or ‘is extensionally
identical with’, the axiom

=R1: x=x
and the axiom-scheme

=R2: ¥ =y D. A D B, wheve x and y ave individual variables or constants
and B is obtained from A by replacing one parvticular occurrvence of x by y,
this particular occurvence of x being neithev within the scope of (Ilx) or
(Tly) nor modalised, i.e. within the scope of 0.

Call the full proviso on =R2 proviso (a). The last part of the proviso is
readily generalized to: provided x is neither within the scope of a quanti-
fier binding x or y nor within the scope of a modal operator. The generali-
sation follows at once using definitions of other quantifiers and modal
operators in terms of ‘II’ and ‘0’°. Among results provable for extensional
identity are these:

1. Ok =x)

2: x=yD.y=x

3: x=y)&(y=2)D.z =x

4: (Ix)A & (=) (y =a) D. Sz Al, provided x is not modalised
V.

5: SaAI & () (y =a) D. (Zx)A, provided x is not modalised

6: O(r =y) D.0A D OB, with proviso (a)

7: Ok =)>.0A D OB, with proviso (a)

8: O(x =1 D. CD>OAD. C D OB, with proviso (a)

9: Ok =») D.0A D C D.0B D C, with proviso (a)

Strict identity: The binary predicate constant ‘=’, read ‘is identical with
(under the strict criterion)’ or ‘is strictly identical with’ is defined:

x =y =p0k =y)
Among theorems provable for strict identity are these:

10: (x=)=0(x=13)
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11: (x=y) D (x=19)
12: O(x=9) D (x =)
13: (x=9)D(y=x)
14: (xEy)&(yEz)D(xEVz)

15: (Mx)A & (Zy)(y = a) D.S:A|
Vv
16: S 4l & E9)=a) 2. (204

The individual constants occurring in theorems 4, 5, 15 and 16 need not be
consistent constants.

Strict identity can be characterised by the theorem and theorem-
schema

=Rl x=x

=R2: x =y D. A D B, wheve x and y ave individual variables, or constants
and B is obtained from A by veplacing one particular occurrence of x by v,
this particulay occurvence of x not being within the scope of (Ilx) or (Ily).

Call the full proviso proviso (f): it differs from proviso (a) only in not ex-
cluding replacements in modal sentence contexts. Theorem =R1 follows at
once from Theorem 1. Proof of schema =R2: From 11 and =R2 it follows:
x =y D, A D B, with proviso (a). Therefore strict identities may be sub-
stituted in all non-modal sentence contexts. It remains to show that strict
identities can be substituted in all modal contexts. The proof is by induc-
tion over the number n of occurrences of primitive symbols ‘~’ ‘2’, ‘I1’,
‘0’ occurring in A. Because the schema holds for non-modal contexts a
basis for induction, when # = 0, is provided. Suppose the result holds when
n=k. Whenn = k + 1 there are four possible cases to examine. Let A and
B be as in proviso (f).

Case 1: A is of the form ~A,. Then B is of the form ~ B, and B, results
from A, by replacement of x by 3. By hypothesis of induction:
x =9y D.A; D B,, with proviso (8). Also: y =x D. B, D A,, with proviso (8),
since the number of occurrences of primitive symbols in B is the same as
the number in A. Case 1 now follows by this argument:

x =y D.y=x, by Theorem 13.
D. B, D A,, with proviso (p)
D. ~A, D ~B,, with proviso (g

Case 2: A is of the form (A, D A,). Then B is of the form (B, D B,), where
B, and B, result from A, and A, respectively. By hypothesis of induction:

x =y D. A, D B,, with proviso (8)
% =9 D. A; D B,, with proviso (p)
x =y D. B, D A,, with proviso (p)
x =y D. B, D A,, with proviso (A).

From these four premisses: x =9 D, (A; D A4,) D (B, D B,), with proviso
(B), follows using propositional calculus. Since substitution occurs only at
one place provisos are needed in only two of the four premisses. Con-
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sequently the proviso on the conclusion follows at once from provisos on
the premisses.

Case 3: A is of the form (IIz)A,. Then B is of the form (Ilz)B,, where B,
results from A; and x¥ and y differ from z. By hypothesis of induction:
x=y D.A, DB, with proviso (f). Then: (Ilz)(x =y >.A,> B,), with
proviso (8), by generalisation. Hence: x = y D. (124, D (I12)B;, with
proviso (B), by theorems of S5R*, since z differs from x and y.

Case 4: A is of the form OA,. Then B is of the form OB,, where B, re-
sults from A,. By hypothesis of induction: ¥ =y D. A, D B,, with proviso
(@. Then: O(x =y)>.0A, = OB,, with proviso (f). Hence:x =y D. A D B,
with proviso (). ‘

This completes the proof by induction.

~ More interesting than the theorems of =S5R* are the non-theorems.
The following, with rejection indicated by a star, are nof theorems:

¥ (k=) Dx=y)
*2: ~(M)(My)x =y D.x =)

That *1 and *2 are not theorems can be shown by constructing semantic
tableaux, which prove not to be closed, for *1 and *2. The rules for con-
structing these tableaux are those of Kripke,'® except that Kripke’s rule I1
is replaced by the following rule:

=1: If a = b (for some variables a and b) appears in the left column of a
tableau, then in both columns of that tableau replace every formulae Ala, b)
wheve a is free and not modalised by A(b, b).

Rule I1 (or =1) for strict identity is a derived rule.

*3: (Ix)(IIy)x =y D.x =y)
x4, ~O(Ix)(IIy)(x =y D. x =)
*5: (x =) =0 =y)

These follow from *1 and *2 by the usual rule of rejection.
*6: (x #y) =0(x #9)

For if *6 were a theorem, O~(x = 9)D~ (¥ = y) would be a theorem, using
the derived rule: A D 0B —CA D Bof S5R*. And then[x =y D. 0 (x = )],
i.e. *1, would be a theorem. '

¥T: x =y &y=2D.x=2z2
¥8: x=y &y=2D.x=z

For replace, in *7 and *8, x by y.

It follows that (1) and (2) fail in =S5R* for extensional identity: only
analogues of (1) and (2) for strict identity hold. Since the negation of *4,
[O@x)(TOy)x =y D0O(x =3)] is, like *4, not a theorem, *4, i.e.:

O(ZX)(Z(x=3) &Olx #9)

could be added as an axiom to =S5R* without rendering the system incon-
sistent. An even stronger axiom appears =T*, where =T* is a system ob-
tained from T* by adding axioms and rules for identity.
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Identity in =T*: To T* is added the predicate constant ‘=’, the axioms:

=T1: Ox =x)
=T2: ~(Ix)(TIy)x =) 2. O (x =y))

and the transformation rule:
=RT: A— (x =y) D B, with proviso (p)

Metatheovems: (i) Every theovem of =S5R.* is a theovem of =T*
(ii) Every theovem of =S5R  is a theovem of =T*

Unifying identity cvitevia. So far a theory of identity has been developed
only for quantified modal logics. In a logic, based on restricted predicate
logic, which included other intensional operators than modal operators,
proviso (B would have to be amended to conclude ‘this particular occur-
rence of x being neither within the scope of (Ilx) or (IIy) nor within the
scope of an intensional non-modal operator’, and proviso (@) amended to
conclude ‘this particular occurrence of ¥ being neither within the scope of
(%) or (IIy) nor within the scope of an intensional operator’. Thus an ex-
tensional identity permits replacement in extensional sentence contexts
only, a strict identity in extensional and modal sentence contexts but not in
all sentence contexts. Relative strengths of identity criteria may be com-
pared in terms of the classes of non-extensional sentence contexts with
respect to which they allow replacements; e.g. the following criteria (for
identity of various items) may be arranged in order of decreasing strength:
typographical identity, propositional identity, synonmy, strict identity, ex-
tensional identity. Treatment of stronger identity criteria than strict
identity is beyond the scope of this paper.

How are these different identity criteria of restricted logics to be uni-
fied as identily criteria or under a single sense of ‘identical’? In this way,
A binary predicate constant ‘I’ is an identity cviterion in a logic based on
restricted predicate logic if it satisfies the condition

(i): xIx
and the open condition scheme

(ii): Iy D, A D B, whevre x and y are individual variables or constants
and B is obtained from A by veplacing an occuvrence of x by y, this partic-
ular occurvence of x not being within the scope of (Ix) orv (Ily), at least
where x is not within the scope of an intensional operator (or connective).

That scheme (ii) holds at least for all extensional contexts is an important
point since this is sufficient to guarantee a minimum condition for identity:
sameness of referents (under appropriate criteria) of individual referring
expressions. Identity criteria of restricted logics are unified, as identity
criteria, by satisfying the conditions on ‘I’. If you like then, there is one
sense of ‘is identical with’ specified, in outline, by the above conditions on
‘I’; but there is an indeterminacy in the sense conditions owing to the
appearance of the phrase ‘at least’, and depending on how this indetermi-
nacy is taken up various related identity criteria result. Consider for
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instance how criteria for sameness of type of expressions are distinguished
from criteria for sameness of token. Whether, of course, ‘is identical with’
has one sense or several itself depends on how criteria for identity of
sense are finally adjudicated.

