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A STANDARDIZATION THEOREM FOR STRONG REDUCTION

KENNETH LOEWEN

In a previous paper [2], the writer introduced a modified definition of
strong reduction in combinatory logic [la]. This paper shows that with such
a strong reduction there is associated a standard reduction [3a]. All reduc-
tions are considered according to the modified definition. This allows some
essential simplifications in proofs, especially of Theorem 1.

Definition of a Standard Reduction.

A strong reduction is called standard if it satisfies the following condi-
tions:

i) The Type III steps are made last and are performed from right to
left.

ii) Among the Type I and II reductions the redexes are to be contracted
in the order (from left to right) of the combinators appearing at
their heads. However, the redex contracted need not be of maximal
extent.

The condition that Type III steps be contracted from right to left is
automatically satisfied in the case that they overlap; and in case they do
not, the order is irrelevant.

In the context of standard reductions, steps of Type Πc, Πd, and Πf have
the effect of freezing certain combinators, since they introduce expressions
which can only be reduced further by Type ΠI steps. We shall refer to
combinators as being frozen without resorting to the mechanism of these
steps. A combinator not frozen is called free.

Since the transformation of a modified strong reduction into a strong
reduction in the original sense involves introduction of Type IE steps ahead
of Type I and II steps, a standard reduction in the present sense need not be
standard in the sense of the original definition.

Two Lemmas. Two lemmas were introduced in [2] and will be used
here. They are:

Lemma" 1. If X - [#]3C, then λx.Xx >— λx.I by Type I steps only. In
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other words the contractum of a Type III step may be reversed to the orig-
inal redex by a single Type II step followed by Type I steps.

Lemma 2. The contraction of a Type II redex P may be reversed pro-
vided there are no intervening steps interior to the contractum of P.

Standardization of a Special Case.

In this section we will prove that any reduction involving only Type I
and Π steps can be standardized.

Theorem 1. If M reduces to N using only Type I and II steps, then
there is a standard reduction from M to N using only Type I and II steps.

The proof is an induction on the number of steps in the reduction from
M to N. It proceeds by construction of the standard reduction from the
original induction. The induction step is provided by Lemma 3. This may
alter the number of steps following the point at which it is applied so the
induction is applied by working backwards from N to M. In this way the in-
duction index is not affected.

Lemma 3. If there is a single step reduction using a Type I or II step
from M to No and a standard reduction using only steps of Type I andII
from No to Nn, then there is a standard reduction using only Type I
and II steps from M to Nn.

Proof of the theorem. Let M = Mo, Mu M 2 , . . . , Mk = N be the stages
of the reduction. Since a single step reduction can always be considered
standard by appropriate freezing, the reduction from M^ι to M* is stan-
dard. This is the basic step of the induction. Now if the reduction has been
standardized from M; to Mk, then Lemma 3 shows that we can standardize
from Mj_! to M&. We have now decreased the index and a descending in-
duction on gives the desired result.

Proof of the lemma: Note that if n = 0 the situation is trivial, since
then we have only a single step reduction.

Designate the redex used to reduce M to No by P and the initial combi-
nator of P by p. Designate the redex used to reduce N ^ to Nii by r*.

Look at the leftmost free combinator in M. If it is not p, then it
appears in No~ If this combinator is frozen in the reduction from No to Nnj

then freeze it in M. Proceed to the right in M until we reach a combinator
which is not frozen. If this leftmost free combinator in M is p, we have a
standard reduction from M to Nn and there is nothing more to prove. If this
combinator is not p, it is rx. In the following we assume rx is to the left of

P
We now construct a sequence of L^s such that we have a standard re-

duction from M to L, and that a left to right reduction of all residuals of P
in Li continues this given reduction to iNfc-i This certainly holds for k = i,
if we take i = 0 and Lo to be M. In the induction step we construct a
sequence from Li to Ly such that a reduction of all residuals of P in Lj
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gives a standard reduction from M via Lf and then to Lj and ending at Mk.
We carry out the inductive step in two parts. In the first we show, assum-
ing simply that the residuals of P in Lj are of the same type as P, and
whose contraction in standard order leads to iV̂ _x; that this leads to a
standard reduction from L, via Lj to Nk In the second part we shall show,
assuming the rest of the inductive hypothesis, that we obtain a standard re-
duction from M to Nk by carrying out first the standard reduction from M to
Li, and then the new reduction from fy to Nk.

