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THE GENERAL DECISION PROBLEM FOR MARKOV
ALGORITHMS WITH AXIOM

C. E. HUGHES

Introduction* Let Mj denote the general decision problem for Markov
algorithms with axiom. Of interest to us is whether or not this class of
problems is as richly structured, with regard to degrees of unsolvability,
as those classes studied in Hughes, Overbeek, and Singletary [2]. In this
paper we shall present proofs which show this to be so. In particular we
shall show that the general decision problem for the range of total
recursive functions is many-one reducible to Mj and consequently that
every r.e. many-one degree of unsolvability is represented by Mj.
Furthermore we shall show this result to be best possible, with regard to
degree representation, in that every r.e. one-one degree is not represented
by this family of decision problems. And finally we shall demonstrate a
simple application of these results to the study of splinters.

Preliminaries A semi-Thue system S is a pair (Σ, P) where Σ is a finite
alphabet and P is a finite set of rules each of which is of the form a —> β,
for a and β words over Σ. For any arbitrary pair of words Wι, W2 over Σ,
we say that W2 is an immediate successor of Wλ in S, denoted (Wl9 W2)s, if
there exist a pair of words £/, V over Σ and a rule a -» β in P such that
Wx = UaV and W2 = UβV. W2 is said to be derivable from W1 in S, denoted
Wi \~s W2, if either

(i) Wx = W2,

or

(ii) there exists a finite sequence Vl9 . . ., F&, where k > 1, of words over
Σ such that Wx = Vu W2

 Ξ Vk, and (V, , Vi+ι)s, for i = 1, . . ., k - 1.

A Markov alogorithm M is a pair (Σ, P) where Σ is a finite alphabet
and P = {oiiRi βi\ 1 ^ i ^ m] is a finite ordered set of rules where
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m ^ 1, Ri € (—•, —•.) and α; and βi are words over Σ. A rule of the form
a—>. β is called a conclusive rule. Let Wλ and PF2 be arbitrary words over
Σ. Then W2 is the immediate successor of W1 in M, denoted (Wl9 W2)M, if
there exists an i, 1 **i ^m, such that

(i) Wλ = UoiiV and W2 = UβfV for some words U and V over Σ,
(ii) there exists no pair of words Uf, V' over Σ such that the length of Ur

is less than the length of U and W1 = Vatf',
(iii) there exists no j , 1 ^ j < i, such that Wx = UrtoijVn for some words Uft

and V" over Σ.

W2 is said to be derivable from Wx in M, denoted Wx ^ W2, if either

(i) W, = T̂ 2,

or

(ii) there exists a finite sequence Vu . . ., Vk, where k > 1, of words over
Σ such that wx s VΊ, W2

 Ξ VA, (y, , Vί+1)M, for i = 1, . . ., fe - 1, and no
(7 t , V; +1)M, for 1 ^ i < fe - 2, is the result of the application of a conclusive
rule.

Let G be a semi-Thue system or Markov algorithm and let A be a fixed
word over the alphabet of G. Then GA shall denote such a system with
axiom. The decision problem for GA is the problem to decide, for an
arbitrary word W over the alphabet of G, whether or not A ^ W (written
\-GW whenever A is understood from context). The general decision
problem for semi-Thue systems (Markov algorithms) with axiom is then
the family of decision problems for all such systems.

Let C-L and C2 be two general decision problems. Then we say that Cx

is many-one (one-one) reducible to C2 if there exists an effective mapping
ψ of the decision problems p in Cx into the decision problems ψ(p) in C2

such that p and ψ(p) are of the same many-one (one-one) degree of
unsolvability. C2 is said to represent every r.e. many-one (one-one)
degree of unsolvability if the general decision problem for the range of
total recursive functions, denoted <#, is many-one (one-one) reducible
to C2.

Background Results In the next section we have need of the following
theorem concerning semi-Thue systems with axiom.