A binary predicate constant ‘/’ is an identity criterion in an unre-
stricted predicate logic if it satisfies the condition:

ulv=(If) (feQ .D.f(w) =f (),

where @ represents at least the class of all extensional predicates or
sentential functions. Also formation rules may be so laid down that ‘ulv’ is
wf only if ‘4’ and ‘v’ are of the same sort. Details of requisite modifica-
tions of the Leibniz identity definition (now regularly used in higher predi-
cate logics) so as to obtain different identity criteria and details of
restrictions on the class of primitive predicates of =S5R* are reserved for
another paper'”.

§4. On modal pavadoxes and Quine’s objections to quantifying into modal
sentence contexts. Criteria for transparency and opacity of sentence con-
texts should be distinguished according as identity criteria. In what fol-
lows they are distinguished just for extensional and strict identity. A
particular occurrence of a referring expression <x”> in a sentence context
<f is vefevential if truth-value is preserved under replacement of <x> by
any <y> such that y =x, i.e. if [([Ty) . x =y D. f(x) = f(9)]; modal if truth-
value is preserved under replacement of <x> by any <y~ such thaty = x,
i.e. if [(TIy)(x =y D. f(x) = f(»))]*°. A sentence context “k” is »-fransparent
if for every singular referring expression <x”, if an occurrence of <x” is
referential in f &)~ (i.e. in context <f”), then that occurrence of <x> is
referential in “R(f(x))”; i.e. if [(Tx)(TIf) ((TTy) (x = y D. f(x) = f(x)) D (Ty)
(x =9y D. W(f(x)) = h(f(y))]; otherwise k> is r-opaque.'® A sentence con-
text (of sentences) k> is m-transpavent if for every singular referring
expression <x>, if an occurrence of <x” is modal in f(x)”, then that
occurrence of <x> is modal in “A(f(x))”; otherwise <k> is m-opaque. All
extensional sentence contexts are 7-transparent; but the converse does not
hold.

Sentence contexts of the form ‘0(...)" and ‘O(...)’°, where no inten-
sional functors occur within the brackets, are 7-opaque but m -transparent.
These features provide the genesis of modal paradoxes. To illustrate with
a typical modal paradox: It is true that

(1): ~O#pl> ")

where ‘#pl’ abbreviates ‘the number of major planets’. But using the true
extensional identity

(2): #pl=9
and substituting identicals in the truth
(3): o>

it follows
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(49: OH#pl> )

Since (1) and (4) are inconsistent we are landed with a paradox. Substitution
using (2) is not truth preserving in (3) but it is truth preserving in

(5): (9>1).

Therefore the sentence context «(...)’ is »-opaque. What follows from
the paradox and »-opacity? As with most paradoxes, quite diverse conclu-
sions have been drawn. In particular, given supplementary assumptions,
these conclusions have been reached:

(I) The Leibniz identity criterion is inadequate in intensional sentence
contexts. What the 7-opacity and paradox arguments show is that

(6): x =9y 2.0 f(x) DO f(y)

is invalid. My thesis, reinforced given the feasibility of logics like =S5R*
in which (6) is not valid, is that only substitutions based at least on strict
identities, not substitutions based on extensional identities, are permissible
in such sentence contexts.

(II) The Leibniz criterion is correct but cannot be applied unrestrictedly in
r-opaque contexts like (3) because these contexts are impure, i.e. they
contain quotation essentially. R-opaque sentences, which are really verbal,
really about expressions, contain when expanded quoted expressioné; e.g.
(3) expands to

(3"): 9>7and ‘9> 7 is analytic

and (1) expands similarly to (1'). Since (1'), (3') and (5) are mutually con-
sistent, paradox is beaten. A Pyrrhic victory. For first, given the standard
theory of quotation, (6) is rejected under (II) as not universally valid: the
correctness of (I) is thereby virtually admitted. Second, verbal interpreta-
tions qualify, as well as the Leibniz criterion, several other logical
principles, e.g. universal instantiation and existential and particular gen-
eralisation, and in general, block substitution within and quantification into
7v-opaque contexts. These heavy sacrifices - though insisted upon by Quine
and others - are not at all satisfactorily substantiated and seem unwar-
ranted. Third, given a non-standard but more plausible theory of quota-
tion?°, (6) does hold under verbal interpretations but these interpretations
then fail to eliminate modal paradoxes unless coupled with an approach like
(D, (I) or (IV). Fourth, verbal interpretations of intensional functors have
not been vindicated and remain open to serious objections.?'

(I) In order to retain the Leibniz criterion the class of individual expres-
sions which can replace individual variables is severely curtailed. Con-
sider the typical restriction, proposed in (B;) of §3, where individual
expressions are narrowed to merely referring expressions. The test for
whether an expression is merely referring in a context is whether the
scope of its associated description matters, that is affects truth-value, in
that context: it is merely veferring only if scope does not matter. The
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associated description of a name <m> is “the item which is m”, i.e.

<(Ax)m(x)>, and of a description is the description itself. If scope of the
expression is not indifferent in its sentence context, so that the expression
is not merely referring, the expression is replaced by its associated
description and the description has in that context a sufficiently wide scope,
that is a scope under which truth-value is unaffected by taking a wider
scope if there is one. A sufficiently wide scope can always be found. In the
setting of =S5R*, an expression is merely referring in a sentence context if
it is referential in that context.

To illustrate the method consider the resulting solution of modal para-
doxes. (3) is (replaced by)

(3™): [Ax)(x = 9) .O((x)(x =9) > 7)

ie: (Z2)((My)(y =9=.y=2) &0O(z>1T). Using =R2 and (2) there follows:
(Z2)(My)(y = #pl=y=2) & (z2>7) ,

i.e.

(4™): [(x) pl(x)].T((1x)# pl (x) > 7),

where ‘(Yx) #pl(x)’ is the associated description of ‘# pl’. But (4") (i.e. (4)
according to (II)) is not inconsistent with

(1): [(x) # pl(x)] . ~O((1x) # pl(x) > 7)

i.e. with (the replacement of) (1). What amounts to this method, a method
which is a straightforward extension of Russell’s technique for dealing with
names and descriptions which lack actual referents and which fits nicely
into the framework of Principia Mathematica, is advocated by Smullyan and
by Prior®.

The Smullyan-Prior technique succeeds formally because it is para-
sitic on solution (I), because it replaces a modal sentence context where
substitution of ‘6’ for ‘a’ using an extensional identity [a = b] would go bad
by an extensional substitution context. If ‘a’ is not modalised then in the
relevant logics ‘a’ occurs in an extensional context. Then in general the
scope of the associated description of a is indifferent - by

(M:  (2%) f(x) 2. (Ip,q) (p =g 2. g(p) =g(q)) D.
g{lx)f(x)]. r((x)f (%) }= [Ax)f ()] . gV x)f (x)) },

an analogue of Principia Mathematica *14.3 with a similar proof - and ‘b’
can replace ‘a’ in virtue of the extensional identity criterion. If ‘@’ is
modalised then either the scope of its associated description is indifferent
or it is not. If the scope is indifferent, then a wider scope can be selected
such that the relevant substitution position occurs in an extensional context.
But it will not happen with the usual logical modalities (except for special
combinations) that scope is indifferent. If the scope of the associated
description is not immaterial then the expression substituted for is brought
into an extensional context by an adaption of the usual method of replacing
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a non-extensional context by an extensional context, viz. using identity and
quantification. Thus substitution is not really made within a modal context.
The Smullyan-Prior technique is tantamount to narrowing the class of in-
dividual names so that all but logically proper names need occur only in
extensional contexts. Hence the technique conforms to solution (I). Indeed
(4') follows at once from (3) and

(2"): 9 = (19 # pllx),

a relation obtained from (2) by replacing ‘# pl’ by its associated descrip-
tion, using a derived rule of =S5R*, viz:

B(y), v = (x)A(x) = B((1x)A(%)),

provided that the scope of the description includes all modal (intensional)
operators in B.%

The Smullyan-Prior technique amounts to a special application of the
usual technique for replacing intensional contexts by equivalent extensional
ones, together with a restriction on the interpretation of variables so that a
variable can only go proxy for merely referring expressions or logically
proper names. Other singular referring expressions are replaced under
the interpretation by descriptions, the role of which is regulated by new
scope conventions. To illustrate consider a generalisation of (3), viz:

O(x > 7).

To ensure that the variable (‘x’) on which replacement is made occurs in a
non-modal context this is transformed into the logically equivalent:

(Z2)x=2z&0(z> 7).
Since now replacement using an extensional identity such as:
x = (1) # pl(x)
is permissible it follows:
(T2)(z=(%)# pl(x) & O(z> 7))
and therefore:
[(1%) # pl(x)]. O((1x) # pl(x) > T),
i.e. (4').

Although the Smullyan-Prior technique is as formally satisfactory as
the theory of descriptions on which it depends, that is not enough. Difficul-
ties are simply transferred to the interpretation of the symbolism. For
under interpretation it raises acutely all the difficulties raised by Russell’s
sharp distinction between proper names and definite descriptions and by
Russell’s and Wittgenstein’s theories of logically proper names, difficulties
intensified, once the motley of intensional operators is admitted. For in-
stance if ‘Lesbia’ and ‘Clodia’ were logically proper names not only
[O(Lesbia = Clodia)] but worse [ (Ilx) K (Lesbia = Clodia)] would be true.
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It is a short route to the conclusion that there are in English no logically
proper names and can be none: the variables have no English substitution
values.

