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THE PRAGMATICS OF FIRST ORDER LANGUAGES. II

ALBERT SWEET

The purpose of the present paper is to extend the results of [3], and to
state and prove an assumption made tacitly therein. Section 6 of the
present paper has the latter purpose, and sections 7 and 8 the former (the
section-numbering of the present paper is consecutive with that of [3]). All
terms and special symbols introduced without definition are intended in the
sense of [3], and all theorems cited are those of [3] unless otherwise
indicated.

Two expressions of L are defined to be pragmatically synonymous,
relative to a polyadic interpretation Π, if they are interchangeable in all
expressions of L, salvo valore re Π. Two formulas of £ π are defined to be
model synonymous if they have the same image in every semantic interpre-
tation of Lπ Two predicates of L\\ are defined to be model synonymous if
they have the same image under every interpretation of the theory
expressed by Lj\ in which the theory holds (in the customary model-
theoretic sense). Model synonymy of individual constants is defined
similarly. It is shown that if two formulas, or two predicates, of Lj\ are
pragmatically synonymous, then they are model synonymous. This result
is suggested as an explication of Peirce's semiotic principle that if two
signs have the same entire general intended interpretant, then they signify
the same object, for the case of signs of the indicated type. But this result
does not hold for individual constants, as is also shown.

It is shown, finally, that there is a one-one correspondence between the
interpretations of LR onto Boolean models, and the interpretations of the
theory expressed by Lu in models of that theory, such that models under
corresponding interpretations represent the same intuitive structure. This
result justifies application of the term "model synonymous" to formulas,
predicates, and individual constants of Ln in the above three senses.

6 Polyadic Interpretations and Their Cores If Π is a polyadic interpreta-
tion, we shall refer to the polyadic algebra described in Theorem 1, as Z,Π

In virtue of Theorems 1-3, we shall refer to Lγ\ as a predicate calculus,
and to @ = (P, K, I, {&, ~, 3}, S) as the (standard) syntax of Z,Π Some
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conditions in the definition of a polyadic interpretation Π determine the
syntax of Lγ\, and the remaining conditions characterize the distribution of
Π-values over S. In [3] it is tacitly assumed that the latter conditions on Π
determine corresponding conditions on its core π, which are required to
demonstrate the algebraic properties of Lχ\. In this section we shall give
an exact statement and proof of this assumption. Throughout this paper, we
let Π (with or without subscripts) be a polyadic interpretation of the
expressions L in the valuing dispositions D, unless the contrary is
explicitly stated.

The conditions in the definition of Π which characterize the distribution
of Π-values over the sentences of S are those of Definition 5, and conditions
IV and V of Definition 1. We first consider Definition 1. Throughout this
section, π is to be understood as the core of Π. The condition on 7Γ
corresponding to Dl (V) is:

If 7r(s, c) = 1 = 7r(s', c), then π(s & s f , c) = 1.

This proposition follows immediately from the definition of a core. We
next show:

(6.1) If s, s' e S , then for all c c C the values of π ( ~ s , c) and π(s & sr, c)
are fixed by the values of π(s, c) and π ( s f , c) according to the tables of
Dl (IV).

Proof: That (6.1) holds for the —table follows immediately from (1.2).
Let 7r(s, c) = 0. Then for all sf e S and some We U, we W: U(s)(u, w, c) = 0 =
Π(s & s')(u, w, c). Then π(s & sr, c) = 0. In this way the desired entries in
the &-table for τr(s, c) = 0 or τr(sf, c) = 0 are obtained. If s and s' are both
valued 1 under c by π, then so is s & s', by Dl (V). If π(s, c) = 2 = π(s', c),
then for all ueU9'we)N, U(s)(u, w, c) = 2 = Tl(sf)(u, w, c), so that Π(s & s')
(u, w, c) Φ 1 Φ TΪ(S & s', c).

It remains to consider the case in which s is valued 1 and s' is valued
2, by IT under c (the situation is the same when s is valued 2 and s' is
valued 1). We require the following lemma.

