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NORMAL FORMS IN MODAL LOGIC

KIT FINE

There are two main methods of completeness proof in modal logic.
One may use maximally consistent theories or their algebraic counter-
parts, on the one hand, or semantic tableaux and their variants, on the
other hand. The former method is elegant but not constructive, the latter
method is constructive but not elegant.

Normal forms have been comparatively neglected in the study of modal
sentential logic. Their champions include Carnap [3], von Wright [10],
Anderson [l] and Cresswell [4]. However, normal forms can provide
elegant and constructive proofs of many standard results. They can also
provide proofs of results that are not readily proved by standard means.

Section 1 presents preliminaries. Sections 2 and 3 establish a reduc-
tion to normal form and a consequent construction of models. Section 4
contains a general completeness result. Finally, section 5 provides normal
formings for the logics T and K4.

1 Preliminaries Formulas are constructed in the usual way from the
following items: the set SI = {p0, pu . . .} of sentence letters; truth-
functional operators, say v and - the modal operator O; and the brackets
( and ). We follow standard conventions concerning abbreviations, bracket-
ing and use-mention. In particular, we use T for p0 v -p0 and 1 for -T.

The minimal logic K is the set of formulas derivable from the
following postulates:

Axioms 1. All tautologous formulas
2. 0 1 = 1
3. O(PovPi) ^OPovOPi

Rules 4. A, A D B/B
5. A = B/C= (CA/B)
6. A/{Api/B)

(CA/B) is the result of substituting B for A in C; similarly for (APi/B).

We refer to postulates 1 and 4 together as PC. A logic is a set of
formulas that contains K and is closed under the same rules as K. Given a
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logic L and a set of formulas X, LX is the smallest logic to contain X. We
write LA for L{A}. A model is a triple (W, R, φ) with W non-empty, R c W2

and 0 c W xSL The truth-relation, (Si, w)\=A, is defined in the usual way
with <Sl, w)l=<>£<=Haw)(wita & <9ί, i;> 1=5). We may write w\=A for (H, w>
1= A if 51 is understood. A frame 3f is a pair (W, R) with P7 non-empty and
RQW2. A formula A is valid in a frame 3 = (W, R) if for all models 31 =
(W, R, φ) and for all weW, (%,w)\=:A. A logic L is sound (sufficient,
complete respectively) for a class of frames X if, for any formula A,
Ae L =Φ (<#=,ΦΦrespectively) (VSeX) (A is valid in S). A logic is com-
plete if it is complete for some class of frames and it has the finite model
property (fmp) if it is complete for some class of finite frames.

2 Reduction to Normal Form We fix, throughout the whole paper, on a
finite set Q = {q0, ql9 . . ., qh} of sentence letters. For convenience, we
suppose that all formulas are constructed from Q and that there is a
standard ordering of all such formulas.

We define Fn, the set of normal forms of degree n, by induction on n:

(i) n= 0. Fo is the set of formulas π o ^ o

A ^i^i Λ VhQh where each ττ, ,
i ** h, is blank or -
(ii) n > 0. Suppose that Ao, Au . . ., A& are the members of Fn.x in the
standard order. Then Fn is the set of formulas BΛ ΉOOAQATTIOAJ^ Λ . . .
πtOAfc where £e Fo and each π, , z < If, is blank or -

oo

(iii) JP, the set of normal forms, is U ^ .

The normal forms (nf s) of degree 0 are the state-descriptions of
classical sentential logic. The normal forms of degree n > 0 are the
state-descriptions in the sentence letters and the formulas of the form ζ>B
with B an nf of degree (n - 1). Distinct normal forms of the same degree
disagree, i.e., one contains a conjunct that negates the corresponding
conjunct of the other. These normal forms are the modal analogue to
Hintikka's distributive normal forms [6]. They are essentially conjunctions
of constituents in the sense of Anderson [1] or von Wright [10]. The
corresponding model-theoretic notion is discussed in [5].

The (modal) degree 6(A) of & formula A is the length of the longest
string of nested O-occurrences in A\ άfe) = 0; ό(-B) = d(B); ό(B v C) =
mαx(d(J3), d(C)); and d(OB) = ό(B) + 1. A implies (is equivalent to, is
incompatible with) B in logic L if A D B (A = B, A D - B) is a theorem of L.

Theorem 1 (Reduction to Normal Form) Any formula A of degree ^n is
equivalent in K to 1 or a disjunction of normal forms of degree n.