(IV) To guarantee the Leibniz principle the items to which individual ex-
pressions relate or refer and over which individual variables range
designationwise, viz. individuals, are replaced by different items, e.g.
individual concepts. Compare (B;;). This procedure, pursued according to
Quine** by Frege, Church and Carnap, though it might, after refinement,
suffice for a theory of individual concepts, bypasses the main problems at
hand, problems as to the criteria for the (contingent) identity of individuals.
The procedure becomes practically unworkable when the full spectrum of
intensional functors is introduced. And as stressed by Quine?*, even when
only modal functors are added the procedure is not, on ifs own, going to
solve problems raised by identity relations and quantifiers in modal sen-
tence contexts: for consider such identities as y = (1x)(p & (x=9)) where p
is contingently true. Distinctions between various identity relations, or
else distinctions between equalities or equivalences of various strengths
(the course adopted by Carnap in explications of the issues), still have to
be made. But if these distinctions are made, there is no need to limit or
change designation ranges of variables. Because such distinctions are
made and substitutions in intensional sentence contexts are restricted in
what follows, variables are nof there limited to intensional values or re-
quired simply (or even at all) to designate intensional objects (in some
sense).

(V) The Leibniz criterion is correct: but certain laws of classicallogic,
in particular existential generalisation (E_.G.) and universal instantiation
(U.1.), must be abandoned when non-extensional predicates or contexts are
admitted; and more generally binding of variables in modal contexts by
quantifiers, since not significant, must be given up. This is the course
advocated by Quine. Quantification into non-extensional sentence contexts
is impermissable, i.e. variables occurring within such contexts cannot,
legitimately or significantly, be bound by quantifiers occurring outside the
context.
It is easy to plot out routes by which Quine arrives at his conclusions:

(i) His strictures on quantification and rejection of fully quantified modal
logics would follow at once using the verbal interpretation explained in (II).
And in exposition® Quine often reaches his position by carrying over re-
sults supposed to follow from the verbal interpretation to non-verbal con-
struals of modalities. But not only is the verbal interpretation open to the
criticisms levelled in (I); more important the extrapolation is not
warranted.

(i) Quine is forced - on pain of inconsistency - to abandon U.I. in modal
contexts. For Quine maintains both that the Leibniz identity principle is
correct for all contexts, not just for extensional contexts, and that modal
contexts are referentially opaque; from which it follows that U.I. is false.
Moreover the modal paradoxes can be blocked by abandoning U.I. (and the
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related E.G.). For in order to use (2), to make a replacement according to
the Leibniz principle in (3) and so to get (4), U.I. is needed. Thus given
that the full identity principle is secure and that designation ranges of vari-
ables are not to be tampered with, modal paradoxes can be re-employed as
reductio arguments against use of U.l. and E.G. in modal contexts. Such
reductio arguments are not fully convincing on their own especially when
the assumed premisses are not well secured.

The stock argument to secure a full-strength (substitutivity of) identity
principle, like the indiscernibility of identicals, runs as follows:?® If a and
b are identical then a and b are one; therefore whatever can be truly said of
or about ¢ should equally be true of or about 5. Unless a purely referential
theory of identity, to the effect that identity and difference sentences relate
just to the referents of expressions standing on each side of identity and
difference signs, is adopted, the argument is not cogent. To illustrate,
O(a = a) and Bi(a = c¢), i.e. x believes that a = ¢, are true but O(a = b) and
B{b = ¢) may be false, even when a and b are in fact one. The argument
also fails when quotation occurs in test sentences. In the face of this
failure, qualifications are frequently imposed on the substitution principle
with respect to sentence contexts containing quotes, e.g. the principle is
said to apply only to first-order contexts. But, in spite of the similarities,
analogous qualifications are not usually imposed on sentence contexts con-
taining intensional operators. Why, in such cases, is the indiscernibility of
identicals principle adhered to so tenaciously? Because, it would seem, of
reliance on a purely referential theory of identity, a theory typically rein-
forced by a denotation theory of meaning. I take the inadequacy of an un-
qualified denotation theory of meaning to have been demonstrated: the
same arguments undermine a purely referential theory of identity. The
inadequacy of a purely referential theory has been elaborated by Frege”; in
particular he stresses that on such a theory it would be impossible to ex-
plain differences between @ = a and @ = b when both are true. On the con-
trary, a solid case can be put up for claiming that with an identity sentence
‘a=0" not only the referents of ‘@’ and ‘b’ but also their senses are
relevant. For instance, in ‘Necessarily a = b’ what is said is said not just
about the referent of ‘a’, if any, but also about the sense of ‘a’. Then,
however, the conclusion of the stock argument does not ensue. Truth will
only be preserved under substitution of (extensional) identicals where only
referents are in question, i.e. in extensional contexts. A linguistic surro-
gate of the full substitutivity principle can be kept by the terminological
strategy of suitably narrowing the application of ‘property’, ‘condition’ or
‘trait’ so that sentence contexts or sentential functions containing inten-
sional or modal operators do not specify properties or traits. But there
does not appear to be much justification for this piece of legislation: it
seems methodologically much preferable to distinguish sorts of properties.

(iii) Quine does take more direct routes. His initial strategy then consists
in showing that modal contexts are »-opaque. But the argument only shows
that either (6) is invalid or that U.G. has to be qualified or.... It is
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important to emphasize that on s own demonstration of »-opacity of modal
sentence contexts establishes nothing except this. It goes no distance
towards establishing one of (I)-(IV). It does, however, point to a deficiency
in some standard quantified modal logics with identity, where no provision
is made for the symbolisation or treatment of contingent identities like (2);
where provision is only made for strict identities like:

32=9,

Using such identities replacements can, of course, be made in (3) in virtue
of the theorem:

x=y2.0 flx) > Of(y).

If, however, the unqualified Leibniz identity requirements from which these
standard treatments begin are kept, all contingent identities vanish in
quantified modal logics. A demonstration of this point may be used in a
reductio ad absurdum of the full Leibniz requirement.

Quine’s main direct arguments are designed to show that no variables
within a modal context (or, more generally, no variables within an opaque
construction) can be bound by an external operator or quantifier, that
quantification into modal sentence contexts is not possible. There is, how-
ever, nothing to stop us particularising® on (3) to obtain the apparent truth

(8): (Zx)a(x>m
or to stop us from discussing the truth or falsity of
9): @Ax)Ookx>n).

So it is possible to do what Quine says it is not. This is not what Quine
means. What his claims regarding quantification into modal sentence con-
texts boil down to can be put: sentences like (8) and (9) are senseless,
nonsense, improper, lack a clear interpretation; so assessment of their
truth or falsity is likewise non-significant. I submit that these sentences
are significant, are intelligible and understood by most students of logic,
and have as clear an interpretation as some sentences of restricted predi-
cate calculus. I further submit that Quine’s arguments fail to show that
they are not significant. Quine’s direct arguments to show that something
or other is wrong with quantification into 7-opaque contexts follow similar
lines. They can be illustrated using example (8). Quine asks®; What is
this number which according to (8) is necessarily greater than 7? Accord-
ing to (3) from which it is inferred, it is 9, that is the number of major
planets. But to suppose that it is would conflict with the falsity of (4). In
the sense of ‘necessarily’ in which (8) is true, (4) has to be reckoned true
along with (3). Therefore with (8) we wind up either with nonsense or else
with unintended sense. Quine’s argument is fallacious, given that exten-
sional and strict identity criteria can be distinguished in approximately the
way they were distinguished in section 3. Quine’s argument vests on an
equivocation on ‘that is’ (in later versions on an equivocation on ‘i.e.’) as
between extensional and strict identity. For the number of planets is, in
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fact but nof necessarily, nine. If the identity in question were strict then
substitution in the instantiation of (8) would be admissable and would not
lead to attribution of inconsistent truth-values to (4). But the identity (2) is
not strict, so its truth does not conflict with the falsity of (4) unless the
non-theorem

(10): x =y D. O f(x) > O ()
is assumed. Using (10) Quine’s reduction argument may be represented:

(1) & (2) & (3) & (10) ; premisses

(8) ; from (3) by particularisation,
i.e. by (i) note 28.

(zx) O@x > 17 2 (Zx)(y)x=y>0T(y > 7)) ; from (10)

(Zx)(My)(x=y D. Ty > 7)); ; using (8)
(TIy)(9=y 2.0 (y > 1) ; since 9 is such a number
(2) > (4) ; by U.L

(1) & (4), i.e. (4 & -(4).

Quine, exporting, concludes that U.l. and E.G. must be qualified, and some-
how also concludes that (8) (got from (3) by what amounts to E.G.) is not
significant! At this stage there are serious and irreparable gaps in his
argument; for instance his argument by no means establishes that (8) is not
significant. For present purposes, however, these gaps may be disre-
garded: for as the argument uses the incorrect (10), it does not call into
question the truth of (8), and it fails to impugn quantification into modal
contexts.

Nor therefore does retention of (8) force us to change or limit the
designation range of individual variables, or to introduce a domain of in-
dividual items (and expressions) in which items if identical at all are
strictly identical. Contrary to Quine’s claim®® it does not follow from the
true premisses:

Cx)(x=#pl& O(x=09)
Cx)x=#pl& - O(x=9))

because the matrices under the quantifiers yield contraries, that there
must be at least {fwo items x such that

(11): x=#pl

is true. Such a conclusion would only follow given (what does not hold for
extensional identity but only for strict identity):

(g(x) & Dflx) & (gy) & -OfG)) 2. x #3.