(6.2) If ϊl(s)(u, w, c) = 1 for some ue U, we W, and ϊl(sr)(u, w, c) = 2 for all
ue U, we W, then Tl(s & sr)(u, w, c) Φ 0, for all ue U, we W.

Let subscripts indicate elements fixed throughout the proof of (6.2). Let
U(s)(ulf wlf c) = 1 and Π(s & sr)(u0, w0, c) = 0. Then Π(~(s & s'))(u0, w0, c) =
1, so that by Dl (V), U(s & ~(s & sf)) (̂ 2, w2, c) = 1 = Π(s) K , w2, c) =
Π(~(s & $0)0*2, w2, c). Then Π(s & s')(^2, w2, c) = 0, so that Π(sf)(%, w2, c) =
0. It follows from the above that, if U(s & sr)(u, w, c) = 0 for some ue U,
we W, then either Π(s)(w, w, c) = 1 for all ue U, we W, or n(sr)(u, w, c) Φ 2
for some ue U, weW. Transposing this result gives (6.2).

Now let 7r(s, c) = 1 and π(s', c) = 2. Then by (6.2), Π(s & $')(**, w, c) Φ 0,
for all ue U, we W. If Π(s & s')(u,w, c) = 1, then Π(s')(w, w, c) = 1, against
the hypothesis that ττ(s', c) = 2. Thus Π(s & sf)(w, w, c) = 2 for all we U,
we W, and the desired &-table for π is thereby established. The proof of
(6.1) is complete.



THE PRAGMATICS OF FIRST ORDER LANGUAGES. Π 121

It remains to show that the conditions of D5 on a polyadic interpreta-
tion Π have appropriate analogues which are satisfied by the core of Π.

(6.3) If 7Γ is the core of a polyadic interpretation Π, then for all p, q, re Q;
J c j e e L c C C , ir satisfies all the conditions obtained from those of D5
by replacing expressions of the form ζ(ΐl{e)(u, w, c) = 0 " with i{π(e, c) = 0",
by replacing expressions of the form "U(e) = ΐl(er)" with "π(e, c) =
π(e',c)", and by replacing expressions of the form i(U(e) = d0" with
"ir(e,c) = 0".

Proof: (6.3) holds for D5 (III) and (IX) by (1.3). By (1.4), (6.3) holds for
D5 (IV)-(VI), (VIII), (X)-(XII). That (6.3) holds for D5 (I) follows im-
mediately from (1.3). For D5 (Π), let π(3(p & ~q), c) = 0 = π(3(q & ~ r ) , c).
Then for some fixed ul9wl9 Π(~3(£& ~q) & ~3{q & ~r))(ul9wl9c) = 1 =
ττ(~3(£ & ~q))(ul9 wl9 c) = Π(~3(? & ~r))(ul9 wl9 c), by Dl (IV), (V). Then
U(3(p & ~?))(«!, wu c) = 0 = Il(3(q & ~r))(ul9 wl9 c)9 so that by D5 (II),
Π(3(£ & ~r)) (ul9 wl9 c) = 0 = TΪ{3(P & ~ r ) , c). Thus (6.3) holds for D5 (II).

It remains to show that D5 (VII) satisfies (6.3), for which we require
the lemma:

(6.4) IfU(3(p & q))(u, w, c) = 1, then Tl(3p)(u, w, c) = 1.

If U(3((p &q) & ~P)){u, w, c) = 0, then U(3(3(J)(p & a) & ~3(J)p))(u, w, c) =
0, by D5 (IX), where J is the set of free variables of p & q, and hence by
D5 (VII) and (IX), Tl(3(p & q))(u, w, c) = Tj(3(p & q) & 3/>)(w, w, c). By D5 (I),
(VI), and (V), Π(3((/> & ^) & ~/>))(«, w, c) = 0 for all we U, we W. (6.4) is
thereby established.

To establish the π-analogue of D5 (VΊI), let n(3(p & ~q))(u0, w0, c) = 0,
for fixed u'oe U, woe W. That D5 (VII) satisfies (6.3) is then evident, except
when Il(3p)(u0, w0, c) = 2 = Π(3(/> & #))(wo> ^o, c ) On this hypothesis we
distinguish three cases.