Theorem 1 There exists an effective procedure ψx which, when applied to
an arbitrary total recursive function f, produces a semi-Thue system S and
a word A over the alphabet of S such that

(i) the decision problem for the range of f is of the same many-one
degree as that for SA
(ii) there is no non-trivial derivation of A from A. That is, there exists
no word Wover the alphabet of S such that (A, W)s and W hsA;
(iii) if \-§ W by a non-trival derivation and there exist Wr, W" such that
(W, W)s and (W", W)s then W = W" and \~sW

r. Stated differently this says
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that the semi-Thue system S"1, whose alphabet is that of S and which

contains the rule β —> a if and only if a —• β is a rule of S, is deterministic1

over words which are non-triυially derivable from A in S;

(iv) if ^SW and (W, Wf)s by some rule of S and (W, W")s by the same rule

then W = W";

(v) the word of length zero is not derivable from A in S. In particular

this means that A may not be the empty word;

(vi) no rule a —• β of S is such that either a or β is the word of length

zero.

Proof: In [5] Overbeek showed that SI is many-one reducible to the general

halting problem for Turing machines. Following this, Hughes and Singletary

[3], Lemma 3, demonstrated an effective procedure which, when applied to

an arbitrary Turing machine T, produces a semi-Thue system with axiom

(denoted ShqHh in their paper), which system satisfies properties (ii) through

(vi) above and whose decision problem is of the same many-one degree as

the halting problem for T. These two results may then be combined to

provide a proof of the desired theorem. Q.E.D.

Reduction of Λ to Mj In this section we shall demonstrate a uniform

effective procedure ψ2 which, when applied to an arbitrary semi-Thue

system S with axiom A that satisfies properties (ii) through (vi) of Theorem

1, produces a Markov algorithm M with axiom B such that the decision

problem for SA is of the same many-one degree as that for MB.

Let S^be a semi-Thue system with axiom which satisfies properties (ii)

through (vi) of Theorem 1. Further, let the alphabet of S be Σ = {#1? ...,«„}

and let the rule set of S be P = {a{ -> β, | 1 < z" < p}. We define the Markov

algorithm M = (Σ\ Pr) as follows:

Σ ' = Σ u {1, *} U {Ri9 lu Li9 A, gi9 hi \ 1 ^ i ^ p} U {$, Q, r, eu e2};

Pr consists of the rules defined below, where a set of rules labelled (i) may

have any internal order provided these rules follow all those in sets

labelled (j), where j< i, and precede all rules in sets labelled (j), where

(1) $ -> Q

(2) RiOii — βίr VI ^ i ^ p

(3) Ridj -> djRi VI ^ i ^ p and VI < j ^ n

(4) Ri* — Ii* VI < i < p

(5) raj —* ajY VI ^j < n

(6) r * l l - e2*l

(7) r * l -> eλ*

(8) a^e2 -* e2aj VI ^ j < n

(9) e2 - Rί

(10) ttjβx -* etaj VI ^ j ^ n

1. A system S is deterministic over a word W if and only if there exists at most one

W such that (W, W')s-
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(11) *i - $

(12) afli — Uaj VI < i < p and VI ^ j < n

(13) Z, - Λ ί + 1 VI < i < p

(14) ZP - Q

(15) QA* -> RλA*l

(16) Q-Lx

(17) L. ft -<*,-/< V l ^ z ^ p

(18) L ; α 7 -> α y L, VI < i < p and VI < j ^ n

(19) !*•*-> & * VI ^ z ^ p

(20) /*•«/ -* α ; /, VI < i < p and VI < j < w

(21) fi* — /z/*l VI < z < p

(22) α7- hi — /z2α ; VI < z < p and VI < j < w

(23) Λ, -> Λ i + 1 VI < i < p

(24) /e p -Q

(25) ajgi -* ̂ α ; VI < z < p and VI < j ^ w

(26) A - L ί + 1 VI < i < p

We now wish to show that the decision problem for SA is of the same

many-one degree as that for M with axiom $A*. Before doing this we shall

present the algorithm of which M is an implementation. This, we believe,

will help to make the subsequent proofs more understandable.