The argument merely shows that there are at least two items which are not
strictly identical such that (11) holds.

Since: y = (1x)(p & (x =9)), but: » £ (x)(p & (x =v)), when p is not
necessary, the same moves (as above) can be repeated to block Quine’s ob-
jection31 to limiting variables to (consistent) intensional items such as
individual concepts. To so limit ranges of individual variables is quite
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unnecessary. Inessential also in rebutting Quine’s arguments is use of
quantifiers ‘II’ and ‘Z’. The points made against Quine so far hold even if
‘Y’ and ‘3’ quantifiers are used and designation-ranges of variables are
limited to items which actually exist - whichever these are.

The same error that features in Quine’s ‘that is’ argument is some-
times smuggled in by way of a neutral items shuffle. It is suggested to us
that the morning star is identical with the (7ic scription) reutral item, Venus,
and that the neutral item is identical with the evening star, and that identity
is transitive. Then we are presented with an argument something like this:
The morning star is necessarily the same as the morning star. The morn-
ing star is however identical with the neutral item (or the item itself,
Venus). Thus the morning star is necessarily the same as the neutral item.
And so on. The argument fails: for the identity of the morning star with
the description neutral item, in this case the planet Venus, is contingent
only, and not sufficient to warrant substitutivity in all modal contexts. The
notion of a description neutral item is itself confused. Though items are to
a large extent independent of descriptions, descriptions, since sensed ex-
pressions, are not modally neutral. ‘The description neutral item’ is yet
another modally non-neutral description.

(iv) Perhaps Quine’s main argument should be expanded in this rather dif-
ferent way: U.I. and E.G. are already suspect because of existence pre-
suppositions. When modal functors are introduced the situation deterio-
rates further. Because of failure of substitutivity of contingent identities
in modal contexts it is not clear which individual(s), if any, the term
generalised upon, in quantifying into modal contexts like (2), refers to; it is
not even clear that the term specifies a definitely existing individual. Until
this obscurity is cleared up, we are not entitled to argue:

a@>"m
S.@x) (x>,

any more than we are entitled to argue

-E(Pegasus)
S (3x) ~E(x).

Certainly neither of these inferences is valid. But is the first inference
any more problematic than:

9>1
Co@Ax) x> 2

Is the indefiniteness of reference of (8) any more worrying than the in-
definiteness of reference of [(Zx)(x > 7)]?

The failure of the first inference, like that of the third, ¢s not a con-
sequence of the failure of substitutivity of extensional identities in modal
contexts, but of inadequate existential premisses. And the worry over
indefiniteness stems at least partly from ensuing difficulties in guarantee-
ing existential premisses. Moreover quantification does not have to be
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independent of or neutral with regard to means of specifying substitutions
for variables right up to contingent identities. Quine seems to suppose that
it does; for he claims® that the crux of the trouble with (8) is that a number
x may be uniquely determined by each of two conditions which are not
strictly equivalent. But results 4, 5, 15, 16, A5 of section 3 show clearly
enough that introduction and elimination of quantifiers is not independent of
whether constants are identified using extensional or strict identities, and
hence is not independent of whether determining conditions are exten-
sionally or strictly equivalent.

Doesn’t all this indicate a departure from purely extensional quantifi-
cation theory? Maybe it does®’; maybe such a departure is inevitable when
quantification theory is extended to include non-extensional functors. This
depends on criteria adopted for a ‘‘purely extensional quantification
theory’’. At any rate variables do not do a purely referential job: they go
proxy for expressions with both sense and designation. We are not thereby
engulfed in Aristotelian essentialism, an emendation Quine thinks needed®
to refloat quantified modal logic, Essentialism would result only if we were
to revert to, what we have already rejected, a purely reference theory of
identity and of the possession of properties or traits, e.g. that if a pos-
sesses properties g and [k then b also possesses these properties if » = a.
On the contrary, what properties and velations a has depends not mevely on
the reference of ‘a’, but also, and cvucially in the case of non-extensional
properties, on the sense or meaning of ‘a’; consider, e.g., the attribute of a
of being strictly identical with b.

Quine’s question® designed to evoke bewilderment, as to modal prop-
erties of the cycling mathematician, ¢, only gets its point when we are no?
concerned purely with the referent of ‘c’. Even then it is important to re-
move a familiar ambiguity, which Quine so works into the premisses as to
increase the confusion. For the premisses could be represented (using
obvious abbreviations, ‘rat’ for ‘(is) rational’, ‘twl’ for ‘(is) two-legged’)
either:

la. (IIx)(O(math(x) D rat(x)) & ~ O (math(x) D twl(x)))
2a. (Ix( O(cyelx) D twl (x)) & ~ O(cyclx) D rat(x)))

or:

1b. (IIx)(math(x) D. O rat(x) & ~ Otwl (x))
2b. (Ix)(cyc(x) >. Otwl(x) & ~ O rat(x)) .

From the much more plausible a-premisses it follows, using: math(c) &
cyce(c), that: rat(c) & twl(c) & ~ Orat(c) & ~ Otwl(c). Hence: V rat(c) &
V twl(c), i.e. ¢ is contingently rational and contingently two-legged. It also
follows that it is contingently true that ¢ is rational and two-legged. These
are (the) modal properties of the cycling mathematician ¢. But from the
implausible b-premisses it follows that: ~ < (Zx)(math(x) & cyc(x)), i.e. it
is impossible that anyone is both a mathematician and a cyclist.

The same modal fallacy principle, O(p D ¢) D. p DOgq, which leads
from a-premisses to b-premisses is needed to get from the correct
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(12): (Mw)(f(w)
to

(13): (%) (fw) =. w = x) & (Mw)(g(w) =. w = x) D. O (Mw)f(w) = g(w)*,

il

Lw = x) & (Tw) g(w)

it

cw =x) D.0([w)(f(w) =g(w))

the disastrous assumption Quine considers needed in order to interpret
fully quantified modal logic. But (13) is invalid as counterexamples readily
show; e.g. take ‘f’ to be ‘is Venus’ and ‘g’ ‘is the morning star’. Also (13)
is demonstrably not a theorem of =S5R*: since [p D O p], which (13) im-
plies, is rejected so is (13). Why the modal-flattening assumption (13), as
opposed to (12), is supposed to be needed for interpreting quantified modal
logics is not made clear. In fact it is plausible only in the context of
essentialism. If earlier arguments are cogent assumption (13) is definitely
not required.

85 On a semantics for =S5R* and =S5R,*

§5.1 Semantics of =S5R**" A model structure (m.s.) S is an ordered
quadruple <K, G, R, d>, where K is a set, GeK, Ris an equivalence rela-
tion on K, d is a function which assigns for every member H of K a set d(H)
(at least one of which is non-null) called the domain of individuals of H. K
represents a set of logically possible worlds or structures. G, which
represents the (an) actual world, is a distinguished element of K. R repre-
sents an alternativeness relation between possible worlds; e.g. if H, and
H, are possible worlds of set K, then H, R H, holds if H, is a modal alter-
native to H,, i.e. logically possible relative to H,, so that every statement
true given H, is possible given H, and every individual existent given H, is
possibly existent given H,. To gain an S5 modal logic the modal alterna-
tiveness relation R is required to be an equivalence relation. Semantics
for systems based on weaker modal logics are reached by appropriately
relaxing requirements on R; e.g. for system =TR* it is only required that R
is a reflexive relation. Since it can be shown that for satisfiable wff only
connected modal structures are needed, R can be omitted without loss when
only S5 systems are under discussion.®®

A superset U of all possible distinct individual items (of all possibilia)
is defined as the union over all HeK of d(H), where x and y are distinct
elements of U if they are distinct in some domain of individuals, i.e. the
union of all strictly distinct possibilia. For instance, for suitable S Scott
and the author of Waverley would be distinct in U even though they coincide
in G (as the Scott-author of Waverley individual), U” is the n™ Cartesian
product of the set U with itself. An augmented domain d*(H) of His defined
as the set obtained from U by identifying those elements of U identified in
d(H), i.e. x ed¥(H) iff either x ed(H) or xeU but does not coincide with
a (complex) individual in d(H).

An extensional model (e.m.) m on m.s. S is defined as a function
m(f", H), n 2 0, where f” ranges over n-adic primitive predicates when
n 2 1 and over atomic sentences (propositional expressions) when n = 0,
which assigns the following designation-values:

P(i) An element of U to each (consistent) individual variable. Thus indi-



136 R. ROUTLEY

vidual variables are variables having elements of U as their designation-
range.

P(ii) One of the truth possibilities (relative truth values) # or £ to each
propositional variable. That is, if »n = 0, m (f”, H), i.e. m (p, H) has value
4 or # (=4 or £). Thus propositional variables are variables having as
their designation-range ¢ and #.

P(iii) A subset of U” to each n-adic predicate variable. That is, ifx > 1,
m(f”, H) is a subset of U”. Thus n-adic predicate variables are variables
having as their designation-range ordered #-tuples of elements of U.