Case 1. τr(3/>, c) = 0. Then τr(3(/> & ^), c) = 0, by (3.9).

Case 2. π(Ξ3/>, c) = 1. Then U(3p)(u, w, c) = 1 for some we U, we W. Then
by Dl (V), Il(3p & ~3(£ & - t f ) ) ^ , w1? c) = 1, for fixed %eU, ^ e W, so
that U(3(p & ~q))(uu wl9 c) = 0. Then by D5 (VII), 1 = U(3p)(uu wl9 c) =
U(3(p& q))(u1} wl9 c).

Case 3. n(3p, c) = 2. Suppose U(3(p & q))(u, w, c) Φ 2, for some we U,
weΉ. If Π(3(/> & ^))(w, w, c) = 0 for some MeU,^eW, then by Dl (V) and
(IV), Π(3(£ & q))(uu wl9 c) = 0 = U(3(p & ~ q)) (uly wl9 c), for fixed %e U,
w1eYi, so that Π(3^) (%, wu c) = Π(3(^ & a)) (ul9 w19 c) = 0, against the
hypothesis of Case 3. On the other hand, if U(3(p & a)) (u, w, c) = 1, for
fixed ue U, we W, then by (6.4), U(3p)(u) w, c) = 1, against the hypothesis of
Case 3. We have therefore shown that D5 (VII) satisfies (6.3). The proof of
(6.3) is complete.

We conclude this section with the observation that the conditions of D2
on a sentential interpretation have analogues in the sense of (6.3). For
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D2 (I) has the form of D5 (II); D2 (Π) has the form of D5 (III); and
D2 (III)-(VI) have the form of D5 (IV). This fact about sentential inter-
pretations is required in the proof of (2.5).

7 Some Foundations of Semiotic Theory The intuitive content of (5.1) is
that formulas of a predicate calculus L\\ which are interchangeable in all
their occurrences in expressions of Lγ\, preserving the valuations of those
expressions by the users of Ln, signify the same object, for Π as
interpretant (in the sense of Peirce). As suggested in [3], the specification
of some distinguished semantic interpretation of Lπ which could be said to
contain the objects signified by the formulas of Lπ, for Π as interpretant,
is the fundamental problem of first order semiotic theory. In this section
we shall investigate various analogues of (5.1), which throw some light upon
the above problem. We shall also study more deeply the relation between
polyadic interpretations Π and predicate calculi I π

We first define a relation of pragmatic synonymy on the expressions of
L. Let Π be a pragmatic interpretation of L (in D) and let e and e' be
expressions of L. We define Eπ(e, er) iff n(e"(e)) = ΐl(e"(e')), for all
expressions e"(e) and e"(e') of L in the substitution notation (2.2). (We
continue to employ the convention of [3] that in an expression represented
as e(e') for (2.2), er occurs at least once.) En(#, er) asserts, in an obvious
sense, that e and er are pragmatically synonymous, relative to Π: e and eτ

are interchangeable in expressions of L, preserving the Π-valuations of
those expressions.

Let πbe the core of a polyadic interpretation Π. We then define, for
predicates F and G of Lπ, Eπ(Fy G) iff F and G are of the same degree and
all formulas p(F) and p(G) of L\\ related by substitution according to (2.2)
are E^-congruent in the sense of (4.1). Analogously we define, for
individual constants a and b of Lπ> E^α, b) iff all formulas p(a) and p(b)
related by (2.2) are Eπ-congruent. Finally we observe that, for formulas p
and q of Lπ, Eπ(p, q) iff Eπ(r(p), r(q)) for all formulas r(p) and r(q) related
by (2.2). If predicates, individual constants, or formulas are in the
appropriate Ew-relation, we shall say that they are congruent.

From the above definitions it follows immediately that pragmatic
synonymy entails congruence, for predicates F and G, individual constants
a and 5, and formulas p and q:

(7.1) tfEn(F,G)9thenEπ(F,G).
J/En(α, b), then Eπ(a, b).
IfEn(p,q), thenEπ(p, q).