The Basic Algorithm

(I) Let the word we are currently working on be of the form $PF* for W

a word over Σ. Then W is a word derivable from A in S. Generate QW*.

(II) Let the word we are currently working on be of the form R{W*lm for

1 ** i ^ p9 m ^ 1, ϊ" being a shorthand notation for the sequence of m l 's,

and W a word over Σ.

case a) If the z'th rule of S applies to W and m > 1 then generate R^W^Ϋ1'1,

where (W, W')s by the i'th rule.

case b) If the z'th rule of S applies to W and m = 1 then generate $Wr*,

where (W, Wr)s by the i'th rule.

case c) If the i'th rule of S does not apply to W and i < p then generate

Ri+1W*lm.

case d) If the z'th rule of S does not apply to W and i = p then generate

QW*lm.

(III) Let the word we are currently working on be of the form QW*lm for

m ^ 0, lm denoting a sequence of m l ' s , and W SL word over Σ.

case a) lίW=A then generate i^A*!"^ 1 .

case b) If W φ A and (W, W)s by some rule i, i<p, then generate

Ri+1W'*lm+1.

case c) If Wφ A and (W, W)s by rule p, then generate QW'*lm+1.

cased) If WφA and it is not the case that there exists a Wr such that

(W, W)s then stop.

The intention of the above algorithm, when started on the word $A*, is
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to generate words of the form $W*, when and only when W is derivable
from A in S. Essentially if we think of (1) as performing the additional task
of outputting W whenever it is entered with a word of the form $Ψ* then
this algorithm would simply enumerate the set of words derivable from A
inS. To see this, observe that if we input $A* to this procedure then we
will immediately derive QA* and then RιA*l. From this we will, by
successive applications of II, I, and III, generate $W* for every word W
such that (A, W)s. After generating every immediate successor of A, in the
order determined by our previous ordering of the rules of S, the algorithm
will start working over the word 11^*11. In general, the basic algorithm
will, when started over the word 11^*1™, generate $W* for every word W
such that \-s W by a derivation of length m. After generating all such words
it will start working over RιA*\mJrl.

The reader should now be convinced that the basic algorithm is one
which, in essence, "flattens" the rooted graph induced by SA. The special
properties of SA are essential to this for they ensure that this rooted graph
is a rooted tree and therefore devoid of nodes with indegree greater than
one. We may also note that this algorithm never terminates when started
over $A*. This may be seen by observing that the only way halting may
occur is by the application of IILd. But this would only arise if there
existed some word W, W φ A, such that v-sW and there is no Wr such that
(Wr, W)s Clearly this is impossible.

We shall now proceed with our proof that the decision problem for SA

is of the same many-one degree as that for M$A*.

Lemma 1 The decision problem for SA is many-one reducible to that
for M$A*.

Proof: This may be seen to be true if we can verify that, for an arbitrary
W over the alphabet of S, h W if and only if \~M$W*. But this follows
immediately since M implements our basic algorithm where the rules of M
may be corresponded to the steps of the basic algorithm as follows:

rules step

{1} I
{2,3,5,6,8,9} Il.a

{2, 3, 5, 7, 10, 11} Π.b

{3, 4, 12, 13} Π.c

{3, 4, 12, 14} Π.d

{15} IΠ.a

{16, 17, 18, 19, 20, 21, 22, 23, 25, 26} IΠ.b

{16, 17, 18, 19, 20, 21, 22, 24, 25, 26} ΠI.c

{16, 18, 19, 25, 26} IILd

Q.E.D.

Lemma 2 The decision problem for M$Λ* is many-one reducible to that

forSA.