Proof: By induction on n.

n = 0. By PC and the disjunctive normal form theorem for classical
sentential logic.
n > 0. A is a truth-functional compound of sentence letters and formulas of
the form OB where ό(B) < n. By IH, B is equivalent to 1 or a disjunction



NORMAL FORMS IN MODAL LOGIC 231

BovBίV. . .vBk of nf's of degree (n - 1). In the former case, <>B is
equivalent to 1 by Postulate 2; and in the latter case, OB is equivalent to
OBQVOB! v. . . v<OBk by PC and repeated applications of Postulate 3.
Therefore by PC and the theorem on disjunctive normal forms, A is
equivalent to 1 or a disjunction of nf's of degree n.

3 Model Construction For each nf A, let the leading term Af of A be that
nf of degree 0 which is a conjunct of A. Thus, for ό(A) = 0, Af is A and, for
d(A) > 0, Af is the first conjunct of A. For any nf's A and B, we say A > B
if O£ is a conjunct of A. It should be clear that for any subset Δ of Fn and
Be Fo there is exactly one Ae Fn+1 such that A/ = B and (VCe FW)(A > C<=Φ
Ce Δ). In other words, an nf is uniquely determined by its leading terms and
immediate successors.

For each n ̂  0, let 2ίw be the model (W, R, φ) such that:

i? = {(A, £>eW2:A> £};

0 = {(A, />) e W x SZ : /> is a conjunct of A/}.

Also, let %n = (W, R).

Theorem 2 (Model Construction) For Un = (W, R, φ) and A eW, {Un, A) t= A.

Proof: By induction on the degree n of A.
rc= 0. Then A = πoqoΛTΓ^Λ . . .Λπhqh where each πf , £ </z, is blank or -.
Now <3lw,A>t=A<F=>(VZ ̂ h)(A\=qi<^>7ri is blank) <N>(V̂  < A)ί (0 A^ Φ#>π/ is
blank)<=Φ(Vi < /z) (^ is a conjunct of AΦΦΉI is blank), which is clearly true,
rc > 0. We show that <lln, A)I=C for each conjunct C of A. (a) C = A/. As
for the case n = 0. (b) C = <>£. Then A > 5, i.e., A#£. By IH, <HΛ, ^5)1= .̂
Therefore <«„, A) |=O-B = C. (c) C = - 0 5 . Suppose AΛi), i.e., A> D (to
show (tίw, D)#B). By IH, <tln,Z)>l=i). But D is distinct from and so dis-
agrees with B. Therefore (Un, D)#B.

We can now prove completeness, fmp and decidability for the minimal
modal logic.

Theorem 3 (Completeness) K is complete for the class of all frames.

Proof: Soundness, straightforward. Sufficiency, suppose that A is not a
theorem of K. By PC, -A is consistent in K, i.e., not equivalent to 1. By
Theorem 1, -A is equivalent to a disjunction of normal forms of degree
n = d(A). Let B be the first disjunct of the disjunction. Then by Theorem 2,
(5lw, B) \=B. SO finally, by soundness, <Sl«, B) t=-A and A is not valid in the
frame S«.

Corollary 1 K has fmp.

Proof: From the proof of Theorem 3 and the fact that Wn is finite.

Corollary 2 K is decidable.

Proof: From Corollary 1 or, more practicably, by reduction to normal form.
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4 A General Completeness Result The set Un, n^O, of uniform formulas
of degree n is defined by induction on n:

Uo = {A : A does not contain θ};

£4+i = {A : A is a truth-functional compound of formulas OB with Be Un}.
oo

U, the set of uniform formulas, is U Un.

Any two maximal strings of nested O -occurrences are of the same
length in a uniform formula. For example, O(~Op Λ Oq) vOOt is uniform,
whereas O ( - £ Λ O # ) V O O * is not.

Let D = K(OT). Then a logic L is uniform if L = DΔ for some Δ c U.
In this section, we show that all uniform logics are complete to the point of
possessing fmp. First, we prove three results for D. We define the
D-suitable nf's by induction on degree:

n = 0. Any nf of degree 0 is D-suitable.
n> 0. An nϊ AeFn is D-suitable if (VB)(A> B=ΦB is D-suitable) and
(3B)(A>B).

Lemma 1 Any formula A of degree n is equivalent in D to ± or a disjunc-
tion of D-suitable nf's of degree n.

