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THE GENERAL DECISION PROBLEM FOR MARKOV
ALGORITHMS WITH AXIOM

C. E. HUGHES

Introduction* Let M4 denote the general decision problem for Markov
algorithms with axiom. Of interest to us is whether or not this class of
problems is as richly structured, with regard to degrees of unsolvability,
as those classes studied in Hughes, Overbeek, and Singletary [2]. In this
paper we shall present proofs which show this to be so. In particular we
shall show that the general decision problem for the range of total
recursive functions is many-one reducible to 4, and consequently that
every r.e. many-one degree of unsolvability is represented by M 4.
Furthermore we shall show this result to be best possible, with regard to
degree representation, in that every r.e. one-one degree is not represented
by this family of decision problems. And finally we shall demonstrate a
simple application of these results to the study of splinters.

Preliminaries A semi-Thue system S is a pair (2, P) where T is a finite
alphabet and P is a finite set of rules each of which is of the form a — 8,
for @ and 8 words over Z. For any arbitrary pair of words W,, W, over X,
we say that W, is an immediate successor of W, in S, denoted (W, W,)s, if
there exist a pair of words U, V over Z and a rule ¢ — f in P such that
W, =UaV and W, = UBV. W, is said to be derivable from W, in S, denoted
W, k5 Wy, if either

(1) W, = W,,

or

(ii) there exists a finite sequence V, . . ., V;, where £ > 1, of words over
T such that W, = Vy, W, =V, and (V;, Vi, ), fori=1,.. .,k - 1.

A Markov alogorithm M is a pair (T, P) where T is a finite alphabet
and P={a;R;B;l|1<i<m} is a finite ordered set of rules where
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m =1, Rje(—, —.) and @; and B; are words over Z. A rule of the form
a —. B is called a conclusive rule. Let W, and W, be arbitrary words over
. Then W, is the immediate successor of W, in M, denoted (W,, W)y, if
there exists ani, 1 <7 < m, such that

(i) W, = Ua;V and W, = UB;V for some words U and V over Z,

(ii) there exists no pair of words U’, V' over T such that the length of U’
is less than the length of U and W, = U'e; V',

(iii) there exists no j, 1 <j <%, such that W, = U"a;V" for some words U"
and V" over Z.

W, is said to be derivable from W, in M, denoted W, K W,, if either

(1) Wy = Wy,

or
(ii) there exists a finite sequence V, . . ., V,, where 2 > 1, of words over
% such that W, =V, W=V, (V;, Vi,om, for i=1, ...,k -1, and no

(Vi, Visy, for 1 i <k - 2, is the result of the application of a conclusive
rule.

Let G be a semi-Thue system or Markov algorithm and let A be a fixed
word over the alphabet of G. Then G4 shall denote such a system with
axiom. The decision problem for G4 is the problem to decide, for an
arbitrary word W over the alphabet of G, whether or not A k; W (written
W whenever A is understood from context). The general decision
problem for semi-Thue systems (Markov algorithms) with axiom is then
the family of decision problems for all such systems.

Let C, and C; be two general decision problems. Then we say that C,
is many-one (one-one) reducible to C; if there exists an effective mapping
Y of the decision problems p in C, into the decision problems y(p) in C,
such that p and y(p) are of the same many-one (one-one) degree of
unsolvability. C, is said to represent every r.e. many-one (one-one)
degree of unsolvability if the general decision problem for the range of
total recursive functions, denoted &£, is many-one (one-one) reducible
to C,.

Background Results In the next section we have need of the following
theorem concerning semi-Thue systems with axiom.

Theorem 1 Theve exists an effective proceduve Y, which, when applied to
an arbitvary total recursive function f, produces a semi-Thue system S and
a wovd A over the alphabet of S such that

(i) the decision problem for the vange of f is of the same many-one
degree as that for Su;

(ii) there is no non-trivial derivation of A from A. That is, therve exists
no wovd W over the alphabet of S such that (A, W), and W 5 A;

(iil) éf ® W by a non-trival devivation and theve exist W', W' such that
(W', W)g and (W', W)g then W' =W' and W'. Stated diffevently this says
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that the semi-Thue system S™', whose alphabet is that of S and which
contains the rule 8 — a if and only-if a — B is a vule of S, is deterministic*
over wovds which ave non-trivially devivable from A in S;

(iv) 4f KW and (W, W')s by some rule of S and (W, W')s by the same rule
then W'= W',

(v)  the wovd of length zevo is not derivable from A in S. In particular
this means that A may not be the empty wovd;

(vi) no vule a — B of S is such that either a ov B is the wovd of length
zero.