The following propositions are concerned with the relation between the
syntactic and algebraic structures of L\\. Let the predicate expressions F
and G be represented, respectively, by the algebraic predicates F and G.

(7.2) EΠ(F,G)iff F = G .

Proof: Let F and G be of degree n, and let {z1? . . ., in} = J c I and
{h, . . . , ^ } C J U K . If En{Fiι . . . i n, G*! . . . in), then Eπ(Ft1 . . . tn, Gtx . . . tΛ),
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so that EπipiFti . . . 4 ) , p{Gtx . . . tn)) for all formulas p(Ftγ . . . Q,
p{Gt1 . . . 4) related by (2.2). Thus if Eπ(Fix . . . in9 Gz\ . . . 4) holds for
all i u . . . , 4 e I, i .e., if F = G, then Eπ(F, G). The converse is obvious.

(7.2) Corollary The representation of predicate expressions by algebraic
predicates, according to Theorem 2, is one-one iff Lχ\ contains no distinct
congruent predicate expressions.

Let the individual constants a and b be represented, respectively, by
the algebraic constants α and b.

(7.3) Eπ(a, b)iffo = b.

Proof: If a and b are not congruent, then there are formulas p(a) and p(b)
such that it is not the case that Eπ(p(a), p{b)), where p(a) is of the form
p(aj), for some variables J and formula />, from which p(aj) is got by
putting a for free ie J in p, and from which p(b) = />(δj) is got by putting b
for free ie J in p (as in Definition (3.16)); then p(a) = a(J)p and p(b) = b(J)p
are not congruent, so that α Φ b. To show the converse, let α Φ b. Then it
is not the case that for all J c \9pe Q, Eπ(a(J)p, b(J)£); and hence for some
p(a) = p(a}) and p(b) = p(bΛ), it is not the case that Eπ(p(a), p(b)).

(7.3) Corollary The representation of individual constants by algebraic
constants, according to Theorem 3, is one-one iff L^ contains no distinct
congruent individual constants.

If two polyadic interpretations have the same logical constants and
individual variables we shall say that they are similar interpretations. We
define | π | = P U K to be the parameters of Π (or of L\[). If two similar
interpretations T[1 and Π2 have the same parameters, then they have the
same syntax. For if s is a sentence of Πi, then by (2.1) s has one of the
forms of D4 (V). Then by hypothesis and D4 (I)-(IV), U2(s & ~s) = dOy so
that s is a sentence of Π2.

Πx is defined to be a subinterpretation of Π2 (abbreviated U1< Π2) iff
Πi and Π2 are similar and for all e e L, ue U, we W, c c C: Πi(e)(w, w, c) =
U2(e)(u, w, c) whenever Tlι(e)(uf wy c) Φ 2. The subinterpretation relation is
a partial ordering of the polyadic interpretations of L in D. The following
propositions follow immediately from the relevant definitions. Let Qx and
Q2 be the formulas of Πx and Π2, respectively.

(7.4) #Πi<Π 2 , then | π j c \n2\and Qx a Q2.

We define the theory of a polyadic interpretation Π (or of Lπ) to be the
set T$ = T Π S, where T is defined by (4.5) and S by (2.1). Let T1 and T2 be
theories of Πi and Π2, respectively.

(7.5) If Πi < Π2, then TΊ c T2.

(7.6) If Πi < Π2 and ΓU agrees with Π2 on all sentences of Πi, then L^is a
polyadic subalgebra of Lχγ2.

Proof: By (7.4) and the hypothesis of (7.6), the domain Qt of LΠ i is included
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in the domain Q2 of L^. Now let Eπ2(p, q), where p, qe Qx and π2 is the core
of Π2. Then π2(V(/)<->#), C) = 1 = π^Vip *-*q)9 C), where πx is the core of
Πi, since V(p*->q) is a sentence of LUi. Then Eπi(p, q). Clearly Eπi c Eff2,
so that Eπi is the restriction to Qx of E^. Since Πi and Π2 are similar, the
operations of LΠ l

 o n Qi a r e t n e restrictions to Q1 of the operations of L\\2

on Q2. (7.6) is thereby established.