The reduction from Lj to A -̂i is by means of the reduction of the
residuals of P. Thus each of these will have a recognizable trace in Nk,lΛ

Suppose that rk lies to the left of all those traces of P in Nk-ι. Then there
will be an instance rk* of rk in L, such that the reductions from L( to JŜ -i
consist of replacement of components lying to the right of rk\ Accordingly,
there will be a component Rk* in Z ,̂ headed by rk* such that these replace-
ments will be either replacements inside Rk' (or one of its traces), or
entirely to the right of Rk\ Thus Rk

x is a redex of the same type as Rk.
Since the replacements are all steps of Type I or Π, which do not allow a
lambda to be eliminated, Rk* is a redex of the same type as R^ Let Lj
(= Li+1) be obtained by contracting JR̂ f in L, . The effect of this is merely
to change the order and multiplicity of the residuals of P. Hence if all
these residuals, in standard order, are replaced by their contracta, we are
led from Li to Lj and thence to Nk by a reduction which is standard.

Suppose now that rk lies to the right of, or inside, the trace of some
residual of P. Let Lj_x be obtained by contracting, in standard order,
exactly those residuals of P in L, whose traces in iNfc-i contain or lie to the
left of Tk> Then since the residuals of P are non-over-lapping, those which
appear in Lj~x will be replicas of certain ones in Lf ; moreover, the con-
traction of all residuals of P in L, will pass through Lj_λ on its way to
Nk-ι. Thus Lj-ι can take the place of Lf in the argument of the preceding
paragraph; and the reduction from L, to Lj and hence to Nk will be standard.

This completes the first part of the proof. Before starting on the
second part we note the position of r^+1 in Nk* Since the reduction from N
to No is standard, Tk+ι lies in or to the right of the contractum of Rk-
Accordingly no ancestor of rvn can be frozen in the reduction from M to
Nk. Likewise the traces of residuals of P which still exist in Lj all lie
within or to the right of the contractum of Rk- Let us suppose, as part of
the inductive hypothesis, that the analogous statements hold with respect to
Tk and Nk, i.e., with k-1 in place of k. They evidently hold when k = 0 since
then we have only a single step reduction from M to NOt there is no ROJ

i = 0, and j = 1. Thus no ancestor of rk nor any ancestor of the head of any
residual of P contracted in going from Lz to Lj can be frozen in the reduc-
tion from Mto L, . These ancestors, therefore, are in the reduction from
Mto Hi. Since they are not frozen in the reduction from Lj-i to Nk, the
reduction from M to Nk is standard.

This completes the proof of the lemma and the theorem.
An Auxiliary Theorem. The following theorem is used in the proof of

the standardization theorem and in other contexts.
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Theorem 2. /. If there is a strong reduction from Mo to Mn and if
there is a single step reduction of Type II or Type III from Mo to N, then
N>-Mn.

II. If there is a standard reduction from Mo to Mn and if there is a
single step reduction using a step of Type I or Type III from Mo to N, then
there is an L such that there is a standard reduction from N to L and
Mn > - L.

Proof: Part I. By Lemma 1 or 2 the step from Mo to N may be re-
versed giving N >— Mo >— Mn.

Part II. If the step from Mo to N is a Type III step it can be reversed
by Lemma 1. This introduces only Type I and Π steps from N to Mo. If the
reduction following this is standard, the entire reduction from N to Mn can
be standardized by Theorem 1, since all Type IΠ steps are already at the
end of the reduction.

Now let the original reduction be given by

(1) Mo>- Mx > - . . . > - Mn

and the reduction from Mo to N be by the contraction of a Type I redex P.
The proof is in the form on an induction on the number of steps in the re-
duction (1). We assume that the reduction from Mo to N is standard. Also
that the redex P contracted in the reduction from Mo to N has initial com-
binator p. The reduction from M/-x to M, is by the contraction Xi of Ri with
initial combinator ι% (in case Ri is Type I or Π).