Proof: In[5] Overbeek showed that &£ is many-one reducible to the general
halting problem for Turing machines. Following this, Hughes and Singletary
[3], Lemma 3, demonstrated an effective procedure which, when applied to
an arbitrary Turing machine T, produces a semi-Thue system with axiom
(denoted §hqﬂh in their paper), which system satisfies properties (ii) through
(vi) above and whose decision problem is of the same many-one degree as
the halting problem for T. These two results may then be combined to
provide a proof of the desired theorem. Q.E.D.

Reduction of R to M_ In this section we shall demonstrate a uniform
effective procedure iy, which, when applied to an arbitrary semi-Thue
system S with axiom A that satisfies properties (ii) through (vi) of Theorem
1, produces a Markov algorithm M with axiom B such that the decision
problem for S, is of the same many-one degree as that for Mg.

Let S4be a semi-Thue system with axiom which satisfies properties (ii)
through (vi) of Theorem 1. Further, let the alphabet of S be = = {a,, ..., a,,}
and let the rule set of Sbe P={a; — B;| 1 <i <p}. We define the Markov
algorithm M = (Z', P") as follows:

o' = ZU{I, *}U{Ri’ lia Li’ fi’ 8is hzl 1<i s D}U{s, Q: 7, e, ez};

P' consists of the rules defined below, where a set of rules labelled (i) may
have any internal order provided these rules follow all those in sets
labelled (j), where j< i, and precede all rules in sets labelled (j), where
j>i.

(1) $—Q

(2) R;o; — Bir Vi<is<p
(3) Ria; — a;R; Visi<pandVli<jsmn
(4) R;*— I;* Visisp
(5) 7a; — ajr Vi<j<n
(6) 7*11 — ey*1
(7)) 7*¥1 — e*
(8) aje, — exa; Visjs<n
(9) e— R,
(10) aje; — ea; Visjsn

1. A system S is deterministic over a word W if and only if there exists at most one
W’ such that (W, W)g.



THE GENERAL DECISION PROBLEM 211

(11) e, —$

(12) a;l; — La; Vi<sis<pandVls<js<n

(13) I; — R;,, Vi<i<p

(14) 1, — @

(15) QA* — R, A*1

(16) @ — L,

(A7) L;Bi — a.f; Vi<isp

(18) L;a; — a;L; Vi<sispand Vlsjsmn
i@ i

(19) Li* — g;* Vis<isp

(20) fiaf_"ajfi VisispandVlisjsn

(21) fi* — h;*1 Visis<p

(22) ajh; — hia; Vi<i<pand Vlisjsn

(28) h;i — R;, Vis<i<p

(24) hp— @

(25) a;jg; — 8:a; VisispandVls<jsn

(26) g, — L, Visi<p

We now wish to show that the decision problem for S4 is of the same
many-one degree as that for M with axiom $A*. Before doing this we shall
present the algorithm of which M is an implementation. This, we believe,
will help to make the subsequent proofs more understandable.

The Basic Algorithm

(I)  Let the word we are currently working on be of the form $W* for W
a word over Z. Then W is a word derivable from A in S. Generate QW*,

(I) Let the word we are currently working on be of the form R;W*1” for
1 <isp,m=1,1" being a shorthand notation for the sequence of m 1’s,
and W a word over Z.

case a) If the 7’th rule of S applies to W and m > 1 then generate R, W'*1™"!,
where (W, W')g by the i’th rule.

case b) If the 7’th rule of S applies to W and m = 1 then generate $W'*,
where (W, W')s by the i’th rule.

case c¢) If the ¢’th rule of S does not apply to W and ¢ < p then generate
R, W*1",

case d) If the 7’th rule of S does not apply to W and ¢ = p then generate
QW*1™,

(II1) Let the word we are currently working on be of the form QW*1” for
m = 0, 1” denoting a sequence of m 1’s, and W a word over Z.

case a) If W = A then generate R, A*1™"!,

caseb) If W#A and (W', W)y by some rule i, i<p, then generate
R, W'1"*1,

case c) If W# A and (W', W)g by rule p, then generate QW'*1"**,

cased) If W# A and it is not the case that there exists a W' such that
(W', w)s then stop.

The intention of the above algorithm, when started on the word $ A*, is
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to generate words of the form $W*, when and only when W is derivable
from A in S. Essentially if we think of (1) as performing the additional task
of outputting W whenever it is entered with a word of the form $W * then
this algorithm would simply enumerate the set of words derivable from A
in S. To see this, observe that if we input $A* to this procedure then we
will immediately derive @A* and then R;A*1. From this we will, by
successive applications of II, I, and III, generate $W* for every word W
such that (4, W). After generating every immediate successor of A, in the
order determined by our previous ordering of the rules of S, the algorithm
will start working over the word R;A*11. In general, the basic algorithm
will, when started over the word R;A*1", generate $W* for every word W
such that /W by a derivation of length m. After generating all such words
it will start working over R; A*1™**,

The reader should now be convinced that the basic algorithm is one
which, in essence, ‘‘flattens’’ the rooted graph induced by S4. The special
properties of S4 are essential to this for they ensure that this rooted graph
is a rooted tree and therefore devoid of nodes with indegree greater than
one. We may also note that this algorithm never terminates when started
over $A*. This may be seen by observing that the only way halting may
occur is by the application of III.d. But this would only arise if there
existed some word W, W # A, such that =W and there is no W' such that
(W', W)s. Clearly this is impossible.