A valuation (or truth possibility assignment) ¢ is defined as a ternary
function ¢#(m, A, H) which, given m and H, assigns a truth possibility to each
sentence A (of a given set). The definition of ¢ is recursive on the length of
sentences. It is convenient to abbreviate ‘¢(m, A, H)’ as ‘m(A, H)’., (Alter-
natively a valuation ¢ (or m) on model m would be defined as a function
t(A, H) which assigns...) m(A, H) is defined inductively, for every wff A
and every He K, so that:

T(i). m(p, H) =+ or # according as p is assigned+ or #by m(p, H) in P(ii);
i.e.t(m,p,H) =mp, H).

T(ii). For an atomic wff f"(x,,...x,), x = 1, given an assignment of ele-
ments a,, dy,...a, of Utox,, x,,...%, respectively, m(f"(x,,..x,),H) =+ or
# according as the n-tuple (a,, .. a,) is or is not a member of »(fx,H).
T(iii). For an atomic wif E(x), given an assignment of element a of Utox,
m(E(x),H) =4 or # according as a is or is not a member of d(H).

T(iv). For an atomic wff (¥, =x,), given an assignment of elementsa,, a,
of Uto x,, x, respectively, m((x, =x,)H) =+ or# according asa, anda, are
or are not the same element of d*(H), i.e. according asx, and %, are or
are not assigned the same element of atm.

T(v). m(~A, H) =+ or £ according as m(4, H) = £ or 4

T(vi). m(@ D B)H) = £if both m(A, H) = 4 and m(B, H) =#; and m(A D B, H)
=+ otherwise.

T(vii). m(DA, H) =# if m(A, H') =+ for every H' ¢ K for which HRH";
otherwise m(JA, H) = £.

T(viii). »(IIx)A, H) =+ if m(A, H) =+ for every assignment of an element 2
of Uto x, i.e. for every designation-value of x; m((TIx)A, H) = # otherwise.

Some derived valuations under ¢ are worth recording. As before they
are relative to a given assignment of elements of U to free variables of A.

T(ix). m((x, =x,),H) =+ if x, and x, are assigned the same element of
d*(H") for every H' € K for which H R H'; otherwise m((x, =x,), H) = £.
T(x). m((vx)A, H) =+ ifm(A, H) =+ for every assignment of an element a
of d(H) to x (including the null assignment); m ((Vx)A, H) = # otherwise.
T(xi). m(OAH) =+ if m(A,H') =+ for some H'¢ K for which HR H';
otherwise m(OC A, H) = £

In systems based on S5, A is possible iff m(A, H) =+ for some H €K.
Thus relative truth-values amount to truth possibilities. Also in such
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systems x possibly exists iff m(E(x),H) =+ for some H e K. A holds in H if
m(A, H) =4, roughly if A would be true in world H.

An absolute valuation m(A) under m for A is defined: m(A) = + iff
m(A, G) =4, m(A) =# iff m(A, G) =#£. For example, E(a) has value # under
m if a £d(G); and a = b has value 4 under m if @ and b are assigned the
same value in d(G).

A system is an ordered pair (m,S), where m is an extensional model on
m.s. S. A is true in system (m,S) if m(4) =+¢; false in (m,S) if m(A)=#£. A
is wvalid iff A is true in every system; satisfiable if A is true in some
system.

When specific individual and predicate constants are added to the logic,
as in applied logics, further sets of conditions, e.g. meaning postulates,
have to be added to the interpretation to show inter-dependence relations.
For instance, strictly identical individuals are identified in U.

The interpretation is given in the material mode. Reference is re-
peatedly made to possible items, to possibilia, and to possible worlds. To
avoid difficulties such talk is thought to encounter, the interpretation could
be presented in the formal mode. Then value-ranges of variables would be
replaced by substitution-ranges consisting of classes of expressions®.
This re-presentation would hardly improve matters, and it would have to
surmount formal obstacles. Thus, unless expressions were used auton-
omously, the interpretation would be complicated by quotation devices. In
any case the formal mode interpretation would appear inadequate, e.g. be-
cause the class of expressions is at most denumerable whereas the class of
possibilia is presumably non-denumerable.

Alternatively talk of possibilia and possible worlds can be dispensed
with in favour of set-theoretical jargon. But this strategy raises a serious
dilemma for the normal modal logician: either his set-theoretical ‘‘inter-
pretation’’ is a merely formalistic one, or it must use non-existential
quantifiers. If, on the one hand, talk of possibilia and possible worlds is
replaced by talk of uninterpreted elements (representable, e.g., by numbers)
and uninterpreted sets of these, the ‘‘interpretation’ is replaced by a
bloodless formalism; it loses its semantical punch and its semantical links,
and much of its point except insofar as it provides a decision procedure for
certain classes of wff and a device for proving metatheorems of the logic.
Such an abstract set-theoretical model fails to go any distance towards ex-
plaining - what is often thought to be the main object of a semantics - the
(denotational) meaning of modal expressions. Such a failure is all the
worse in the present case, since many philosophers think the meaning of
modal expressions is radically unclear.

If on the other hand, the set-theoretical terminology is interpreted,
over sets of individuals, then several of the individuals must be possibilia,
and several of the sets, or worlds, must be 7merely possible. The world
containing as well as Pegasus the contingently distinct individuals Scott and
the author of Waverley is a merely possible set; it is possible but it does
not exist. Not all logically possible worlds can exist. The modal logician,
in interpreting his logic using rules like T(viii) and T(xi), is obliged to
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quantify over such merely possible worlds. If in doing so he is not to re-
sort to Platonistic double talk according to which there exist worlds or sets
which are merely possible - and consequently shouldn’t exist - he must re-
vise his quantification theory. Thus the modal logician who wants a genuine
interpretation of his logics of the possible-worlds sort is forced into
adopting non-existential quantifiers, like ‘II’ and ‘Z’.

Once these quantifiers are selected the semantics of SSR* can be de-
veloped much more simply on the basis of the Leibnizian scheme:

DA iff (Mu)A; w) ,

i.e. A is logically necessary iff for all possible worlds w, A is true inw.
Then T(v) is replaced by

T*(v): (~A; w) iff ~(A, w);
T(viii) by

T*(viii): (MIx)A ; w) iff (TIx)(A4; w)
and so on.

§5.2 Results on S5R* -E, i.e. on the system obtained from SS5R* by delet-
ing the predicate constant ‘E’ or, better, by construing ‘E’ as a predicate
variable. These results are established by showing that results obtained by
Kripke*® for his system S5* can be transferred to S5R*-E, First, rules can
be prescribed for replacing any wif A of SSR*-E by a wif A, of S5* and
conversely. The relation is one-to-one.

1. A is a theorem of SSR*-E iff A, is a theorem of S5*.
2. A of SSR*-E is valid iff A, of $5* is universally valid.

Proof sketch: R can be suppressed because only connected models need be
considered. Correlate U with Kripke’s D. Then A is valid iff m(4, G) =+
for every system (m,S), i.e. iff A is assigned # by G for every system
(m,S), i.e. iff A is assigned+ by G for every Kripke model (G,K) of A over
U (i.e. over non-empty D), i.e. A is universally valid in §5*. That every
element He K in a Kripke model (G, K) of A must agree with G in assign-
ments for free individual variables of A results in no loss of generality for
an S5 system when every Kripke model (G, K) of A over D is taken; for then
the set of worlds got from the set of systems for A coincides with the set of
worlds got from the set of Kripke models of A.

Second, semantic tableaux constructions are defined, and when con-
structions are closed is explained*!. A construction for A is a construction
begun by putting A on the right of the main tableaux of the construction.

3. A is valid iff the construction for A is closed,

Proof. Semantic tableaux constructions for A of S5R*-E are the same as
tableaux constructions for A, of §5*. Thus the result follows from Kripke’s
Theovem 1 (JSL, repaired) by 1. and 2.

4. A is a theorem of SSR*-E iff A is valid.
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This result follows from Kripke’s Theovem 7 (JSL) for S5* using 1, 2,
and 3.

5. A is a theorvem of S5R*-E iff the construction for A is closed.
From 3 and 4.

When ‘E’ is introduced as a specific predicate constant with the valua-
tion given in T(iii) these metatheorems fail; for it is not true that if the
tableaux construction for A is not closed that A is not valid. For instance,
[ ©E(x)] is valid but its tableau is not closed. These troubles are rectified
in S5R;*.

§5.3 Results on =SS5R*-E. The connexion between =S5R*-E and =§5* is not
so straightforward. D has to be split up into a set of (possibly overlapping)
subdomains d(H) such that D = U d(H). Also tableaux construction rule =1
is introduced and so proofs irfll €ékach of the lemmas needed for main results
which concern rule II have to be replaced by proofs for =1. The changes to
be made in the critical lemmas 1, 2 and 4 of Kripke (JSL) when =1 replaces
II are now sketched.

Lemma 1. If a=0>b appears in the left column of a table, then a =10 is
assigned #; thevefove a and b are assigned by G the same element of d(G).

(Similarly for auxiliary tableaux with some member of K). This validates
rule =1.

Lemma 2. (as repaired in ZML). A (counter-) model m for a wff A which
is not valid is so defined that m(p, H) =+ (p atomic, H € K) iff p appears on
the left of the tableau H associated with H, and m(p, H) = £ othevwise.

And that every free variable in H is assigned a distinct value unless elimi-
nated later in the construction by =1 in which case it is assigned the value
of the variable which replaces it. If ¢ = b appears on the left of H then
ultimately by application of =1, b = b appears on the left. Hence by defini-
tion of m and T(iv) m(a = b, H) =+. If a = b appears on the right of H, since
the construction is not closed, ¢ and » remain distinct after all replace-
ments by =1. Hence by T(iv) m(a = b, H) = #, as required.