If n = 0, then N is the required L. This is the basic step of the induc-
tion.

For the induction step we assume that by contracting all residuals of P
in M,_i, as well as certain redexes congruent to residuals of P (recon-
structed in the reduction from Mί ^1 to Nj and which we will call semire-
siduals) corresponding to residuals of P destroyed by the contraction of a
competing redex in (1) prior to reaching Mf -i, we obtain an Nj such that
Mf ._! >— Nj and N= No >— Nj. From this we show that we can contract Ri
to get Mi and then by a similar sequence of steps arrive at Nk such that
Mi > - Nk and Nj > - Nk.

We may need Type ΠI steps to reconstruct certain semiresiduals in
these reductions. The details of definition of semiresiduals are left till
appropriate points in the proof. Because P is a Type I, each residual (and
semiresidual) of P must be headed by an instance of p.

It will be helpful in the following steps of the proof to recall that if a
redex has more than one residual, these cannot overlap. We now consider
the possible cases for the induction.

Case 1. Ri, is disjoint from all residuals and semiresiduals of P. This
case is the first case in the proof of Theorem L with Ri serving as P.
Standardization was not a necessary hypothesis except to obtain a standard
reduction.

Case 2. Rit is a residual of P. The contraction of Ri is one step of the
reduction from M?^ to Nj. Hence a reduction from Mί . 1 to M, and then to



A STANDARDIZATION THEOREM 275

Nk = Nj involves at most a rearrangement of the order of contraction of
residuals and semiresiduals of P.

Case 3. Ri is a part of a residual of P.

Case 3a. The combinator Y\i is contained within an argument of Pin
some residual of P. Since the reduction (l) was standard, this means that
the particular residual of P which involves r, was frozen at some point in
the reduction (1) before the stage M, was reached. There will be zero or
more residuals of Ri in JV; ; but each of these residuals will have exactly the
same form as Ri itself. Reducing each of these residuals of Ri occurring
in Nj gives the same result as if Ri were reduced first and then the resid-
uals and semiresiduals of P were reduced. Thus we get M, >— N& and
Nj > - Nk.

Case 3b. r, is the head of a residual of P, but Ri is a subcomponent of
this residual. Ri is necessarily a Type Π redex. If we apply a Type IΠ step
to the contractum of Ri in M, before any other steps are performed, we
have an expression identical to Mi-X. In M# the residual of P headed by
γ\i has no residual, but after the Type ΠI step a redex is reconstructed
which is identical to the destroying residual of P. This redex is what we
call a semiresidual of P. In the reduction from Mt to Nj we treat this redex
as if it were a residual of P and likewise in all subsequent stages of the in-
duction process. Reducing all the residuals and semiresiduals of P after
the Type III step is essentially the same as reducing the residuals and
semiresiduals of P beginning with Mi^ι and hence we get Nk>= Nj. Any Type
IΠ step other than the one introduced in this step will be handled as in the
reduction from M/-i to Nj.

Case 3c. Ri does not overlap a residual of P, but a residual of Ri is
contained in a semiresidual of P constructed in the reduction from Mί _1 to
Nj. This can happen in one of two ways.

The residual of Ri may be part of an argument of a semiresidual which
was not included in the redex which served as the Ri in the particular
application of Case 3b which originally gave rise to the semiresidual of P
involved. In this situation the present R{ may be handled by Case 3a after
the Type ΠI step constructing the semiresidual has been performed.

The Ri of the present case may be a redex contained within or formed
from the contractum of an Ri of Case 3b. Since the Ri of Case 3b is a Type
Π redex its contractum is a Type ΠI redex and hence is identifiable
throughout this part of the reduction, until Type IΠ steps are applied. Since
the present Ri is a Type I or Π redex, a contraction of its residual in Nj as
in Case 3a will give Nk.

