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A SEMANTICAL PROOF OF THE UNDECIDABILITY OF THE
MONADIC INTUITIONISTIC PREDICATE CALCULUS
OF THE FIRST ORDER

JEKERI OKEE

A constructive proof of the undecidability of the monadic intuitionistic
predicate calculus of the first order was given in [3]. We shall denote this
calculus with ‘“MIP’’. The aim of this article is to give a proof of the
undecidability of the MIP, using Kripke semantics. We shall show that the
class of formulae of the MIP which contain only two predicate variables is
undecidable. We shall denote this class by L. It is well known that in the
classical two-valued predicate calculus of the first order, the class of
formulae which contain only one binary predicate variable is undecidable.
We shall denote this class by 4. Let K be the class of all formulae of the
intuitionistic predicate calculus of the first order, then we can obtain any
formula He M from K, by simply interpreting classically every proposi-
tional functor and every quantifier occurring in H. Since # is undecidable,
it follows that the class K' of all formulae of K with only one binary
predicate variable is also undecidable. To prove the undecidability of L we
shall assign, to every closed formula He K', a formula H* ¢ .£ such that H is
valid in K if and only if H* is valid in MIP, then since K’ is undecidable, it
follows that .£ is also undecidable. The details of Kripke semantics will be
assumed (see [ 1]).

The following definitions are given in [1], p. 94, namely:

(a) ¢o(A AB, H) =T iff ¢(A, H) = (B, H) = T, otherwise ¢(A »B, H) = F,

(b) ¢(AvB, H) =T iff (A, H) = T or ¢(B, H) = T, otherwise ¢(Av B, H) = F,
(c) (4 — B, H) =T iff for all H'e K such that HR H', ¢(A, H = F or
¢®(B, H) = T, otherwise ¢(4 — B) = F,

(d) ¢(~A, H) = T iff for all H'e K such that HRH', ¢(A, H') = F, otherwise,
¢(~A, H) = F.

In addition to the above definitions we shall add the following:

(e) ¢(~~A, H) = T iff there exist an H'e K such that ¢(A, H") = T, other-
wise, ¢(~~A, H) = F.

The definition (e) is clearly consistent with the definitions (a)-(d).
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Now let He K be a closed formula of K containing only one dyadic
predicate variable R(x, y), we define the formula H* to be the result of
replacing R(x, y) by (~~(P(x) »Q(y))) throughout H, where P and @ are
given monadic predicate variables, so that H*e £ is a formula of the MIP.
Since H* is obtained from H by the above substitution, it follows that if H is
valid then H* is also valid; thus if H is provable in K then H* is also
provable in the MIP.

Conversely, we shall show that if H is not valid in the intuitionistic
predicate calculus of the first order, then H is also not valid and hence not
provable in the MIP. Suppose that H is not valid and hence not provable in
the intuitionistic predicate calculus of the first order, then by the
Léwenheim-Skolem theorem, H has a counter model ¢; in the domain of
positive integers; that is if we assign a certain set I of ordered pairs of
positive integers, ¢,(H, H;) = F for a certain H,. Using the model theory of
[1], we shall show that in this case H* also has a counter model in the
domain of positive integers. Let K be a countable set of all mappings which
assign positive integers to the individual variables x and y occurring in A
and H*; we index the elements of K on the positive integers. We define a
relation R on K as follows:

Let H;, H; be any two elements of K, and let m, m' be the least positive
integers which H; and H; respectively assign to the predicate variable P in
H*, such that (m, 9) e I' and (m', j) (if there is no such integer for H; or Hj,
we put m or m' = 0), then the relation R is defined by H;R H; if m < m' and
i< j. The relation R is reflexive and transitive on K. We define a domain
function ¢ on K by y(H) = T'y for every He K where I'y, is the set of pairs
of positive integers which H assigns to the predicate variables P and @ in

H*, It follows from the definition of K that Ux,l/(H) = ] where [ is the set of
all positive integers, and that y/(H) contains at least one element for every
He K.

Thus (H,, K, R) together with y/, as defined above, is a quantification
model structure in the sense of [1]. Let ¢, be a model on the above model
structure (see [1]). Since P and @ are the only atomic formulae in H*, and
since H* contains no free individual variables, we shall define the values of
¢-(P, H,) and ¢,(Q, H,) for every H,¢ K as follows:

¢.(P, H,) = T iff H, assigns a positive integer m to P such that (m, w) e T,
otherwise ¢,(P, H,) = F,

0.(Q, H,) = T iff H, assigns only the positive integer # to @, otherwise
¢2(Q) Iiz) = F°

We shall show that for any H,e K, if ¥ is assigned m and ¥ is assigned
n' by H,, then ¢o(~~ (P(x) AQ(¥)), H,) = T iff ' = n and (m, n) € I', otherwise,
¢2(N N(P(x) A Q(y))’ Hn) =F.

By definition (e), if x is assigned m and y is assigned »', then

¢o(~~(Plx) A Q()), H,) = T iff there is an H; with H,RH; such that ¢((P(x)
Q(¥), H;) = T. Hence, by the definitions of ¢,(P, H,) and ¢,(Q, H,), and the
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definition (a), if y is assigned n', then ¢,(Q(y), H,) = T iff »' = n; otherwise
¢:(Q(y), H,) = F. Hence, if ¢;(~~(P(x)AQ(y)), H,) = T, then »n' = n. But, if
0:((P(x) A Q(9)), H,) = T then ¢,(P(x), H,) = T and, therefore, by definition of
¢:(P(x), H,), it follows that if n'=n and (m, n)eT, then ¢,(~~(P(x)a
QW), H) =T ’

Conversely, let n' = n and (m, n) ¢ T, then, by definition, ¢(P(x), H,) = T
and ¢(Q(y), H,) = T, hence ¢,(P(x) A Q()), H,) = T and with it ¢o(~ ~(P(x)
Q(»)), H,) = T, as required.

On the other hand, if m and » are assigned to the individual variables x
and y respectively such that (m, n) ¢ I, then ¢,(R(x, v), Hy) = ¢.(R(x, ¥), H,) =
T, and since H* is obtained from H by substituting (~ ~(P(x) A Q(v))) for
R(x, y) throughout H, it follows that ¢,(H,, Hy) = T, if ¢,(H*, H,) = T, and
since, by hypothesis, ¢,(H, Hy) = F, it follows that ¢,(H*, H,) = F.

Since the intuitionistic predicate calculus is complete relative to the
system of modelling above, it follows that H is provable in K" if and only if
H* is provable in the MIP, and since K’ is undecidable, the undecidability of
the MIP follows.
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