Lemma 4. Rule =1, in contrast with I, applies to only one tableau of a set.

It is justified at once by schema =R2.
Using the modified lemmas and the results of §5.2 it follows:

1. A is a theorem of =S5R*-E {ff A is valid
2. A is a theovem of =SSR*-E iff the construction for A is closed.

§5.4 A semantics for =S5R,* and vesults. In order to guarantee Meinong’s
axiom it is required of an =S5R,;* m.s. S that for every x £d(G) some H
occurs in K such that GR H and xgd(H). (For the weaker axiom
(zx) ~OE(x) it need only be required for any m.s. S that for some x £d(H),
where GRH and H # G, x£d(G).) The interpretation axiom is already
guaranteed. Apart from the above restriction on =S5R;* m.s. S, exten-
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sional model, valuation, system and valid are defined as for the semantics
of =S5R*. But closure definitions are amended. A tableau is closed iff
some wff A appears on both sides of the tableau or a=a for some para-
meter a appears in its right column. A set of tableaux is closed iff some
tableau in it is closed or E(b) for some parameter b appears on the left of
every tableau of the set or else appears on the right of every tableau of the
set. A system of tableaux is closed iff each of its alternative sets is
closed. A construction is closed iff at some stage a closed system of
alternative sets appears.

Results on =S5R*-F are extendable to =S5R;*. The lemmas cited in
§5.3 are further amended.
Lemma 1. When the construction is closed there are further cases to con-
sider. Every alternative set either contains a tableau which either has a
wif in both columns or has ¢ =a on the right, or else consists of a set
which has E(b) on the left of every tableau of the set or has E(c) on the
right of every tableau of the set. But then some member of K either
assigns both #.and f to some wif or assigns # toa =a or assigns+ to OE(b)
or assigns 4 to O ~E(a). The valuation rules render these alternatives im-
possible. Consider the last two. If b £d(G) then m(E(b),G) =+ and for some
H, by requirements on the m.s., m(E(b),H) =#£ Hence m(0O E(x),G) =£ If
b £ d(G) then m(E(b),G) = £, and thus m(0 E(b),G) = £. Therefore for every
x ¢ U, m(O E(x),G) = £ Also for every x € U, there occurs some H such
that x ¢ d(H). Then m(E(x),H) =4 and m(CE(x),G) = 4. Hence for every
x ¢ U, m(O~ E(x),G) =#. Since the alternatives are impossible, the reductio
argument is complete.
Lemmas 2 & 4. as before. Note that because of conditions on model struc-
tures OE(x) and O~ E(x) cannot be assigned 4 in the countermodel.

Using these lemmas and the results of §5.3 it follows:

1. A is a theovem of =S5R* iff A is valid
2. A is a theovem of =S5R* iff the construction for A is closed.

To prove these theorems some alterations must be made in Kripke’s
theorems (JSL), in particular to Theorem 5. There the further possibilities
resulting from the amended closure definitions have to be considered.

86 On certain reduction principles in quantified modal logics

§6.1 In defence of an S5 modal basis Recently S5 with its strong principles
for reducing iterated modalities has been defended on the ground of its
comparative strength compared with other normal modal systems, on
grounds of completeness and of simplicity, and on the ground that it has the
most natural modal-theoretic treatment**. While some of these arguments
carry some weight, they are not going to succeed so long as reduction
theorems of S5 like

(): <op>OOp
(2: ©Op>Op

remain dubious under the intended interpretation. In fact (2) has sometimes
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been rejected on the basis of considerations like: (empirical) sentences
such as ‘“Gold dissolves in aqua regia’, ‘Water freezes at 32°F’ are not
necessary but it is possible that they are necessary; and (1) on the basis of
examples like: it is possible that there is a non-white swan but it is not
logically necessary that this is possible. To vindicate choice of S5 - a
choice needed in §2 - these considerations must be met, and (1) and (2)
must be so interpreted as to be rendered plausible. To achieve this the
interpretation should be further fixed by these two measures:

(A) adoption of a sentence/statement (proposition) distinction under which
a statement is invariant both under change of time and under change of
sense of related sentences. Thus if a sentence representing a statement
changes in sense it simply ceases to represent the statement in question.
Exact details of the distinction are not crucial for its use here. To carry
this measure through in detail quantified logic should be set up for propo-
sitional expressions and functions, not (except derivatively) for sentences
and sentential functions.

(B) imposition of certain conditions on the logical modality-values, e.g.
logical necessity, logical contingency, of statements; specifically that they
are modally invariant, where a value of a statement is modally invariant if
it is not possible that it change even if actual matters or states of affairs
were (or became) different. For other ‘‘modality-values’’ of statements
such as provability or epistemic possibility (defined in terms of ‘it is
known that’ as: ~K~) an S5-structure does not obtain.

Those enemies of S5 who do not regard the introduction of modalities
into logic as inadmissable may be divided into the $4, T or S2 supporters
who hesitate over (1) and (2) and the conventionalists, who to be consistent
should reject not just T but even S2. Measure (B) is directed against those
who support some Lewis modal logic weaker than S5, and against the con-
ventionalists, measure (A) against the conventionalists.

Because of (A) the predicates ‘(sentence)’ ... ‘yields a logically nec-
essary statement (expresses a necessary proposition)’ (symbolised ¢ -+ O7)
and ‘(statement) ‘“....”" is logically necessary’ (‘C]’) must be distinguished.
For ¢ [0’ is a time-dependent predicate, and so not a predicate of state-
ment expressions, whereas ‘01’ is a time-independent predicate. It seems
that conflation of these predicates and of sentential variables with proposi-
tional variables is a chief reason for rejection of theorems special to $4
and S§5. (2) is conflated with

(3): ol=op]o[-0Op]

which is certainly not analytic. Even if the sentence ‘Gold dissolves in aqua
regia’, for example, does yield a contingent statement, not a necessary one,
it is still possible that it yields a necessary statement: but only because it
is possible that the senses of some words in the sentence change and thus
that the sentence comes to yield a different statement. Indeed if ‘0’ is re-
placed by ‘~[’ not only (1) and (2) but the characteristic theses of $4 fail*®
More important, the same or similar arguments to those used to repel
counterexamples to, and to defend the characteristic theses of $4 against
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conventionalism on the basis of a sentence/proposition distinction can be
employed to defend typical theorems of $5*. Typical theorems of S4 and
S§5 can be said to distinguish the modal logic (with respect to logical
modalities) of propositions. The close connexions between $4 and S5 in
this respect can be brought out by comparing theorems which distinguish
them from S2 or from Feys’ system T; and few comparisons are more
revealing than that between

(4: [pogqle Olpegql
(5): [peogle Olpogql

where these are added to T or S2 reformulated with consistency connective
‘o’ as modal primitive. Connective ‘e’ symbolises ‘is logically inconsis-
tent with’. Thus according to (4) the logical consistency of two propositions
is inconsistent with their possible inconsistency, while according to (5) the
inconsistency of two propositions is inconsistent with their possible con-
sistency. Although these theses look as if they stand or fall together addi-
tion of (4) strengthens S2 or T to S5, but of (5) only to S4.

(A) does not, on its own, provide nearly as strong a case as can be
made out for (1) and (2). Consider, to illustrate, the following argument for
(2). Suppose (2) is false, i.e. [O O p & ~ O p]. If p is impossible then it is
not possible that p is necessary; a consequence which follows evenin T.
But if p is contingent it is not necessary. Moreover it is not possible that
it is necessary; for if it were it would have to be possible for p to vary in
modality-value, which is impossible if (B) is correct. If the value did vary
a different statement would result. Conditions like (B), however, need some
support. Supporting arguments can be divided, very roughly, into two main
classes: those which appeal to some analysis or account of logical
modality-values, e.g. in terms of analyticity, logical truth or sense, and
those which do not.

Now the first class of arguments run has been set out explicitly in the
case when logical necessity is explicated in terms of L-truth by Carnap®.
Similar arguments can be used to show that other analyses of logical nec-
essity, which are less problematic, also lead to the distinctive theorems of
S4 and S5. Consider, for instance, the following non-conventionalist
analysis of the truth-conditions for the logical necessity of statement p;
namely, statement p is logically necessary iff p is true and the truth of p is
a consequence of the logical content of p (or, alternatively, of the sense of
qu(p)). Suitable theories of consequence and of logical content can be
adopted from the work of Tarski and Carnap.

The second class of arguments presuppose less. Consider two such
arguments: (i) Although it is possible that states of affairs be different so
that statements which are true would if matters were different be false, it
is not possible that logically possible matters might have been different.
This marked contrast between truth-values and modality-values can be
stressed by contrasting

6): p o O~p,
(M: p & O~p,
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provided p is modalised, i.e. occurs within the scope of a modal operator.
(6) is false®: if adopted it would collapse modal logic into propositional
logic. But (7), of which (4) and (5) are instances, seems to be true, and if
added to T strengthens it to §5. But T without (7), like S4 without all cases
of (), only incompletely formulates propositional modal logic. (7) can be
taken as saying that a statement’s having a given modality is inconsistent
with the possibility of its not having that modality, that a statement’s
modalities are modally invariant. In contrast the rejected (6) can be taken
to claim in addition that a statement’s truth-values are modally invariant.
To put the point another way, the truth of a contingent statement is contin-
gent, but the contingency of a contingent statement is not contingent, i.e.
~VVp. The modal invariance of modal propositional functors can in fact
be represented by any one of the following theses: ~VOp, ~V Op, ~VVp.
Any one of these anti-conventionalist theses added to S3 or T leads to an S5
modal structure. Aren’t these theses very plausible: isn’t the necessity of
a proposition a non-contingent matter?