Case 4. Certain residuals of Pare parts of Ri. One or more residuals
then occur within arguments of r, . The most that can happen here is a
change of multiplicity of one of the residuals of P. Reducing these resid-
uals and the semiresiduals of P beginning withM, gives us i\fc. Clearly this
is the same as if the residuals of Ri in Nj were reduced, so that we have
Nj >— Nk as required.
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Case 5. R{ is a Type III redex. This is part I of the theorem.

Two Lemmas. We now prove two simple lemmas which allow certain
modifications in a reduction. These are used in the proof of the standardi-
zation theorem.

Lemma 4. If x >— M in k steps of Types I and II and if x contains no
lambda expressions, then there is a reduction with not more than k 2k Type
I and II steps such that each Type HI redex in M is the unique residual of
the contractum of a Type II step.

Proof: All Type IΠ red exes must be introduced by Type ΠI steps.
Since the only step which actually increases the multiplicity of a component
of a stage of a reduction is a step of Type Ib, this means that we can inter-
change steps of Type Ib and steps of Type Π.

Suppose we have a single Type IΠ redex P introduced by a Type Π con-
traction. This redex may be part of certain other redexes which are
subsequently contracted. There will be no increase in the multiplicity of
residuals of P as long as they are not included in a step of Type Ib and we
have no difficulty. (It cannot be a part of a Type ΠI contraction since a
Type ΠI step may have no lambda expressions in its interior.) There may
also be certain reductions interior to the Type ΠI redex. We place no
restrictions on these since they cannot affect the multiplicity of the redex
in question.

Suppose that there are i steps of the reduction interior to P before the
step of Type Ib is reached. Suppose further that the Type Π step introduc-
ing P is the first step since previous steps are irrelevant to this part of the
analysis. Let MOI be contracted to Mx by a Type II step replacing a compo-
nent L by a component λbv.L = P. Let the first step of Type Ib which over-
laps this component in such a way as to contain P as an argument be the &th
step. Then Mk-i reduces to Λf*. by the replacement of a component of the
form SNXN2N3 by a component NiN^Nzty). If the residual of P occurs in
either iSζ. or N2 there will be no change in the multiplicity of the residuals
of P and we make no changes in the reduction.

If, however, the residual of P in Mk^1 is in the component N3, there are
now two residuals of P and we modify the reduction as follows. In each
stage from Mx to Λ4 replace Por the unique residual of P by L. Each step
from Mx to M^ will either be a step of the same type as the original, or the
two successive stages will be identical. Identical stages occur at Mo and Mλ

and whenever there were reductions interior to P in the original reduction.
Delete repetitions in the reduction.

Now begin with the new Mk, and replace both instances of L with P and
repeat in each of these residuals exactly the same sequence of steps which
occurred interior to the residual of P in the reduction from Mλ toMk.x in
the original reduction. Thus for each step deleted above Mk two are added
below. If a reduction had k steps and introduced only one Type ΠI redex
there will be less than 2k steps in the modified reduction.

If there are other Type IΠ redexes at stage Mk+1, each can be handled
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by this same procedure. Since each application no more than doubles the
number of steps the total number of steps is less than k*2k.

Lemma 5. If there is a reduction from My-i = LN beginning with a
Type II step yielding Mj = (λx.L')N and continuing to M& = (λx.L'^N1 where
λx.V >— λx.L" and iV>—N1 then there is a reduction from Mj-γ = LM to
Ml = [LVx]N" (where the notation [V/x]N" means the substitution of V
for x in N") in exactly the same number of steps.

Proof: In the reduction from M^x to Mk the reductions iniVare dis-
joint from the reductions in L. Hence these can be interchanged without
affecting the number of steps. In particular we can require all reductions
in Nto be performed before any reduction in L. This gives us My'-! = LN1.

Now substitute iVτ for x in each stage from My t toM^. (Delete the λx
prefix when the substitution is performed.) There is no change in the num-
ber of steps. Note that the result of making this substitution in Mk is Ml .
We now show that the transition from My.i to My is a valid single step
reduction and the lemma will be proved. We list in tabular form the six
possible kinds of Type Π steps which can occur.