If Πi and Π2 satisfy the antecedent of (7.6), then every semantic
interpretation of £j]2 is an extension of a semantic interpretation of Lnχ.
This fact is of semiotic importance, but we shall not in this paper pursue
its consequences.

We define T to be a subtheory of the theory of Π iff there is a
non-empty subset A of the theory of Π such that T is the set of sentences of
Π over the parameters of A which are logical consequences of A.

(7.7) If T is a subtheory of Π, then T is the theory of a subinterpretation
ofn.

Proof: Let P τ be the set of all subinterpretations of Π which agree with Π
on T. Pγ is not empty, since Π e Pj. In terms of Pj we define the mapping
Πo from L into D:

TJ ί \ί \ - jπ(£)(w> w> c)> i f Π(e)(tt, w, c) = Πi(e)(w, w, c) for all TliβPj.
iiQ\e)\Zif w, c) — \

12, otherwise.
It is straightforward to verify that Πo is a polyadic interpretation similar
to Π. Now let Ylo(e)(u, w, c) Φ 2. Then Tio(e)(u, w, c) = I[(e)(u, w; c), so that
Πo < Π. Finally, let eeT. Then for some ue U, we W, and for all Π].e P τ ,
Tlι(e)(u, w, C) = 1 = Il(e)(u, w, C), so that e is in the theory of Πo. Con-
versely, if ϊlo(e)(u, w, C) = 1 = Tl(e)(u, w, C) for some ue U, we W, then
ee T. Thus T is the theory of Πo < Π. (7.7) is thereby established.

Let P^ be the set of all polyadic interpretations of L in D with syntax
©. The set of all polyadic interpretations of L in D is partitioned into sets
of the form Pm. Let E be the intersection of all congruences Eπ, defined by
(4.1), where TΓ is the core of some Π e P®. The least polyadic interpretation
in P^ (with respect to <) determines a predicate calculus with respect to E,
which is free in the family of predicate calculi Lγ\, for ΠeP®, and may be
regarded as the algebraic representation of the pure predicate calculus for
the standard syntax®.

For © and E as above, let Π e P®, and let t = ~(s & ~s), for some
sentence s of %. It follows from the definition of a polyadic interpretation
that E(s, t) if Π(s) = dγ. The E-congruence class Tm of t may then be
regarded as the set of logical truths of predicate calculi with syntax
ϋ$: 5 e T© iff s is mapped on the unit element by every semantic interpreta-
tion of L'π, for every Π € P®.

Now let M = {seS: U(s) = d j . Then T© c M c Ts, where Ts is the
theory of Π. In the non-trivial case of proper inclusion, this result may be
understood to mean that (in the familiar terminology of Quine) the theory M
is more remote from the evidence C than T s , but not as remote as T®. The
status of M may perhaps be accorded to (first order) analytic theories:
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M may be invoked for establishing some particular theory T$ (under the
evidence C, relative to the rules of acceptance represented by Π), but not
necessarily for establishing any theory whatever (in the syntax ® of M), as
is the set of logical truths T®.

If Π is a polyadic interpretation of L in D, then the interpreting
dispositions in D are clearly an idealization of the actual verbal behavior of
even the most careful scientific users of L. For example, as we have seen
above, every logical truth of Lγ\ is accepted by every user at every time
under every condition. The condition V of Dl is also a manifest idealiza-
tion of actual verbal behavior. Dl (V) may be weakened to hold only for the
total evidence C, in which case (6.1) and (6.3) hold only for C; and this is
sufficient for the existence of the languages Lγ\. Moreover, if Dl (V) holds
only for C, then the above consequence about logical truths is not forth-
coming; but it reappears for condition C itself. We shall not pursue such
possibilities for diminishing the idealization of actual verbal behavior
represented by polyadic interpretations; we rather contemplate their
application to actual behavior by suitable approximation.