Proof: Let Wbe an arbitrary word over Σ'. It should be clear that we may
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assume, without loss of generality, that W is of the form w'*lm for m > 0
and Wr a word over (Σf -{*, l}) which contains exactly one occurrence of a
letter from ((Σf - Σ) - {*, l}). For if this were not so then %W (that is, W
would not be derivable from $A* in M). Hence we shall hereafter assume
W to be of this form. Now we may, with the aid of an oracle for deciding
the decision problem for SA, determine whether or not \~MWby the following
case analysis:

(a) Assume W contains an occurrence of the letter $. If W is not of the
form $F* for F a word over Σ then y-MW. If W is of this form then ±~MW if
and only if \-s Y.
(b) Assume W contains an occurrence of the letter <R, (1 ^ i < p). If W is
not of the form YRiZ*lm for m ^ 1 and F and Z words over Σ then H-MW.
If W is of this form then check to see if JRf FZ*lw v~MW in exactly the length
of F steps. If it does not then U-MW. If it does then \~MW if and only if \-~s YZ.
(c) Assume W contains an occurrence of Zt (1 ^ i < p). If W is not of the
form Yl{Z*r for m ^ 1 and Y and Z words over Σ then %W. If W is of
this form then check to see iίRiYZ*lm \~MW in exactly the length of Y plus
twice the length of Z plus one steps. If it does not then ^MW. If it does then
f-M W if and only if t-sYZ.
(d) Assume W contains an occurrence of the letter r . If W is not of the
form YrZ*lm for m ^ 1 and Y and Z words over Σ then &MW. If W is of this
form check to see if there exists an i, 1 ^ i < p, and a pair of words Yr, Zr

over Σ such that Y= Y'βiZ'. If there does not exist exactly one triple
if F', Z' satisfying the above requirement then \W, else ^Wii and only if

(e) Assume W contains an occurrence of the letter e2. If W is not of the
form Ye2Z*ϊ" for m ^ 1 and Y and Z words over Σ then %W. If PF is of
this form then ^W if and only if ^MYZr*lm+1 and our analysis returns to
case (d).
(f) Assume W contains an occurrence of the letter eγ. If W is not of the
form YexZ* for Fand Z words over Σ then ^MW. If Wis of this form then
f-jvi Wif and only if ϊ~MYZr*l and our analysis returns to case (d).
(g) Assume W contains an occurrence of the letter Q. If W is not of the
form QY*lm for m ^ 0 and Y a word over Σ then H^W. If W is of this form
then y~MW\i and only if \-sF.
(h) Assume W contains an occurrence of the letter Li (1 < i ^ p). If W is
not of the form FL/Z*1W for m ^ 0 and F and Z words over Σ then H MW.
If W is of this form and YZ = A then %W. If PF is of this form and YZ φ A
then check to see if LχFZ*lm ^MW in exactly the length of F plus (i - 1)
times (length of YZ plus 2) steps. If it does not then H-MW else f-̂ Wif and
only if ι-sFZ.
(i) Assume W contains an occurrence of the letter gdl ^ i < p). If W is
not of the form YgiZ*lm for m ^ 0 and F and Z words over Σ then H-MW.
If W is of this form then ^~MW if and only if \^Li+1YZ*lm and our analysis
returns to case (h).
(j) Assume W contains an occurrence of the l e t t e r ^ then ^W.
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(k) Assume W contains an occurrence of the letterfi(l ^ i ^ p). If W is
not of the form YfiZ*lm for m ^ 0 and Y and Z words over Σ then ̂ MWt

If W is of this form then check to see if there exists a pair of word Γ f, Zτ

over Σ such that Y = Y'a.iZ\ If there does not exist exactly one pair Γf, Z1

satisfying the above requirement then %W, else *~MW if and only if
h-MLiY^iZrZ*lm and our analysis returns to case (h).

(1) Assume W contains an occurrence of the letter h{(l ^ i ^ p). If W is
not of the form YhiZ*lm for m ^ 1 and Y and Z words over Σ then U-MW.
If W is of this form then ^Wif and only if V^Zf^\m'x and our analysis
returns to case (k).

The proof may now be seen to be complete by simply observing that,
for any given word W, the above decision procedure asks at most one
question of the oracle for SΛ and, if it chooses to ask a question, reports the
oracle's answer faithfully.2 Q.E.D.