Original Orig. Modified Modified
//<t"1 Contractum Type Contractum Type

RNXN2 (λχ.N)N2 Πa Nx la

SN^Ns (λx.N&iN^Ns lib N^N^) Ib

\NX (λx.x)^ He JVX Ic

KNX (λxy.x)Nx lid λy.Nt Πa

SN^ (λxy.N1y&y))N2 He λy.Niy(N2y) Πb

SNί {λxyz.xz(yz))Nι Ilf λyz.N^iyz) Πe

The result of the modification in each case is another strong reduction
of a different type. Hence the lemma is proved.

The Standardization Theorem

Theorem 3. If there is a strong reduction from X to Ywhere neither
X nor Y contain lambda expressions, then there is a Z such that there is a
standard reduction from X to Z and Y reduces to Z.

Proof: The proof of this theorem is an induction, similar to the proof
of Theorem 1, beginning from the bottom of the reduction and moving up-
wards. Theorem 1 shows that any reduction involving only Type I and Π
steps can be standardized. Thus we need to show that any Type IΠ step can
be moved to a point following all Type I or Π steps in the reduction, or
eliminated entirely.

We assume that the reduction has been modified as in Lemma 4 so that

each Type IΠ redex is the unique residual of the contractum of a Type Π

step.
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Let the reduction be from Mo = X to Mn = Y. Assume as inductive
hypothesis that the reduction from M£+1 to Mn is standard. This hypothesis
is verified when k =n-2 since a one step reduction is always standard.
Assuming the hypothesis we show that there is a standard reduction from
Mk to some Z such that Y > - Z. Then it will follow that for every k <n-l
there is a Zk such that there is a standard reduction from Λ4 to Zk, and
Zk>- Zk-i. Then Zo will be the Z of the theorem. We further assume that
the step from M* to M^+1 is a Type ΠI step which overlaps subsequent Type
I or II steps. If it is Type I or Π, the result follows from Theorem 1. If
there are no Type I or II steps overlapping the result is trivial.

Let Rk = λx.U be the redex contracted in going from Mk to M^+1, and let
the contractum of Rk be U = [ΛΓ]U. Rk is the unique residual of a Type III
redex introduced in some M, , 0 <j <k. We treat first the case where Rk
is at the head of Mk\ so that we have

Mk ^{λxΛ)NιN2 . . . # „ ;

M j f c + i Ξ U N X N 2 . . . N m m

We divide the proof into cases according to the outermost (algorithmic)
step in the algorithm for obtaining U fromλ#.E. It is important to notice
that the argument does not depend on the value of k, but only upon the fact
that a reduction from Mk+i on is standard.

Case 1. The step from Mk to Mk+X uses clause (a) of the algorithm.
Then there is a F, not containing X, such that U = V, and U= KV. The N's
may be absent. Any reduction involving the N9s will be disjoint from the
Type IΠ step and causes no difficulty. In this case we have Mk+ι = KVN ι...
Nm.

Case la. If the K in Mk+ι is frozen in the subsequent reduction, we
note that all subsequent reductions overlapping the Type ΠI step occur en-
tirely within V. But V passes from Mk to Mk+ι unchanged. Hence the re-
duction interior to V could have started in Mk before the Type IΠ step was
applied. In other words we can move the Type IΠ step to the end of the
reduction.

If Type Π steps are used in the subsequent reduction of F, the lambdas
introduced by them must be removed by Type IΠ steps (which will occur
after all Type I and Π steps have been made since this part of the reduction
is standard by hypothesis) before the Type ΠI step being moved to the end
is contracted. It is to guarantee that this will always be possible that we
require Y and Z to contain no lambda expressions. Similar situations will
arise in subsequent cases, but we will not comment on them further.

Case lb. The K introduced by the Type ΠI step from Mk to Mk+i is not
frozen in the subsequent reduction and the reduction from Mk+1 to Mk+2 is
by a Type I step. There must be at least one N present since it is involved
in the subsequent standard reduction as an argument of a contracted redex.
We can thus apply the transformation of Lemma 5 to the reduction from
Mj-ι to Mk. The X of Lemma 5 is the present V. It is to guarantee that
this transformation will always be possible that we require X in this
theorem to be an #-ob. If we perform this modification we get
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Ml = VN2... Nm

 Ξ Mk+2- In other words by this modification we can elim-
inate two steps and have a standard reduction from Ml .