We shall conclude this section by considering analogues of (5.1), for
the case of interpretations of the theory T$ of L\\, in models which are
relational structures. For this purpose we are led to understand the
concept of a (relational) model of a set of sentences of Lγ\ in the following
way. By a relation of degree n on a set X we understand a mapping from Xw

into the (domain of the) simple Boolean algebra. By a relational structure
we understand a pair X = (X, R), where R is a non-empty set of relations on
the non-empty set X. Let A be a non-empty set of sentences of Lγ\ and let
X. = (X, R) be a relational structure. Let μ be a mapping from predicates
of (sentences of) A to relations of like degree in R, and from individual
constants of A to elements of X. μ may be called a semantic interpretation
of A in X.

Let p be any formula of Lγ\ over the parameters of A (i.e., each
predicate and individual constant of p is in some sentence of A), p may
then be said to be defined in X under μ. Let X' be the set of all functions
from the set I of variables of Lγ\ into the domain X of X. Let xeX1. If
te\ UK, we define xt = x(t) if te I, and xt = μt if te K. We then define x
satisfies p under μ iff one of the following four conditions holds:

(1) p = Ftt ... tn, where FePnτιnά t1,...,tne\V K, and μF(xti, ..., xtj = 1.
(2) p = q & r, where q and r are formulas of Ln, and x satisfies both q and
runder μ.
(3) p = ~q, where q is a formula of Lχ\, and x does not satisfy q under μ.
(4) p - 3iq, where q is a formula of Lγ\, ie I, and for some yeX1 which
differs from x at most at Xj, y satisfies q under μ.

Now we may define, for any sentence s of A: s holds in £ under μ iff
all xe X1 satisfy s under μ. Finally, X is defined to be a model of A under
μ iff (every sentence of) A holds in X under μ, and μ is onto the set of
relations of X.

The above definitions do not require that all elements of the domain of
X be named by individual constants of A under μ, nor that Lχ\ be a
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sublanguage of a language with sufficient constants for this property to hold
(as in Robinson's [2]). If, however, the latter condition holds, the above
definition of x satisfies p under μ may be restricted to one defining 5 holds
in X under μ, for closed formulas s of Lχ\. We do not require that
interpretations be one-one from predicates and individual constants of A to
relations and individuals of X, since we wish to investigate analogues of
(5.1) for predicates and individual constants. If, however, interpretations μ
are required to be one-one in this sense, the definition of 5 holds in X
under μ obtainable by restricting the above definition of satisfaction to
closed sentences s, is essentially the same as Definition 1.4 of Robinson's
[2], modified so that relations are regarded as mappings in the above
sense, and iterated quantification of formulas is allowed. We shall at the
end of this section consider the conditions under which an interpretation of
T$ is one-one on P and K.

For the case of interpretations of T$ in relational models, we have the
following analogue of (5.1). Let X = (X, R) be a model of T$ under μ. Let
xe X1. Then for all formulas p and q of Lγ\\

(7.8) If Eπ(/>, q), then x satisfies p under μ iff x satisfies q under μ.

Proof: p and q are over the parameters of T$, which is P U K, by (3.8).
By (7.1) and the hypothesis of (7.8), Eπ(ρ, a), so that V(/> <r->q)e T s . Thus
V(p<^>q) holds in X under μ; i.e., all xe X1 satisfy V(/><->#) under μ. The
consequent of (7.8) follows by expanding V(p<-^q) in terms of 3, ~, and &.

We now introduce a semantical synonymy relation on the predicates,
individual constants, and formulas of Lγ\. As observed in the proof of (7.8),
the set of parameters of T$ is P U K. For predicates F and G of LR we
define EM(F, G) iff μF = μG for all interpretations μ of T$ under which T$
holds. For individual constants a and b of Z,π we define EM(«, &) iff μ β = μδ
for all interpretations μ of T$ under which T$ holds. For formulas p and
q of JLΠ we define E^(p9 q) iff μp = μq for all semantic interpretations μ of
Lγι (i.e., polyadic homomorphisms μ of Lπ in a Boolean model, in the sense
of[l]).