We shall now proceed with our proof that the decision problem for S,
is of the same many-one degree as that for Mg4«.

Lemma 1 The decision problem for S, is many-one vreducible to that
for M$A*'

Proof: This may be seen to be true if we can verify that, for an arbitrary
W over the alphabet of S, KW if and only if ; $W*. But this follows
immediately since M implements our basic algorithm where the rules of M
may be corresponded to the steps of the basic algorithm as follows:

rules step
{1} I
{2, 3, 5,6,8, 9} : Il.a
{2, 3, 5,7, 10, 11} IL.b
{3, 4, 12, 13} IL.c
{3, 4, 12, 14} 1L.d
{15} IlLa
{186, 17, 18, 19, 20, 21, 22, 23, 25, 26} II.b
{16, 17, 18, 19, 20, 21, 22, 24, 25, 26} Il.c
{186, 18, 19, 25, 26} I.d
Q.E.D.

Lemma 2 The decision problem for Mg+ iS many-one veducible to that
for Su.

Proof: Let W be an arbitrary word over Z'. It should be clear that we may
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assume, without loss of generality, that W is of the form W'*1” for m = 0
and W' a word over (Z' -{*, 1}) which contains exactly one occurrence of a
letter from ((Z£' - Z)- {*, 1}). For if this were not so then W, W (that is, W
would not be derivable from $A* in M). Hence we shall hereafter assume
W to be of this form. Now we may, with the aid of an oracle for deciding
the decision problem for S,, determine whether or not = Wby the following
case analysis:

(a) Assume W contains an occurrence of the letter §. If W is not of the
form $Y* for Y a word over Z then ¥, W. If W is of this form then Wit
and only if Y.

(b) Assume W contains an occurrence of the letter R;(1 <i < p). If W is
not of the form YR;Z*1" for m > 1 and Y and Z words over X then w,W.
If Wis of this form then check to see if R;YZ*1” K, W in exactly the length
of Y steps. If it does not then ¥, W. If it does then kW if and only if KYZ.
(c) Assume W contains an occurrence of I; (1 < < p). If Wis not of the
form Y1;Z*1" for m = 1 and Y and Z words over T then WW. If W is of
this form then check to see if R;YZ*1™ K W in exactly the length of ¥ plus
twice the length of Z plus one steps. If it does not then W¥W. If it does then
F W if and only if HYZ.

(d) Assume W contains an occurrence of the letter ». If W is not of the
form Y7»Z*1” for m = 1 and Y and Z words over T then W, W. If W is of this
form check to see if there exists ani, 1 <7 < p, and a pair of words Y', Z'
over T such that ¥ =Y'8;Z'. If there does not exist exactly one triple
i, Y', Z' satisfying the above requirement then W, else k, W if and only if
F—s Y'd,' Z'Z.

(e) Assume W contains an occurrence of the letter e,. If W is not of the
form Ye,Z*1" for m = 1 and Y and Z words over Z then WW. If Wis of
this form then KW if and only if FMYZV*I"‘“ and our analysis returns to
case (d).

(f) Assume W contains an occurrence of the letter e,. If W is not of the
form Ye, Z* for Y and Z words over Z then #W. If Wis of this form then
H W if and only if H,YZ»*1 and our analysis returns to case (d).

(g) Assume W contains an occurrence of the letter @. If W is not of the
form QY *1” for m = 0 and Y a word over X then W,W. If W is of this form
then kW if and only if Y.

(h) Assume W contains an occurrence of the letter L; (1 <i <p), If Wis
not of the form YL;Z*1" for m = 0 and Y and Z words over Z then HW.
If Wis of this form and YZ = A then WW. If Wis of this form and YZ # A
then check to see if L,YZ*1" kW in exactly the length of ¥ plus (i - 1)
times (length of YZ plus 2) steps. If it does not then W W else H W if and
only if KYZ,

(i) Assume W contains an occurrence of the letter g;(1 i< p). If Wis
not of the form Yg;Z*1” for m = 0 and Y and Z words over T then WW.
If W is of this form then kW if and only if & L;,,YZ*1" and our analysis
returns to case (h).

4)) Assume W contains an occurrence of the letter g, then WW.