Case lc. The K introduced by the Type III step is not frozen and the
reduction from M k+1 to Mk+2 is by a Type II step. We have either Mk+2 =
(λx^Nx... Nm or else M&+2

 Ξ (λxy.x)VNί.. . Nm . In the first alternative
we have Mk = Mk+2, and by eliminating two steps from the reduction, we
have a standard reduction from M^ to the end of the reduction. The second
alternative is Case la.

Case 2. M&+1 arises from M^by algorithm clause (b). Here we have
Mk = (λx.x)Nι.. . Nm, and Mk+1 = IΛΊ . . . Nm . If the I is frozen, then all sub-
sequent reductions are in the N's and are disjoint from the Type III step so
that we have no problem. If the I is not frozen, then either Mk+2 = Nlt.. Nm

or else il4+2 Ξ (λχjc)Nι... Nm = M&. In the second alternative eliminating
two steps from the reduction gives us a standard reduction from Mk to the
end.

In the first alternative Nι is used as an argument of a redex contracted
in the subsequent standard reduction. We can thus apply the transformation
of Lemma 5 to get Ml Ξ Nx... Nm = Mk+2. Again elimination of two steps
gives a standard reduction from Mx

k to the end.
Case 3. Mk+1 arises from M& by an application of clause (c) of the

algorithm. Then Mk is (λx.Ux)N1... Nm , and Mk+1 is UN1... Nm.
Case 3a. If the subsequent reduction is such that the result is of the

form U'N\ . . . Λ/\ where U > - IP, Ny >- N\,..., Nm >- Wm , then we
observe that all the reductions in U could have been performed before the
Type III step was applied.

Case 3b. The subsequent reduction is not of the special form required
by the previous subcase. As in previous cases we can modify the reduction
from My-! to Mk as in Lemma 5 and obtain Ml = UNx... Nm = M^+1. By
eliminating one step we have a standard reduction from M{ to the end of
the reduction.

Case 4. M^+i arises from M& by a step beginning with an application of
clause (f) of the algorithm. Then Mk is of the form (λx. a s ) ^ . . . Nm =
SUVN! ...Nm, a n d Mk+1 i s S([x]U) ( [ Λ Γ J S ) ^ . . . Nm

 Ξ SUVNλ ...Nm. T h i s i s
the most difficult case. Here for the first time we have the possibility of
having succeeding substeps involving additional applications of the al-
gorithm. These do not cause difficulty since the expressions [x]U = U and
[ΛΓ]& = V are treated as whole units at the stage Mk+1 of the subsequent re-
duction. The structure of U and V can enter in only at later stages of the
reduction which is already assumed to be standard. Thus we consider only
what happens to the particular instance of S introduced by the initial appli-
cation of clause (f) of the algorithm.

Case 4a. The S is frozen in the reduction following stage M&+1. Since
any reduction involving the N's will be disjoint from the Type ΠI step we
will assume for convenience in this subcase that they are not present. Thus
the end of the reduction is of the form SZPV where U >— C/τ and V >—V\
We will show that there is a standard sequence of steps beginning with M&
and ending with an ob to which SIPV will reduce.
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Lemma 1 shows that λx.SUVx reduces toλ#.USB (Ξil4) using one or
more Type I steps only. Since we can takeλx.UxiVx) as the result of the
first of these steps, we have also that λx.Ux(Vx) reduces to λx. US using
only Type I steps. We now perform a secondary induction on the number h
of steps in the reduction from λx.Ux(Vx) to x. 12Ώ. By this means we con-
struct the desired standard reduction from M* to the ob λxS where S|ί7τFτ Ξ

Mny— λx.S >— Zand Z is the ob called for by the theorem. If the number
of steps in the secondary induction is zero, the auxiliary reduction from
λx.Ux(Vx) to λx.UJx(V'x) is the desired reduction. This is the basic step of
the induction.

