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ON KLEENE’S RECURSIVE REALIZABILITY AS AN
INTERPRETATION FOR INTUITIONISTIC
ELEMENTARY NUMBER THEORY

ROBERT R. TOMPKINS

Kleene (Introduction to Metamathematics, p. 501 ff.) has shown that
when intuitionistic elementary number theory is interpreted in terms of
recursive realizability certain elementary number theoretic statements are
classically true but intuitionistically unacceptable; and that their negations
are classically false but intuitionistically acceptable. Examples of such
statements are (for a suitably chosen predicate A(x)): 1) excluded middle;
2) the least number principle; 3) the double negation and universal closure
of (1) and (2). I shall show that a statement classically equivalent to the
induction axiom has this same property, and why this is so. I shall then
argue that this interpretation of intuitionistic number theory is funda-
mentally incorrect. And finally I shall suggest another interpretation that
renders (1), (2) and (3) intuitionistically acceptable for that predicate A(x).

PART I

The formal system (Z) for intuitionistic elementary number theory
(1.M., p. 82) differs from the classical (T) in just one axiom:

TmMADA (classical)
1A D (A D B) (intuitionistic)

The induction axiom in both (Z) and (T) is:
(1) (A(0) &(x)(A(x) D A(x")) D A(x)

The interpretation as recursive realizability proceeds as follows: (x
is a variable; x is a natural number; x is the formal numeral correspond-
ing to x.)

(A) 1. The number e realizes a closed prime formula P (one without free
variables and logical symbols) if e = 0 and P is recursively true.
If A and B are any closed formulas (without free variables):
2) e realizes A & B if e = 2% . 3% where a realizes A and b realizes B.
3) e realizes Av B if ¢ = 2°- 3% where a realizes A, or e = 2. 3%
where b realizes B.
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4) e realizes A D B if e is the Gbdel number of a partial recursive
function ¢ (x) such that, whenever a realizes A, ¢(a) realizes B.

5) e realizes 1A if erealizes A D 1=0.
If x is a variable and A(x) a formula containing only x free:

6) e realizes (Ex)A(x) if e = 2 - 3% where a realizes A(t).

7) e realizes (x)A(x) if e is the Godel number of a general recursive
function ¢(x) such that, for every x, ¢(x) realizes A(x).
(B) A formula containing no free variables is recursively realizable if
there exists a number e (as defined in (A)) which realizes it. A formula

A(yy, . . ., Ym), with only the distinct variables y,, . . ., yn free, is realiz-
able if there exists a general recursive function ¢ of m variables such that,
for every vi, . . ., Ym, ©¥1, . . ., Yu) realizes A(yy, . . ., Ym)-

Kleene shows (.M., pp. 504-8) that all formulas provable in (Z) are
recursively realizable. This is a consistency proof for (Z) since ‘“1 = 0’
is unrealizable. Since (T) can be interpreted in (Z) by elementary (general
recursive) means, and since consistency of (T) cannot be shown by elemen-
tary means, this is a non-elementary result. It is non-elementary in its
treatment of the induction axiom (1).

Since (1) contains x free, it is realizable (by (B)) if there exists a
general recursive function ¢(x) such that, for any x, ¢(x) realizes
(A(0) &(x) (A(x) D A(x"))) D A(x). Since the latter is an implication, ¢(x) will
be the Godel number of a partial recursive function W(x) (by (A), 4) such
that, whenever a realizes the antecedent conjunction, ¥(a) realizes A(x).
Appropriate ¢(x) and Y(x) are defined in the proof.

(1) is also realizable when A(x) symbolizes a predicate recursively
false for some natural number x, i.e. when A(x) is unrealizable for
some x. Since ¢(x), for that x, realizes (A(0)&(x)(A(x) D A(x"))) D A(x),
A(0) &(x)(A(x) D A(x")) is unrealizable. (If A O B is realizable, and B is
unrealizable, A is unrealizable (I.M., p. 511).) Thus ¥(x) is undefined for
every a, when ¢ and Y are defined as in the proof.

