Notre Dame Journal of Formal Logic Volume XVI, Number 4, October 1975 NDJFAM

CONCERNING AN ALLEGED SHEFFER FUNCTION

GERALD J. MASSEY

Since Sheffer's discovery of functionally complete binary connectives for classical 2-valued logic over a half century ago, a number of results concerning Sheffer connectives have been obtained. Of these, we mention only Webb's *binary* Sheffer functions for classical *n*-valued logic and Martin's extensions of this result, Salomma's work on Sheffer connectives for infinitely-many-valued logics, McKinsey's indigenous binary Sheffer functions for Łukasiewicz-Tarski *n*-valued *C*-*N* logics, Massey's binary Sheffer connectives for S5, Hendry and Massey's positive solution to the Sheffer-spectrum problem as a corollary of a theorem of Post's, Hendry and Massey's simplified Sheffer functions for the Łukasiewicz-Tarski *n*-valued *C*-*N* logics when n + 1 is not divisible by 3, Massey's binary Sheffer functions for *n*-valued S5, and Massey's binary Sheffer connectives for S4. All but the last two of these results are mentioned, discussed, or reported in Hendry and Massey [1]; the penultimate result appeared in [2] while the last appeared in this journal [3].

To anyone familiar with the aforementioned literature on Sheffer functions, the recent claim of Wesselkamper [4] that the *ternary* function S is functionally complete for classical *n*-valued logic, $n \ge 2$, would seem trivial even if true. Unfortunately it is not even true. The semantics of Wesselkamper's connective runs as follows: for the values x, y, z of 'p', 'q', 'r' respectively, the value of (S(p, q, r)) is z or x according as x = y or $x \neq y$. Let $\{1, \ldots, n\}$ be the set of truth values. We say that a truth-value *i* is a fixed point for a connective \otimes just in case, where ϕ is any wff containing no connectives other than \otimes , the value of ϕ is *i* whenever *i* is assigned to each variable of ϕ . No connective that has even one fixed point can be a Sheffer function for classical *n*-valued logic, much less one that, like Wesselkamper's S, has *n* fixed points. Where, then, does Wesselkamper go wrong in his "proof" of the alleged functional completeness of S? In his *definientia*, he makes use of truth-value constants (such as 'T' and 'F' for the 2-valued case) without bothering to show that one can define these constants in terms of S alone—no such constants can be defined because of the fixed points of S. Nor can Łukasiewicz's equivalence connective 'E' be defined in terms of S, as Wesselkamper claims, because E(2, 2) = 1.

REFERENCES

- Hendry, H. E., and G. J. Massey, "On the concepts of Sheffer functions," in K. Lambert, ed., *The Logical Way of Doing Things*, Yale University Press, New Haven (1969), pp. 279-293.
- [2] Massey, G. J., "Sheffer functions for many-valued S5 modal logics," Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 15 (1969), pp. 101– 104.
- [3] Massey, G. J., "Binary closure-algebraic operations that are functionally complete," Notre Dame Journal of Formal Logic, vol. XI (1970), pp. 340-342.
- [4] Wesselkamper, T. C., "A sole sufficient operator," Notre Dame Journal of Formal Logic, vol. XVI (1975), pp. 86-88.

University of Pittsburgh Pittsburgh, Pennsylvania