Theorem 2 Each of the following holds

(I) Jξ is many-one reducible to Mj,
(II) Every r.e. many-one degree is represented by Jlj*

Proof: (I) is an immediate consequence of Lemmas 1 and 2 and Theorem 1.
(II) follows from (I) by the definition of what it means for a general decision
problem to represent every r.e. many-one degree. Q.E.D.

Corollary 1 Define a restricted Markov algorithm to be one which does not
contain any conclusive rules. Then Theorem 2 holds with Mj replaced by
Mτj where Mj is the general decision problem for restricted Markov
algorithms with axiom.

Proof: Immediate from the fact that the Markov algorithms defined by our
procedure ψ2 are always restricted. Q.E.D.

The One-One Degrees of Mj We shall now prove that our result for Mj is
best possible with regard to degree representation. In order to do this we
shall prove that no instance of Mj is of the same one-one degree as a
simple set [6], p. 298. This theorem and its proof are a particularization
of a more general theorem of W. E. Singletary. Other papers which have
employed his result include [1], [2], and [3].

Theorem 3 It is not the case that every r.e. one-one degree is represented
byJij.

Proof: Let MA be a Markov algorithm with axiom whose decision problem
is recursively unsolvable. Then we may deduce the existence of some word
Wo over the alphabet of M such that V-MWO, D ={w\Wo \~MW} is infinite and no

2. By reporting the answer faithfully we mean that the procedure may not continue to
compute after asking a question of the oracle nor may it apply any Boolean func-
tion to the oracle's answer.
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word contained in D is derivable from A, For assume no such Wo exists
then the decision problem for MA may be decided as follows: Let Wbe an
arbitrary word over the alphabet of M. Build two list of words in the
following manner: Stage O, put W in list 1 and A in list 2. Stage n + 1, put
the word derivable from W in n + 1 steps into list 1, if any such word
exists. Do the same for list 2 with respect to A. Continue this process
until either (1) list 1 contains all words derivable from W in M; or (2) list 1
and list 2 contain some word in common. By our assumption one of these
cases must arise. Now if (1) occurs then M-MW since A must have an infinite
number of descendants in order for the decision problem for MΛ to be
unsolvable. If (2) first occurs due to W being placed in list 2 then \-M W.
Otherwise (2) first occurs because there exists some Wr such that W ̂  W\
non-trivially, and A ^ W1 in a derivation in which W does not arise (note:
this includes the possibility that W i~MA, non-trivially). But then y-MW. For,
if ^W, then M would loop when started on A and hence MΛ would be
solvable. Thus any r.e. set of the same one-one degree as the decision
problem for MA must be non-simple and hence every r.e. one-one degree is
not represented by Mj. Q.E.D.

Degrees of Splinters Let / be a total recursive function and let ao be a
natural number. Then {x\ 3n[fn(ao) = x]}, where f°(ao) = ao and fm+1 (ao) =
f(fm(ao)), is called a splinter. Splinters were first defined by Ullian [7] and
were subsequently studied by Myhill [4]. One of the results of their
research was the proof that every r.e. many-one degree is represented by
the general decision problem for splinters. We shall now show that our
results for Ji^ provide us with an independent proof of this.

Theorem 4 Every r.e. many-one degree is represented by the general
decision problem for splinters.

Proof: Let M be an arbitrary restricted Markov algorithm, let A be a word
over the alphabet of M, and let gM be a Gδdel numbering of the words of M
onto the natural numbers. Define the total recursive function fM as follows:

ί
x if g'ΐfi'ix) has no immediate successor

inM,
y if g^iy) is the immediate successor of

g~M

ι (x) in M.

Let ao = gM(A). Then clearly {x\ 3n[f^{ao) = x]} is just the set of Gδdel
numbers of all words derivable from A in M. Hence the decision problem
for MA is of the same many-one (in fact one-one) degree as that for the
splinter arising from fM and ao. But then, since M and A were chosen
arbitrarily, we have that Mj is many-one reducible to the general decision
problem for splinters and this theorem is proved in light of Theorem 2,
Corollary 1. Q.E.D.
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