Consider the predicate (Ey)T(x,x,y) which, for any x, is true if and only
if x is the enumeration number, i.e. the x G&del number in the ordering of
Godel numbers, of a formula provable in (Z). (T(x,x,y) is a primitive
recursive predicate.) The axiom:

((Ey)T(0,0,y) &(x)((Ey)T(x,x,y) > (Ey)T(x',x",y))) O (Ey)T(x,%,y)

is realizable.

If (2) is consistent, there is at least one x such that (Ey)T(x,x,y) is
false; i.e. such that T(x,x,t) is recursively false for every . This implies
that the formula (Ey)T(x,Xx,y) is unrealizable, so that (Ey)T(x,x,y) is
unrealizable. Conversely, unrealizability of (Ey)T(x,x,y), i.e. the existence
of an x such that (Ey)T(x,x,y) is unrealizable, implies consistency.
Assuming consistency, the antecedent conjunction is unrealizable in the
axiom:

((Ey)T(0,0,y) &(x) ((Ey)T(x,x,y) D (Ey)T(x',x",y))) 2 (Ey)T(x,X,y)
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for that x, so that the axiom is realized by Y/(x), undefined for every a.
Furthermore, since realizability of the antecedent conjunction implies
realizability of (Ey)T(x,x,y) for every x, i.e. realizability of (Ey)T(x,x,y),
the conjunction is unrealizable for all x (assuming consistency). ¥(x),
undefined for every a, realizes the axiom for every x.

The antecedent conjunction cannot be skown to be unrealizable by
general recursive means. For this would require either: a) proof that
there exists not such that T(0,0,¢) is realizable, i.e. no ¢ such that T(0,0,t)
is recursively true, which implies consistency of (Z). Or b) proof that
there is some x such that (Ey)T(x,x,y) is realizable while (Ey)T(x',x",y) is
not. Again, unrealizability of (Ey)T(x',x',y) implies consistency.

Thus, when A(x) = (Ey)T(x,x,y), (1) is realized, for every x, by ¥(x),
completely undefined. But there is no general recursive method of showing
that the function is undefined for every a. To do so is equivalent to
demonstrating consistency of (Z). Thus the interpretation of (Z) in terms of
recursive realizability is not general recursive; the reasoning involved in
showing that provability (Z) implies realizability is non-recursive. For it
involves showing not only that the consequent of an axiom (1) is realizable
whenever the antecedent is, a recursive result; but also, for the above
axiom (1), that the antecedent is unrealizable, a non-recursive result.
Information additional to that provided by y¥(x) is needed to prove that the
antecedent conjunction is not realizable; that (x) is totally undefined. Such
information is necessary (and sufficient) to show (Ey)T(x,x,y) unrealizable,
and (Z) consistent. This is the non-elementary portion of the proof.

PART 1I

As a corollary to the theorem that provability implies realizability: if
HEyY)A(X,, . . ., X,,y) in (Z), then there exists a general recursive function
o(Xy, . . ., X,) =y such that, for every n-tuple xy, . . ., %, A(Xy, . . ., Xp,¥)
is realizable (where (x4, . . . x,) = 9). (1.M., pp. 508, 9)

Classically, (1) = (2):
(Ez) (A(0)&A(z) D A(z")) D A(x)).

The function that, for every x, provides a z such that A(0)&(A(z) D A(z"))>
A(x) is realizable is defined as follows:

{o if A(x) or if 1A(0)

o(x) = UZz<{(A(z)& 1A(z')) otherwise

When A(x) = (Ey)T(x,x,y), ¢(x) is not general recursive, so that (2), with
A(x) = (Ey)T(x,x,y), is unrealizable. Consequently, that formula is not
provable in (Z). (The classical proof that (1) D (2) depends upon the
non-intuitionistic principle: ((x)A(x) > B) O (Ex)(A(x) D B).)

(2) (A(x) = (Ey)T(x,x,y)) is unrealizable because of the non-existence
of a recursive method of providing a z, for every x, such that the matrix is
realizable. The difficulty occurs when (Ey)T(x,x,y) is false. As in the case
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of (1), it is then impossible to produce a z for which the antecedent con-
junction is unrealizable by recursive means. Because of the interpretation
given to the symbol ‘“>’’ in (1), it is not required that such a z be so
produced, so that (1) is realizable. But the interpretation given to ‘“(Ey)”’
in (2) does contain that requirement, so that (2) is unrealizable.