Proof: As for Theorem 1. For the inductive step, show that the disjunction
of all formulas OB, BeFn.ly is a theorem of the logic D.

For any nf A, let 31Λ be the model (W, R, φ) such that:

W = {B : (3n ̂  0) (A >n B)} U {T};
R = {(A, B) e W2: A > B or B = T & d (A) = θ};
0 = {(A, p) eWxSliAeF and p is a conjunct of A}.

Also, let SΛ = (W, R). Thus %A differs from 8W in that it is tied to A and
contains the end-point T.

Lemma 2 ForAeF, %A = (W, R, φ) and Be W, (uA, B)\=B.

Proof: As for Theorem 1.2. The case of B = T is trivial.
ί

We say that a formula is closed if it is constructed from T (in place of
sentence letters).

Lemma 3 Each closed formula A is equivalent in D to T or 1.

Proof: By induction on the construction of A. The main case is A = OB.
(a) B equivalent to T. Then OB is equivalent to T by PC, Postulate 5 and
the axiom OT. (b) B equivalent to 1. Then OB is equivalent to 1 by PC
and Postulates 2 and 5.

Secondly, we prove two lemmas on uniformity. The second of these is
the crucial part of the whole proof. Given two models Si = (W, R, φ) and
8 = (W, R, ψ) and a point we W, we say <«, w) Ξ

w ( 8 , w) if (VveW)(Vpe SI)
(wRnv =#>(</> vpφ=>ψ vp)). Thus two models are rc-equivalent, in the required
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sense, if their respective valuations agree on the n'th successors of a given
point. The model-theoretic import of uniform formulas is contained in the
following result.

Lemma 4 Suppose (U, w) =n(&, w) andAe ϋn. Then (%, w)\=Aφ=>(&, w)\= A.

Proof: By induction on the construction of A.

A = p. (%, w)\=p<ΦΦφwpΦ^>ψwp (since n = 0)<=H», w)t=p.
A = -B. By IH and the fact that -BeUn==>Be Un.
A = BvC. By IH and the fact that B v C e Un=ΦB, Ce U».
A = OB. (% w)\=0B<=>(3v€ W)(wRυ & <«, υ)t=B)<=^(3υe W)(wRv & <», υ)t=
B) (by IH and the fact that (U, υ) =n-i <8, v))<€Φ(%, w)frOB.

For a set Δ of formulas, a nf A is Δ-suitable if each formula of Δ is
valid in SΛ

Lemma 5 For A c U, any D-suitable nf that is not also A-suitable is
inconsistent in D.

Proof: Suppose that A is a D-suitable nf but not Δ-suitable. Then, for
some Be A, B is not valid in %A= (W, R), i.e., for some model 51 = (W, R, φ)
and Ce W, (51, C)&B. If DB is inconsistent, i.e., is the set of all formulas,
then A is not consistent in DB. Therefore we may suppose that DB is
consistent. If C is inconsistent, then so is A. For either C = T, in which
case DB is inconsistent, or 3n ^ 0 :A > " c , in which case A implies OnC
and so is inconsistent. Therefore we may suppose that C = A. Let

Γ = {C e W\ ARnC}; and for i & 0, let Γ, = {C e Γ: φCpt] and D{ = V c , i.e., the
CeT{

disjunction (in standard order) of the formulas in Γf if Γ, is non-empty and
1 otherwise. Finally, let SB = (W, R, ψ> where ψ = {<C, p{)e WxS\ :(UA ,
01=0,.}.

Now for all CeΓ, ψcp{ <£=>(%A, C)\=D{<^>C is a disjunct of D{ (by
Lemma 2)<ξΦCeΓi<ξ=ϊ>φCqi. Therefore (U, A) =n (S3, A); and so by Lemma
4, (&,A)#B.

Let J5'be the result of substituting Di for pi in B, i ^ 0. Then by an
easy induction on the construction of B, (UA9Λ)p^,Br. We now distinguish
two cases:

(a) 6(A) ^n. Then Γ = {T} and so Bf is closed. By Lemma 3, and the
consistency of DB, Br is equivalent to Tin D. By A D-suitable, (Vwe W)
(3ve W){wRυ) and so OT is valid in 3fΛ. But then <51Λ, A)\£ T. A contradic-
tion.
(b) 6(A) = m > n. Then Γ c Fm-n and so Br is of degree n + (m - ri) = m. By
Theorem 1, A implies B' or is incompatible with B' in K. In the first case,
(UA, A)&A, contrary to Lemma 2; and in the second case, A is inconsistent
in DB.