EM (/>> Φ m a v J u s t a s w e l 1 b e defined in terms of relational models, as
the consequent of (7.8) for all interpretations of T$ under which T$ holds.
For if μp = μq, where μ is a (semantic) interpretation of Lπ, then
μ(p<r^q) = 1, so that if EM (p, q) then p<r^>qeT, which is the set of
formulas mapped on 1 by every interpretation of Lγ\. Thus if Eĵ  (p, q) then
V(/> <-»#)e T s , and the consequent of (7.8) follows as in the proof of (7.8).
Conversely, assume the consequent of (7.8) for all interpretations μ of Ts
under which T s holds. Then for every such interpretation of T$, all xe X1

satisfy p<^>q, and hence satisfy V(£ <->#), so that V(/><->#) holds. It
follows that V(/><->q)e T$ (c/., Robinson 8.1.3). Thus for all interpretations
μ of Lπ, μp = μq; i.e., EM (p} q).

We shall refer to the relations E^ as model synonymies. From (5.1) it
follows that if two formulas are pragmatically synonymous they are model
synonymous. The same is true for predicates F and G.
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(7.9) //E Π (F, G), then EM(F, G).

Proof: By hypothesis and (7.1), for all ilf . . . , ine I, Eπ(Fix . .. in, Gix . .. in).
Then by (7.8), for all interpretations μ of T$, and all xe X1 relative to μ, ΛΓ
satisfies Fit . . . in under μ iff x satisfies Giλ . . . in under μ, so that
μF(xiv . . ., xin) = μG(xiv . . ., xifl). Now for each n-tuple (xl7 . . ., xn) of
Xw, there are xeX{ and distinct i^ . . .,ine\ such that x1 = Xiv . . ., xn = Xin,
since X1 contains all functions from I into X. Then for each such
(#i, . . ., xn), by choosing appropriate elements of X and I, we have
μF(xχ, . . .,#«) = μG(xly . . ., xn), for all interpretations μ of T s ; i.e.,
E M ^ , G).

There is no analogue of (7.9) for individual constants. For if E (̂α, b)
then T$ asserts only that μa and μb are indistinguishable by the predicates
ofT s .

We have shown that for predicates, individual constants, and formulas
of Lγ\y pragmatic synonymy implies congruence; and for predicates and
formulas of LR, congruence implies model synonymy. It is also the case
that, for formulas, predicates, and individual constants, model synonymy
implies congruence. We conclude this section by observing that in order
for an interpretation of T s to be one-one on the predicates P, it is
sufficient that T$ be maximal and P have no distinct congruent predicates.
Conversely, if an interpretation of T$ is one-one on P, then P has no
distinct congruent predicates. Finally, in order for an interpretation of T$
to be one-one on the individual constants K, it is sufficient that T5 be
maximal and K have no distinct congruent constants. But if an interpreta-
tion of T$ is one-one on K, it does not follow that K has no distinct
congruent constants.

8 Boolean and Relational Models Every interpretation of Lγ\ into a Boolean
model is an interpretation of L\\ onto its range (<?/., [l], p. 130). (5.1) is
stated for onto interpretations (though of course it holds in general) since
we assume on intuitive semiotic grounds that a calculus £ π , regarded as a
sign, has only its onto interpretations as possible objects. On the same
intuitive grounds, we assume that the possible objects of the theory T$ of
Lπ, regarded as a sign, are the interpretations of T$ in relational models
of T5. Thus (7.8) is the semiotic equivalent of (5.1), and (7.9) is a semiotic
analogue of (5.1), provided that:

(8.1) There is a one-one correspondence between the interpretations μ of
Lχ\ onto Boolean models and the interpretations μ* of T $ in relational
models of T$, such that models under corresponding interpretations have
the same domain, and for all sequences of values xeX* and formulas p
ofLn:

μp(x) - 1 iff x satisfies p under μ*

where X is the common domain of models under μ and μ*, and I is the set
of variables of L\\.
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We shall give a detailed proof of (8.1), reference to which will be
useful in subsequent investigations of the semiotics of first order lan-
guages. We first show:

(A) For every interpretation μ of L π onto a Boolean model, there is an
interpretation μ* of T$ such that μ and μ* are related according to (8.1).