214 C. E. HUGHES

(k) Assume W contains an occurrence of the letterf;(1 <i <p). If W is
not of the form Yf;Z*1" for m = 0 and Y and Z words over Z then WW.
If Wis of this form then check to see if there exists a pair of word Y', Z'
over T such that ¥ = Y'a;Z'. If there does not exist exactly one pair Y', Z'
satisfying the above requirement then W, W, else W W if and only if
hy LiY'8:Z'Z*1" and our analysis returns to case (h).

(1)  Assume W contains an occurrence of the letter 2;(1 <i < p). If Wis
not of the form Y#%;Z*1" for m = 1 and Y and Z words over X then %W.
If W is of this form then W if and only if l—MYZf,v*l""l and our analysis
returns to case (k).

The proof may now be seen to be complete by simply observing that,
for any given word W, the above decision procedure asks at most one
question of the oracle for S4 and, if it chooses to ask a question, reports the
oracle’s answer faithfully.? Q.E.D.

Theorem 2 Each of the following holds

() R is many-one veducible to M _,,
(I)  Every r.e. many-one degree is represented by M 4.

Proof: (I) is an immediate consequence of Lemmas 1 and 2 and Theorem 1.
(I1) follows from (I) by the definition of what it means for a general decision
problem to represent every r.e. many-one degree. Q.E.D.

Corollary 1 Define a vestvicted Markov algovithm to be one which does not
contain any conclusive vules. Then Theorem 2 holds with M_4veplaced by
M, wheve M. is the general decision problem for vestricted Markov
algovithms with axiom.

Proof: Immediate from the fact that the Markov algorithms defined by our
procedure Y, are always restricted. Q.E.D.

The One-One Degrees of M, We shall now prove that our result for #_,is
best possible with regard to degree representation. In order to do this we
shall prove that no instance of #_4 is of the same one-one degree as a
simple set [6], p. 298. This theorem and its proof are a particularization
of a more general theorem of W. E. Singletary. Other papers which have
employed his result include [1], [2], and [3].

Theorem 3 It is not the case that every r.e. one-one degvee is vepresented
by J“A.

Proof: Let M, be a Markov algorithm with axiom whose decision problem
is recursively unsolvable. Then we may deduce the existence of some word
W, over the alphabet of M such that ¥,W,, D = {W| W, 5 W} is infinite and no

2. By reporting the answer faithfully we mean that the procedure may not continue to
compute after asking a question of the oracle nor may it apply any Boolean func-
tion to the oracle’s answer.
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word contained in D is derivable from A. For assume no such W, exists
then the decision problem for M, may be decided as follows: Let W be an
arbitrary word over the alphabet of M. Build two list of words in the
following manner: Stage O, put Winlist 1 and A in list 2. Stagen + 1, put
the word derivable from W in x# + 1 steps into list 1, if any such word
exists. Do the same for list 2 with respect to A. Continue this process
until either (1) list 1 contains all words derivable from W in M; or (2) list 1
and list 2 contain some word in common. By our assumption one of these
cases must arise. Now if (1) occurs then #W since A must have an infinite
number of descendants in order for the decision problem for M, to be
unsolvable. If (2) first occurs due to W being placed in list 2 then K, W.
Otherwise (2) first occurs because there exists some W' such that W k5, W',
non-trivially, and A & W' in a derivation in which W does not arise (note:
this includes the possibility that W k5, A, non-trivially). But then #W. For,
if & W, then M would loop when started on A and hence M, would be
solvable. Thus any r.e. set of the same one-one degree as the decision
problem for M, must be non-simple and hence every r.e. one-one degree is
not represented by M ,. Q.E.D.

Degrees of Splinters Let f be a total recursive function and let ¢, be a
natural number. Then {x| 3n[f"a,) = x]}, where f%a,) = a, and f™"* (a,) =
F(f™a,)), is called a splinter. Splinters were first defined by Ullian [7] and
were subsequently studied by Myhill [4]. One of the results of their
research was the proof that every r.e. many-one degree is represented by
the general decision problem for splinters. We shall now show that our
results for M ,:4 provide us with an independent proof of this.

Theorem 4 FEvery r.e. many-one degvee is veprvesented by the geneval
decision problem for splinters.

Proof: Let M be an arbitrary restricted Markov algorithm, let A be a word
over the alphabet of M, and let gy be a GOdel numbering of the words of M
onto the natural numbers. Define the total recursive function fy as follows:

x if gy' (x) has no immediate successor
in M,

y if g4’ (¥) is the immediate successor of
gy ) in M.

fm(x) =

Let a, = gy(A). Then clearly {x| 3n[fx(a,) = x]} is just the set of Gidel
numbers of all words derivable from A in M. Hence the decision problem
for M, is of the same many-one (in fact one-one) degree as that for the
splinter arising from fy and a@,. But then, since M and A were chosen
arbitrarily, we have that Jua', is many-one reducible to the general decision
problem for splinters and this theorem is proved in light of Theorem 2,
Corollary 1. Q.E.D.
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