We can now prove the general results on normal form reduction, model
construction, and completeness.
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Theorem 1 For A c U, any formula A of degree ^n is equivalent inΏA to
J. or a disjunction of Ό-suitable and A-suitable nf's of degree n.

Proof: From Lemmas 1 and 5.

Theorem 2 For Δ c U, and for any D-suitable and A-suitable nf A,
{%A,A)\=-A and each formula ofΌΔ is valid in %A.

Proof: From Lemma 2 and the definitions of D-suitable and Δ-suitable.

Theorem 3 Each uniform logic is complete with fmp, and decidable if
finitely axiomatizable.

Proof: From Theorems 1 and 2.

One case of Theorem 3 is of special interest. Let M be the axiom
DOίo D OΠp0. Lemmon and Scott [7] proved the completeness of S4M (the
logic S4.1 of McKinsey [8]), and Segerberg [9] and Bull [2] its decidability.
But the questions of completeness and decidability for KMwere left open.
Now clearly M is uniform and OT is a theorem of KM. So by the theorem
above, KM is both complete and decidable.

5 The Logics T and K4 This section uses normal forms to establish the
completeness of T = K (p0 D Op0) and K4 = K (OOPo => Op0).

First we consider T. The correlate A1 of an nf A of degree n ^ 1 is
defined by induction on n:

n = 1. A' = Af.
n > 1. Ar is the nf B of degree (n - 1) such that B{ = Af and (VC)(B > C<€=>

(3D)(A> D& Dr = O).

Lemma 1 For any nf A of degree M, A implies A1 in K.

Proof: By induction on the degree n of A:

n-\. Since A implies Af = Ar.
n > 1. We show that A implies each conjunct C of Ar:
(a) C = Af. By PC. (b) C = <ζ>B. Then Ar > B. So 3D:A > D and Df = B.
By PC, A implies <>D. By IH, D implies B and so, by K, OD implies OB.
But then A implies OB = C. (c) C = -OB. Let Δ = {/)e i ^ : D' = #}. Then
-OD is a conjunct of A for each D e A. By IH, each E in i^.x - Δ implies

Er, which is incompatible with B. So by Theorem 1.1,2? implies V D. But
D<rΔ

then A implies A - OD, which, by K, implies -OB = C.
D<τΔ

We can now establish reduction to normal form. Define the T-suitable
nf's by induction on degree n:

n = 0. Any nf of degree 0 is T-suitable.
n > 0. An nf A is T-suitable if (V£)(A > B =Φ B is T-suitable) and A > A1.

Theorem 1 Any formula of degree ^n is equivalent in the logic T to Lor a
disjunction of T-suitable nf's of degree n.
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Proof: As for Theorem 1.1. For the inductive step, show that any consistent
nf A is T-suitable. (VB)(Λ > B==>B is T-suitabie) follows from ίH. A > A'
follows from Lemma 1 and the axiom p0 D Op0.

For the theorem on model construction we require the following result:

Lemma 2 For any T-suitable nf A there is a 1-suitable nf B such that
B1 = A.

Proof: By induction on the degree n of A:

n = 0. Choose B so that Bf = A and B > B'.
n>0. Let B be the nf of degree (n + 1) such that Bf = Af and (VC)(£ > C<^>
C is T-suitable & A > C') Now Br = A. For Bf

f = Bf = Af; Br > D ==> 3C :
£ > C & C = D => A > C = D; and A > D => 3C: C is T-suitable & C = Z)
(by IH and D T-suitable) ==>£ > C ==>£' > C = D. Also, 5 > £ ' = A. For A
is T-suitable and A > A' by A T-suitable.

For n ̂  0, let SBW be the model (W, R, φ) such that:

W= {Ae Fn : A is T-suitable};
Λ = {U, £>eΐ^ 2 :A> £ f};
φ = {{A, p) e W x SI: p is a conjunct of A}.

The models SBW are ungraded in contradistinction to the graded models
%n of section 2. Each normal form in Bn is of the same degree. Thus such
models are equivalent to models that can be obtained by standard methods
of filtration. For any nf A, let A0 = A and Am = (Ar)m~\ 0 < m < d(A). Thus
A2 is the correlate of the correlate of A.