The induction step is provided by Part Π of Theorem 2. This says that
if Mo >— Mn in a standard reduction and Mo >— N by a single step of Type I,
then there is an L such that Mn >— L and N >— L is a standard reduction.
In application to the present situation Mo is the *-th stage of the reduction
from λx.Ux(Vx) to λ#.U9β. N is the following stage of the same reduction.
Mn is a certain expression to which \x.U'x{V'x) reduces, the exact form de-
pending upon i. When ί - 0, Mn is λx.U*x(V*x); and when i=h, Mn is S.

Since the reduction λx.Ux{Vx)>— λxES contains only Type I steps, the
result of the secondary induction shows that the reduction from λΛr.1155
(= Ml ) to λx. 3 can be standardized. Further Theorem 2 also guarantees
that \x.lPx(Vfx) reduces to λx.Q. Since SWV (= Mn of the present theorem)
reduces to λχ.TJ'x{V*x) by a single Type II step, we have Mn >— s.g. At the
end of the induction we can apply Type III steps to get Z.

Case 4b. The S introduced in the initial application of clause (f) of the
algorithm is not frozen and the reduction from M&+1 to M^+2 is by a Type I
step. There must be at least one N. We modify the reduction as in Lemma
6. In this way we arrive at MJ Ξ ([iSΓ1/Λr]U5β)iSΓ2... Nm. By Lemma 1 Mk+ι =
SUVN1...Nm reduces toM^ using only Type I steps. By a secondary in-
duction on the number of steps in this reduction we show that there is an
ob Z to which both Mfc and Mn reduce and that the reduction from M\ to Z
is standard. The details are similar to the previous case.

Case 4c. The S is not frozen and the step from Λ4+i to M^+2 is a Type
II step. Mk+2 is either λx.Ux(Vx)N1... Nm or else it is (λyx.Uxiyx^VNj^...
Nm. The third alternative for a Type Π step is the frozen case already
considered. We cover the first alternative in this subcase.

We can show that Mk+2 = λx.Ux{Vx)Nι... Nm reduces to M& using only
Type I steps by applying Lemma 1 to Ux = ([ΛΓ]E)#. If we perform a secon-
dary induction on the number of steps in this reduction from M^+2 to M ,̂ we
get the desired results. Part Π of Theorem 2 is again used as the induction
step in the secondary induction. The details are as in the previous sub-
cases.

Case 4d. If S is not frozen, we still need to consider the alternative
Mk+2 Ξ {λyx.Ux(yx))VNi . . Nm. Here the procedure is more complicated.
We may assume for convenience that theiV's are all absent. Any reduction
involving them will be disjoint from the Type ΠI step from M& to Λ/&+1 so
this will cause no difficulty.

Since the reduction below Mk+2 is standard, Mk+2 = (λyx.Ux(yx))V
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reduces to (λyχ.L)V by Type I and Π steps only and this in turn reduces to
(λyx.L)V\ There may be Type ΠI steps at the end of the reduction from V
to F f . If we then apply Type ΠI steps to this result we can get ([y#]L)Ff.
By Lemma 5 this last expression reduces to [VF|/y][#]£ using Type I steps
only. Since 7T does not contain x, we have also that this is the same as
MITV.y]!'- Now in each stage, from Mk+2 to the stage which looks like
\λyx.L)V, make the substitution [F/y]. Since V contains no lambda expres-
sions (it is [x]V, and by definition this contains no lambdas), this trans-
forms the original reduction beginning with M^+2 into one which begins with
x.Ux(Vx) and goes as far as λx.[V/y]L. Next reduce each of the (disjoint)
instances of Y to Γ\ Since the Type ΠI steps in the separate instances of
the reduction of Fto 7T are disjoint, we may leave them until all the Type I
and Π steps have been completed. If we now apply Type ΠI steps to the re-
sult, we get [#][7τ/:y]£ K there are any other Type ΠI steps than the last
one specified involved in this reduction, they are either at the end of the
reduction of F to F ' or else follow all reductions of that form, since the
original reduction was standard by hypothesis. This means that the reduc-
tion from λx.Ux(Vx) to λx.[V/y]L and then to [x\V'/y]Lia standardizable
by Theorem 1. As we have also seen Mn reduces to [#][Vrf/y]Z' Thus we
can now apply Case 4c to this resulting reduction to get the desired result.