Finally, Kleene shows (I.M., pp. 511,512) that if A is closed and
unrealizable, 1A is realizable. By clause 7 the closure of (2):

(x) (Ey) (A(0)&(A(y) 2 A(y") D A(x)) (Ax) = (Ey)T(x,x,y))

is unrealizable, so that its negation is realizable. But the closure is
classically true, while its negation is classically false. If the negation is
added to (Z) as an axiom, as it could be since it is supposedly intuition-
istically acceptable, the resulting system (Z') has the very curious
property of having two axioms that are classically contradictory.

PART III

(Z') is meant to formalize the intuitionistic interpretations of the two
logical operators: ‘2’ and ‘(Ex)’’. In general ‘“(x)A(x) D B’’ is intui-
tionistically true if one can construct an effective general method for
deducing B from (x)A(x). Regarding (1), the partial recursive function ¥/(x)
provides such a method for every predicate A. In general ‘“(Ex)(A(x) D B)”’
is true if and only if one can construct a proof of the statement ‘“A(t) > B”’
for some t. By restricting ‘‘construct’’ to general recursive constructions,
(2) becomes untrue \unrealizable) when A(x) = (Ey)T(x,x,y).

The difficulty with accepting (Z') as a formal system for intuitionistic
elementary number theory (or (Z2") if 1(x) (A(x) v1A(x)), A(x) = (Ey)T(x,x,y),
etc. be added to (Z')) lies in the fact that the consistency proof for (Z)
(provability implies realizability) utilizes a non-elementary technique.
Since consistency of (Z) implies consistency of (T), that technique must be
as non-elementary as transfinite induction up to &,. Such a technique will
provide an x such that (Ey)T(x,X,y) is unrealizable, i.e. an x which ‘‘un-
realizes’’ (Ey)T(0,0,y) &(x)(T(x,x,y) D T(x',x',y)). For example, the enu-
meration number of the formula ‘1 =0’’, assuming this to be the first
unprovable formula in the ordering by Godel numbers. That same x will
serve as the z' for which the matrix of (2) is realizable for every y if ¢(x)
is altered to read ‘‘the enumeration number of 1 = 0 otherwise”’. Or, ¢(x)
can simply be taken as the constant function, mapping all y onto the
enumeration number of ‘1 = 0”’,

Since a non-elementary technique is used in the demonstration that
provability implies realizability, and since any result regarding intuition-
istic acceptability must also be intuitionistically acceptable, (Intuitionists
will not accept results which utilize non-effective techniques), the interpre-
tation must be unsatisfactory. For either: 1) transfinite induction to g, is
not considered effective, in which case the result is unacceptable; or 2) it
is effective, in which case, since it is a technique of elementary number
theory, it must be a part of the interpretation of (Z). But this interpretation
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would differ from realizability, since (2), A(x) = (Ey)T(x,x,y), is true in the
one but false in the other.

The question whether such non-recursive techniques as transfinite
induction to €, are intuitionistically acceptable is indeed interesting. I
believe that one is, but I won’t argue the point here. If (Z) were to be
reformulated as some (Z+) including that technique or an equivalent (cf. the
last chapter of Mostowski’s Sentences Undecidable . . .), then (2), as well
as excluded middle and the least number principle (A(x) = (Ey)T(x,Xx,y)),
become derivable. Of course, the problem then reappears on a higher
level, for another predicate A(x).

Since (T) and (Z) are each interpretable in the other (I.M., pp. 492-498)
and in a sense equivalent, recursive realizability is intended to pinpoint the
difference believed to exist between classical and intuitionistic number
theoretic inference. (T) and (Z") clearly differ. But, if I am correct,
either (Z) or some (Z*) is the correct formalization of the intuitionistic
number theory. And (Z%), on the level of the predicate (Ey)T(x,x,y), does
not differ from (T).
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