CONCERNING SOME PROPOSALS FOR QUAN'TUM LOGIC

C. W. LEININGER

The suggestion made in 1936 by Birkhoff and von Neumann and discussed by Birkhoff in [1], pp. 156-163 that a propositional algebra appropriate to quantum theory should have the structure of an orthocomplemented lattice has been widely discussed. More recently Kochen and Specker [2], pp. 177-189 have presented the idea of a partial Boolean algebra. We will call a partial Boolean algebra B complete if each Boolean subalgebra of B is complete.

It is the purpose of this note to point out that a complete partial Boolean algebra has an extension to an orthocomplemented lattice L, and thus may be considered as such a lattice in which the join and meet of a pair x, y of elements of L is of logical significance if and only if each of x and y belongs to the same Boolean subalgebra of L, i.e., x, y is a commeasurable pair in the sense of [2]. Otherwise $x-y$ and $x-y$ are meaningless for quantum logic although existing in the lattice-theoretic sense. Perhaps this observation will help to clarify one of the problems frequently mentioned (e.g. in [3], p. 369) which is involved in the structure of a logic for quantum theory.

Instead of using the definition of a partial Boolean algebra, it will be more convenient for our purpose to have recourse to the properties of a model thereof, since [2] p. 184, every partial Boolean algebra is isomorphic to some case of the model. Hence the statement that B is a partial Boolean algebra will mean that B is a list ($M, \mathrm{v}, 7,0,1$) and I is a set such that if $i \varepsilon I$, then B_{i} is a Boolean algebra ($M_{i}, v_{i}, ᄀ_{i}, 0,1$) and
(i) $M=\bigcup_{i \varepsilon I} M_{i}$;
(ii) if $h, i, j \varepsilon I, a, b \varepsilon M_{h}, a, c \varepsilon M_{i}$ and $b, c \varepsilon M_{j}$, then there is a $k \varepsilon I$ such that $a, b, c \varepsilon M_{k}$;
(iii) if i, $j \varepsilon I$, there is a $k \varepsilon I$ such that $M_{i} \cap M_{j}=M_{k}$;
(iv) if $a, b \varepsilon M$, then $a \vee b \varepsilon M$ if and only if there is an $i \varepsilon I$ such that $a, b \varepsilon M_{i}$, whence $a \vee b=a \vee i b$;
(v) if $a \varepsilon M_{i}$, then $\left.\urcorner a=\right\urcorner_{i} a$.

Put less formally, B is a collection $\left\{B_{i}\right\}$ of Boolean algebras with a partial function v having the domain $\bigcup_{i \varepsilon I} M_{i}{ }^{2}$, where M_{i} denotes the set of elements of B_{i}, such that 0 and 1 are common to each B_{i} and the orthocomplement $\neg a$ of $a \varepsilon B$ is, if $a \varepsilon M_{i}$, the complement of $a \varepsilon B_{i}$. The partial function \wedge and the relation \leq are defined in the usual manner and thus are subject to restrictions analogous to those on v and 7 . It will be convenient to resort to such informalities as " $x \varepsilon B_{i}$ " rather than the more precise " $x \varepsilon M_{i}$ considered as the underlying set of B_{i} ".

Theorem. If ($M, \mathrm{v}, \mathrm{7}, 0,1$) is a complete partial Boolean algebra B, then there is an extension - of the partial function v such that ($M, \smile,\urcorner, 0,1$) is an orthocomplemented lattice L.

Proof: If $x \varepsilon B_{i}$ and $y \varepsilon B_{j}$, let $S=\left\{u: u \varepsilon B_{i} \cap B_{i}, x \leq_{i} u\right\}$ and $T=$ $\left\{v: v \varepsilon B_{i} \cap B_{j}, y \leq_{j} v\right\}$. Then $x \leq_{i} \bigcap_{S}$ and $y \leq_{j} \bigcap_{T}$, so that $\bigcap_{S} \vee \bigcap_{T}=$ inf $\left\{z: z \varepsilon B_{i} \cap B_{j}, x \leq z, y \leq z\right\}=x \smile y$. If $i=j$, then $x=\bigcap_{S}$ and $y=\bigcap_{T}$, so that $x-y=x \vee y$.

That the foregoing result depends upon the completeness of B is not inconsistent with the position of Birkhoff [1], p. 162 in suggesting as a candidate for a quantum logic a sublattice of the complete lattice of closed subspaces of a Hilbert space. On the other hand the failure in general of L to be modular would appear to be irrelevant, since L may be considered as being decomposed into classes-the Boolean subalgebras of B-such that the join and meet of elements in the same class are meaningful while those of elements of different classes are not.

BIBLIOGRAPHY

[1] Birkhoff, G., "Lattices in applied mathematics," Proceedings of Symposia in Pure Mathematics, v. II, Lattice Theory, pp. 155-184. American Mathematical Society (1961).
[2] Kochen, S., and E. P. Specker, "Logical structures arising in quantum theory," Symposium on the Theory of Models, pp. 177-189. North-Holland Publishing Company, Amsterdam (1965).
[3] Suppes, P., "Logics appropriate to empirical theories," Symposium on the Theory of Models, pp. 360-371. North-Holland Publishing Company, Amsterdam (1965).

University of Dallas
Irving, Texas