(i) Modal invariance of modality-values can also be supported by con-
sideration of relations between possible worlds. A possible world is a
modal alternative (see §5.1) to the real world or to some other possible
world. Now it can be convincingly argued that the intuitive relation of
modal alternativeness is not only reflexive as is required for T and $2, but
also symmetric and transitive. But a structure where modal alternative-
ness is an equivalence relation can, given usual value assignments, only be
completely axiomatised by an S5 system. To illustrate: if it is possible
that there is a non-white swan then in some possible world it is true that
there is a non-white swan. Then, given, what is usually assumed, that the
alternativeness relation is an equivalence one and is connected, it is true
for all possible worlds that in some possible world there is a non-white
swan; so it ¢s necessary that it is possible that there is a non-white swan.

§6.2 On the reduction of problematic modal expressions of SSR* The
problematic modal expressions of SS5R* are expressions of the form: 06A,
where ‘A’ is a predicate expression containing free variables and ‘¢’ is a
modal functor. Whereas the modal functors of other - non-problematic--
modal expressions of SSR* have a fairly straightforward de dicto rendering,
the modal functors of problematic modal expressions are sometimes
supposed to represent de e modalities (in one sense of this dubious®
medieval distinction); actually they also have a de dicto reading. At any
rate there are more difficulties about how problematic expressions such
as ‘Ofy(x)’ are to be construed than there are about non-problematic ex-
pressions or about expressions which don’t contain modal functors such as
‘fo(x)’. Thus it is an important question whether problematic modal ex-
pressions can be eliminated in favour of at least logically equivalent non-
problematic expressions or in favour of sets of such expressions. Since all
iterated modalities collapse in S5R* and since all variables can be bound
there are only four main problematic modal schemes to consider: these
can be typified using the sample predicate ‘f’ by:
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(Tv) O fx), (Zx) Ofx), (Ix) Ofx), (Zx) O flx)

Now the first two can be eliminated using equivalences (@) and () of §2.
Can the last two be eliminated? Both von Wright and Kneale claim that in
the case of logical modalities they can. If they can be eliminated not only
is S5R* defective under interpretation because it contains too many distinc-
tions*”; also combination of modalities with quantification loses some of its
interest®,

Von Wright bases his elimination proposal on his principle of predica-
tion**, a principle which can be formulated, when significance conditions
are omitted, as,

(8): (ZN)(C flx) D O f)) D (Mx)(O fx) D O flx))*°

On the strength of this principle von Wright divides attributes into two
classes: logical and descriptive. Then separate elimination schemes are
suggested for problematic modal expressions according as the property
specified is logical or descriptive, e.g. ‘(Zx)0 f (x)’ is eliminated using: if
f is logical, (Zx)D f(x)=(Zx)f(x); if f is descriptive, (Sx)0Of(x) =
# (= 0O (2x)f(x)). Von Wright does not propose, contrary to what Prior*® is
inclined to suggest, a single unconditional elimination scheme such as is
illustrated by

(9: (WO flx)= OEx)x)

However given a very plausible condition on logical properties (9) does
follow from von Wright’s elimination schemes. Now not only is (9) false:
it does not follow from (8) as can be shown by construction of the relevant
semantic tableau. Principle (8) does not appear to provide a single elimi-
nation scheme. Any scheme it did furnish would be as unsatisfactory as the
principle (8) on which it is based. Principle (8), since a some to all im-
plication, is not valid in SS5R*; also it fails for higher order properties®.
But worse, the principle and the proposed elimination schemes are im-
plausible once a purely referential theory of the role and meaning of vari-
ables and constants is abandoned. Whether a property belongs necessarily
to a subject which has it does not as a rule depend just on the sort of
attribute; it also depends (except in the case of L-empty predicates and
their negations) on the description or mode of referring to the subject’’. As
soon as it is admitted that true ascriptions of modal properties to subjects
depend also on the sense of the subject expressions that classification of
properties as logical or descriptive which rests on the principle of predi-
cation breaks down. Thus the dichotomy essential for von Wright’s re-
placement of problematic modal expressions is destroyed. Furthermore
even when f is an example of what von Wright would class as a descriptive
property, e.g. a simple colour property, (Zx)0 f(x) is not automatically
false. The same mistaken assumptions are made in the principle of predi-
cation as are made in some of Quine’s arguments (in §4) and in modal
paradoxes.

Kneale distinguishes two interpretations of ‘(3x)0 f(x)’. Under the
first essentialistic, and inadequate, interpretation, as ‘there is something
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which under any description is necessarily f’, the statement is reckoned to
be equivalent to O(Vx)f(x). The second interpretation of {(3x)0f(x)’, as
‘there is something which under some description is necessarily f’, is
more important. Then, Kneale writes®?, ‘... (3x)f (x) cannot express a true
proposition unless there is something which among its permissible
descriptions has one entailing the predicate f(x). But this is as much as to
say that the disputed formula is equivalent to (3x)f(x). Therefore
(3% 0 f(x) cannot on either interpretation represent a new kind of proposi-
tion’. The argument is invalid. Kneale asserts what is tantamount to:
(3x)0 f(x) D (3x)f ), which is correct. But this is nof to say: (3x)f(x) =
(3x) D flx) as Kneale claims. Kneale does not show how: (3x)f(x) D
(3x) D f(x) follows. It does not: it is not a theorem and not valid
under the second intended interpretation. There are critical limitations on
the ways an item may be correctly described.

NOTES

1. On the defects and difficulties of such theorems see, e.g., W. and M. Kneale, The
Development of Logic, Oxford (1962), and A. N. Prior, Time and Modality, Oxford
(1957).

2. See, especially, W. V. Quine: ‘“The problem of interpreting modal logic,’”’ The
Journal of Symbolic Logic, vol. 12 (1947), pp. 43-48; From a Logical Point of
View, Revised edition, Cambridge, Mass. (1961); Word and Object, New York
(1960).

3. For fuller elaboration of the interpretation of R* and details of the consequences
of these changes, see R. Routley, ‘‘Some things do not exist,”’ Notve Dame Journal
of Formal Logic, vol. 7 (1966), pp. 251-276. The interpretation of S5R* is more
fully explained below.

4. S. A. Kripke, ‘‘Semantical considerations on modal logic,’’ Proceedings of a Col-
loquium on Modal and Many-Valued Logics: Acta Philosophica Fennica, Fasc.
XVI, Helsinki (1963), pp. 89-90.

5. Compare Routley, op. cit.
6. Adapted from Kneale, op. cit., p. 614.

7. For preliminary explanations of these symbols see Routley, op. cit., pp. 260-261.
Details of the analysis using unlimited quantifiers ¢4’ and ¢S? are given in my
‘“Exploring Meinong’s Jungle’’ (unpublished).

8. Rules for constructing semantic tableaux for quantified modal formulae of $5R*-E
(i.e. without the specially interpreted predicate ‘E’), and a metatheorem that A is
a theorem of S5R*-E if and only if its tableau construction is closed, can be
adapted from S. A. Kripke, ‘‘A completeness theorem in modal logic,’’ The
Journal of Symbolic Logic, vol. 24 (1959), pp. 1-14 (abbreviated JSL). Details of
the semantics of S5R* are presented in §5.1. The relevant theorems are estab-
lished in §5.2.
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The postulate set is based on Church’s set for Fé: see A. Church, Intrvoduction to
Mathematical Logic: Part I, Princeton (1956), pp- 218-219. The substitution
notation used throughout, with the exception of ‘S"A| is that of Church. The
definition of ‘S" A|’ parallels Church’s explanation of ‘sﬁ A|’. The system is
really a quanti.ﬁcatlonal extension of a rule simplified formulation of Lewis’ $5.
For philosophical purposes Lewis’ formulations of modal logics are superior to
the weakly equivalent Gddel formulations.

See, e.g., A. N. Prior, Formal Logic, pp. 205-6. Prior’s attempt to explain away
the incredibility which (1) produces is unconvincing.

See, especially, work on brain process theories of mind and on scientific reduc-
tions: for instance, text of and references in J. J. C. Smart, Philosophy and
Scientific Realism, London (1963), and V. Macrae and R. Routley, ‘‘On the identity
of sensations and physiological occurrences,’’ Amevrican Philosophical Quarterly,
vol. 3 (1966), pp. 87-110.

This move is not new. A more elaborate treatment than the standard formal
treatment has been repeatedly indicated by philosophers: for recent examples
see G. E. Hughes, ‘Mr. Martin on the Incarnation,’’ Austvalasian Journal of
Philosophy, 40 (1962), p. 208; N. Malcolm, ‘‘Scientific Materialism and the
Identity Theory,’’ The Journal of Philosophy, LX, 22 (1963), p. 663; P. T. Geach,
Mental Acts, Routledge & Kegan Paul, London (1957), p. 84. That the Leibniz
definition needs some qualifications has been recognised for a long time: see
W. E. Johnson, Logic, Pt. I, Cambridge (1921), and in particular, A. N. Whitehead
and B. Russell, Principia Mathematica, Vol. I, Cambridge (1911), p. 61.