Theorem 2 For »w = (W, R, φ), Ae PF, and m > n, (Bn, A) I=AW.

Proof: By induction on the degree (n - m) of Am:

(» - m) = 0. Since Aw is A/.
(/* - m) > 0. We show that <»„, A) ί=C for each conjunct C of Aw. (a) C = Af.
Since Af = A/, (b) C = <>B. Then 3D : A > Z> and Dw= B. By Lemma 2,
3 T-suitable E:E

f = D. So Afl£ and, by IH, <8β, E> I=EW+1 = (Ef)OT = Dm = B.
Therefore <<BW, E) I=O5 = C. (c) C = -O B. Suppose ARD, i.e., A > D1 (to
show <»„, D) #B). By IH, <»», D)\=Dm+1. ButDm+1 is distinct from but of the
same degree as B and so disagrees with B. Therefore <8«, £) &B.

Theorem 3 The logic T is complete for the class of reflexive frames, has
fmp, #?zd zs decidable.

Proof: For any T-suitable nf A, A > A', i.e., ARA. So the theorem follows
from Theorems 1 and 2 in the usual way.

This result could also have been obtained by modifying the graded
models of section 3. We now turn to Kr. An nf A is YΆ-suited if (VB)(A>2

£=>(3C)(A > C hC = £)). For A, B e Fn, we say ASB if (VC)(B > C ==>
A > C). An nf is YΆ-suitable if (V£, O(A > B & B> C=Φ(3D)(A > D & Dr =
C & £S£>)). All K4-suitable nf's are K4-suited, but the converse need not
be true.
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Lemma 3 Any formula A of degree ^n is equivalent in K4 to 1 or a
disjunction of ¥Ά-suited nf's of degree n.

Proof: A simple modification of Theorem 5.1.

Lemma 4 If an nf A of degree >0 is K4-suited, thenA' is K4-suitable.

Proof: Suppose Ar > B & B > C. Then, for some D and E, A > D, D > E,
D' = B and E1 = C. By A K4-suited, 3F: A > F and Fr = E. So A' > Fr and
F2 = C. Also, BSFr. For suppose F ' > G. Then, D > £ = F1 > G; and so by
D K4-suited, 3H: D > H and H! = G. But then B = Dr > Hr = G.

Theorem 4 Any formula of degree ^n is equivalent in K4 to 1 or a
disjunction of ¥A-suitable nf's of degree n.

Proof: From Lemmas 1, 3 and 4.

For n ̂  0, let <£„ be the model {W, R, φ) such that:

W = {A e Fn :A is K4-suitable};
E = {<Λ, JB> e W2 : A > ̂ ' & ASB};

φ = {<A, p) e W x SZ :p is a conjunct of A}.

Theorem 5 F o r <SW = (w, R, φ), Ae W, and m < n, <S3W, A) \=Am.

Proof: By induction on the degree (n - m) of AOT.
The cases (n - m) = 0 and (n - m) > 0, (a) and (c) are proved as for

theorem. There remains (b) of the case (n - m) > 0, i.e., the conjunct
C = OB. This requires that if K4-suitable A> B then 3 K4-suitable
C : Cf = J5 and ASC. Let C be such that C/ = £/ and (VD)(C > Z)<^>i > Z> &
JBSD & £ > D1). Now ASC by definition. Also, C = B. For Cf = C/ = £/:
Cf > Z ) = Φ 3 £ : C > E & £' = D=ϊB> E' = D; and £ > £ = > 3 £ : A > E &
BSE & £' = D (by A K4-suitable) =^C> E=ΦCf > Er = JD. Finally, C is
K4-suitable. For suppose C> D> E. Then A > Z> > E and BSD. By A
K4-suitable, 3JP:A > F, Fr = E and DSF. Since BSD & Z>SF, BSF; since
BSD&D > E= Fr, B> Fr; and since A> F, C> F.

Theorem K4 is complete for the class of transitive frames has fmp, and is
decidable.

Proof: From Theorems 4 and 5 and the transitivity of &n.

K4 is not complete for any class of finite antisymmetric frames. So
the graded models of section 3 are not applicable in this case. The methods
for T and K4 could be combined to prove completeness for S4. Also the
method could be modified to prove completeness for other standard logics,
including the Brouwersche system B and Montague's minimal logic E.
I leave the details to the diligent reader.
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