This proves the theorem on the hypothesis thati?^ is at the head of M&.
It remains to consider what happens if that is not the case. hetRk+i be the
contractum of R& Then it may happen that there are several replicas of
Rk+ι which are recognizable as traces of Rk with respect to I-Π contrac-
tions with a head lying to the left. This introduces complications which
have to be considered.

Let Δ be the given reduction, which is standard from M^+1 on. With Δ
before us we can recognize those traces of Rk such that no contraction
whose head lies in or to the right of the trace has yet occurred. Let us call
these Rk traces; they are all exact replicas of Rk+i Let us say further that
an Rk trace is activated at a given step of Δ if the redex contracted at that
step has its head in or to the right of the trace, or is of Type III. Given an
Rk trace, a contraction of a I-II redex whose head is to the left of it we shall
call a preparatory contraction for that trace. Then a preparatory contrac-
tion may cause multiple descendents of that trace in the next stage, or it
may cancel the trace altogether.

Let Mk+g be the first stage in Δ such that either allRk traces have been
cancelled by preparatory contractions or the first Rk trace is to be
activated in the next step. We have noted that My _x differs from Mk+ί only
in that Rj-i replaces Rk+i> If we make the same preparatory reductions
starting with Mj-l9 Rk+i being replaced throughout by Rj-U we arrive at an
My_! which is obtained from Mk+g by the same replacements. If Mk+g con-
tains no Rk trace, then it is identical with My.x, and the preparatory re-
duction, together with the standard reduction from Mk+g on, will give the
standard reduction from Mj _x. On the other hand if Mk+g contains only one
Rk trace, then the effect from Mk+g is the same as if Rk were at the head of
Mk9 i.e., we can use the argument given above to standardize the reduction
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from Myβ l to Mn. In fact the argument did not depend on k; and the only
contractions which can contain the trace (or its descendants) as a proper
part will be Type III steps at the end. Since the preparatory contractions
are of Type I or Π we can apply Theorem 1 to obtain a standard reduction
from Mj-ι.

If Mk+g contains more than one Rk trace, we continue the modification
of Δ. In My.! let us reduce toRk+2 only that replica of Rj-X which corre-
sponds to the trace about to be activated; we take this M^+g as a new M; _i
and so continue. Then we can use the argument for the case where Rk is at
the head of Mk to move to the end the Type ΠI step for the Rk trace last
activated; then that for the one next to the last, and so on. In the end we
shall have a standard reduction starting at Mj-X.

This completes the proof of Theorem 3.
Remark: It is necessary that x of the theorem not contain lambda

expressions as the following counterexample shows. Start with (x.x)
(y.y). This reduces to II and then to I. If the theorem were true in this
case it would say that there would be a reduction with Type m steps last
such that the lambda expressions and I reduce to the sameZ. In the con-
text of strong reduction only Type ΠI steps are applicable to the lambda
expressions giving II. No further reductions can be made without using
Type I or Π steps. I does not reduce to II.

Corollaries to Theorem 3

Corollary A. If there is a strong reduction from L to M then there is a
Z such that there is a reduction consisting of zero or more Type III steps
from L to X and a standard reduction from X to Z with M >— Z.

Proof: If X contains no lambda expressions Theorem 3 gives the re-
sult. If X contains lambda expressions, remove them by Type III steps.
Now use Lemma 1 to reintroduce each indeterminate eliminated by the
Type III steps. This will be done by a sequence of Type Π steps and the re-
sult of this then reduces to X by Type I steps only. Thus we have a reduc-
tion from X to X1 by Type ΠI steps. X! reduces to X by Type I and Π steps.
Prefix this to the original reduction and apply Theorem 3 from the reduc-
tion from X1 on.

If Y contains lambdas simply apply additional Type III steps to get Yτ

before applying the above results. This proves the corollary.
By cutting off the part of the reduction above X1 in the above we get the

following;

Corollary B. If there is a strong reduction from L to M then there is
an X >— L and a Z such that M >— Z and there is a standard reduction
from X to Z.
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