What is done to amend the Leibniz criterion resembles what has periodically
been suggested by logicians, and in particular what was early recommended by
Miss Barcan and has more recently been developed by her, in a second-order
predicate logic, as a distinction between sorts of equality: see Proceedings of a
Colloquium on Many-Valued and Modal Logics, op. cit. Some of the formal work
has been anticipated by J. Hintikka, who builds up a good case for qualifying sub-
stitutivity of identity: see Knowledge and Belief, Cornell (1962), pp. 132-136.
Hintikka introduces rules allowing for substitutivity of identity only for certain
classes of primitive expressions of his modal systems. A similar move could be
made within usual presentations of restricted predicate logics, and the conditions
on extensional identity then derived by an induction argument.

For reasons for the challenge see Macrae and Routley, op. cit.

Compare A. Church, op. cit., p. 281. The axiom scheme differs from Church’s
scheme only in the qualification, ‘nor modalised’. Church’s schema coincides
with that for strict identity, provided the only intensional operators are modal
operators.

Initial steps in each case rely upon preliminary lemmas. These lemmas are
analogous for S$5R* of Church’s **313, **314, **315, and proofs are analogous to
those of **226, **227; see A. Church, op. cit.

S. A. Kripke, JSL, op. cit. That tableaux constructed using =1 serve to show that
*1 and *2 are not theorems only follows given modifications both of Kripke’s
definitions and of his theorems 1 and 7. For the requisite changes and theorems
see §5.3.
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‘‘Non-existence does not exist,’’ Notre Dame Journal of Formal Logic (forth-
coming).

Angle quotes represent the quotation function ‘qu’ of L. Goddard and R. Routley,
‘Use, Mention & Quotation,’’ The Austrvalasian Journal of Philosophy, vol. 44
(1966), pp. 1-49.

These definitions are got from Quine’s definitions in Word and Object, op. cit.
(abbreviated WO), by replacing ‘V’ by ‘II’ and distinguishing identity criteria.
Quine’s definitions are not unambiguous; e.g. a more satisfactory definition of »-
transparency uses:

Af,%,9) - (x=y D f(x) = f(¥)) D-x=3 D hf (x) =hf ().
For such a theory, see L. Goddard and R. Routley, op. cit.

See, e.g., A. Churéh, ““On Carnap’s analysis of statements of assertion and
belief,’’ Analysis, 10 (1950), pp. 97-99.

A. F. Smullyan, ‘“Modality and description,’’ JSL, vol. 13 (1948), pp. 31-37; A. N.
Prior, ‘‘Is the concept of referential opacity really necessary?’’, Proceedings of
a Colloguium on Modal and Many-Valued Logics, op. cit.

For theAtheory of descriptions assumed, see Routley, ‘‘Some things do not exist,’’
op. cit.

See Quine, From a Logical Point of View (abbreviated LP) op. cit., pp. 152-4 for
references and criticism. If is at least very dubious whether Carnap pursues the
course attributed to him by Quine, whether Carnap’s variables are limited to in-
tensional values. Those formal techniques outlined in Meaning and Necessity,
which are designed to divert modal paradoxes, and which are independent of
the (inadequate) analysis of analyticity in terms of L-truth and ultimately in
terms of state descriptions, are similar to some of those explained in §3. But
not only do the interpretations differ markedly. Further, whereas the solution
proposed in (I) specifically qualifies Leibniz’s criterion and applies dirvectly to
puzzles concerning identity, Carnap’s ‘‘solution’’ is much less specific and
direct: it requires ‘“translation’’ of the paradoxes into the notation of his seman-
tical systems. Also Carnap’s exposition of some vital notions, e.g. of ‘individual
concept’ or as it should be ‘self-consistent individual concept’ and of ‘x is the
same individual as y’ in rule of truth 3-3, is insufficiently explicit. Very roughly
Carnap’s ‘‘solution’’ is the formal mode analogue of the solution proposed in (I).

See, especially, W. V. Quine, ‘“Three grades of modal involvement,’’ Proceedings
of XI’th International Congress of Philosophy, vol. 14, Brussels (1953), pp. 65-81.

Quine relies on this sort of argument to get his critique of modality moving: see
LP, p. 139.

P. Geach and M. Black (eds). Tvanslations from the Philosophical Writings of
Gottlob Frege, Oxford (1960), pp. 56-57. Quine comes close to repeating some of
Frege’s points when he writes ‘Being necessarily or possibly thus and so . . .
depends on the manner of referring to the object’ LP, p. 148. The resulting under-
mining of the full-strength identity principle has not often been noticed and is not
indicated by Frege though his identity principle is effectively qualified through the
theory of change of references in oblique contexts.
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In place of Quine’s intuitive criterion (ii), in JSL, 1947, the following principles,
which accord with earlier theorems, are used:

(i) A particular quantification is true if for some consistent constant ‘c’ the
substitution of ‘c’ for the variable of quantification would render the matrix
statement true.

(ii) An existential quantification is true if for some constant, ‘c’, E(c) is true,
and the substitution of ‘c’ for the variable of quantification would render the
matrix statement true.

LP, p. 148; WO, p. 147.
Made in JSL, p. 47.
LP, pp. 152-3.

LP, p. 152.

That range or designation values of variables are intensions is nof established by
the following invalid argument (effectively that used by Quine against Carnap in
Meaning and Necessity, op. cit., pp. 196-T):

We have that (Ilx) (¥ = x), i.e. every item (entity) is strictly identical to
itself. This is the same as saying that items between which strict identity fails
are distinct items—a clear indication that the values of variables are intensions,
e.g. individual concepts rather than individuals.

For saying that every item is strictly identical with itself is not the same as
saying that items between which strict identity fails are distinct items: they may
in fact, be (extensionally) identical. (I x) (x = x) is also true.

LP, pp. 155-6; WO, p. 199. By °‘Aristotelian essentialism’ is here meant: that
essentialism, attributed by Quine to Aristotle, under which ‘an object of itself and
by whatever name or none, must be seen as having some of its traits necessarily
and others contingently, despite the fact that the latter traits follow just as ana-
lytically from some ways of specifying the object as the former traits do from
other ways of specifying it’ (LP, p. 155). Rejection of this essentialism is con-
sistent with retention of intensional and modal properties, and also with recogni-
tion that objects may have some properties such as being either green or not
green necessarily.

Quine is right in rejecting essentialism. Essentialism does collapse
modality.

WO, p. 199.
Approximately Quine’s assumption (4), WO, p. 198.

The account given is based on that of Kripke: S. A. Kripke, ‘‘Semantical consid-
erations on modal logic,”” (SC), op. cit. It is also influenced by the work of
A. Church, Introduction to Mathematical Logic, op. cit.; R. Carnap, op. cit.; and
J. Hintikka, op. cit.

See, S. A. Kripke, ‘‘Semantical Analysis of Modal Logic I: Normal Modal Propo-
sitional Calculi,”’ Zeitschvift fiiv Mathematische Logik und Grundlagen der
Mathematik, 9 (1963), pp. 67-96.

See, e.g., Routley, op. cit.
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S. A. Kripke, JSL. It is assumed that appropriate repairs are made to the defec-
tive lemma 2 of JSL along lines elaborated by Kripke, ZML.

The procedures, rules and definitions are those of Kripke’s JSL as improved in
ZML. More details of tableaux constructions and the rules for ‘D’ appear in
E. W. Beth, The Foundations of Mathematics, Amsterdam (1959), section 68.

See, e.g., A. N. Prior, Formal Logic, op. cit.; R. Montague, ‘‘Syntactical treat-

ment of modality,”” Proceedings of a Colloquium on Modal and Many-Valued
Logics, op. cit., p. 161.

If mixed modalities are introduced systems with formal affinities to Lewis sys-
tems $7 and $8 result, e.g. O(= <O p) is a thesis, and also OO(=Op) if an 85
structure holds for propositional modalities.

For a detailed presentation of these arguments see A. Pap, Semantics and Neces-
sary Truth, New Haven (1958), pp. 119-127.

R. Carnap, ‘“Modalities and Quantification,’’ JSL, 11 (1946), pp. 34-36.

Though apparently acceptable to Peirce for possibility in his substantive sense of
‘possible’: see C. Hartshorne and P. Weiss (eds.), Collected Papers of Charles
Sandevs Peirvce, Vol. III, Cambridge, Mass. (1933), 3.527. (6) can be retained at
the expense of weakening some of the normal modal connections.

For elaboration see Kneale, op. cit., p. 616.
Prior, Formal Logic, op. cit., pp. 211-214.
G. von Wright, An Essay in Modal Logic, North-Holland, Amsterdam (1951), p. 27.

This formulation is equivalent (given appropriate readings of quantifiers) to
Prior’s formulation; ibid., p. 211.

Kneale drives this point home beautifully: op. cit., p. 616. Von Wright cites as
typical logical properties arithmetical properties. But as Kneale says: ‘Being
less than 13 is an arithmetical attribute, and we may, if we like, say that it be-
longs necessarily to the number 12; but it is false that the number of apostles is
necessarily less than 13, although the number of apostles is undoubtedly 12.°

Kneale, op. cit., p. 618. Ihave replaced ‘Fx’by ‘f(x)’.
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