Proof: Let the I-algebra *B over X be a model of Lu under μ. Let F be a
predicate of degree n of Lj\. Let H = {ix, . . ., £w}c I. Let x, ye X1. We
first establish the proposition:

(8.2) Ifx(\ - H)my, then μFix . . . in(x) = μFi1 . . . in[y).

The antecedent of (8.2) is defined to mean that ΛΓ, = yι if i / l - H. (8.2)
asserts that μFi1 . . . in is independent of I - H, a (necessary and) sufficient
condition for which is that μFix . . . in = 3(1 - H)μΛΊ . . . in (cf.9[ϊ\, p. 114).
By Definition (3.6),

3(1 - H)Fiλ . . .in= ^(A)Fii . . . i» = Ft, . . . in-

Then since μ is a polyadic homomorphism, μFii . . . in = 3(1 - H)μFiι . . . in;

(8.2) is thereby established.

With F, x, y, μ as above, let H = {il9 . . ., Q, J = {j19 . . ., j j c | ,
where the variables in H and in J are distinct. We then have a lemma for
(A).

(8.3) Ifxiί = yh, . . ., xin = yjn, then μFiλ . . . in(x) = μFj1 . . . jn(y).

For proof of (8.3) we observe that there exists a transformation r on I such
that T7Ί = il9 . . ., τ;w = *». For such r, FzΊ . . . in = S(τ)Fj1 . . . ;„, by Defini-
tion (3.2). Then since μ is a polyadic homomorphism:

(8.3)' μFU . . . in(x) = μSMFJi . . . jn(x) = S(τ)μFjλ . . . jn(x) = μFjι . . .
jn(τ* x), ^^er^ (τ# Λ:),- = ΛΓΓ/ , for *i e I.

By hypothesis, ( T . * ) , ^ = xTj = xiχ = y 7 l, . . ., (τ*x)jn = y/«; i e., τ.x (I - J).y.
Then by (8.2), μFj, . . . jn(τ. x) = μFj x . . . ;w(j;). (8.3) then follows by (8.3)'.

With each predicate F of degree n of Lπ we may now associate a
relation / on X as follows. For all (xx, . . .,Arw)eXw, for any distinct
variables il9 . . ., ine I, and for all xe X1 such that ^ t l = ΛΓ1? . . ., #/w = #„:

(8.4) /(#i, . . ., JVW) = μΛΊ . . . tΛ(Λr).

For each (xl9 . . ., Λ:w)e Xw, such Λ:, il9 . . ., z« will always exist, since X1

contains all mappings from I into X. And by (8.3), f(xχ, t . . , # „ ) is uniquely
defined.

Now with the model %$ of i n under μ we associate the structure
X<Q= <X, R), where R is the set of relations / on X defined by (8.4). We
wish to show that &g is a model of T s under an appropriate interpretation
μ*, which may be defined as follows. If F is a predicate of T s we let
μ*F = fe R, defined by (8.4). In order to define μ*a, where a is an
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individual constant of T$, we reason as follows. Every constant b of £ π

corresponds to a unique element #bof X such that, for all J c |, xe X1, and
functions a of SB:

(8.5) b(J)αW = φ J ) ,

where x* = x\> if ie J, and xf = X{ otherwise. The correspondence b —» x^ is
one-one. Moreover, constants of Lπ are preserved under the (onto)
homomorphism μ, in the sense that if α is a constant of JLπthen there is a
unique constant b of ̂  such that:

(8.6) μα(J)/> = b(J)μ/>

for all formulas p and sets J of variables of Lχ\ (c/., [1]: p. 155, Lemma
(15.3)). Then we define μ*α = x\>, where b is the constant of $S which
corresponds, according to (8.6), with the constant σ of Lχ\ which represents
α, and x\> is in turn defined by (8.5).

In order to show that T$ holds in X# Under μ*, we shall require the
following lemmas (8.7) and (8.8). Let Fe Pw; tl9 . . ., tne I U K. Then for all
xeX1:

(8.7) μFh. . .Ux)=Axtι9 - - .,Xtm),

where / = μ*F, and (for m = 1, . . ., n) xtm = x(tm) if tm e I, and Xtm = μHm if
tmeK. We shall prove (8.7) for the case that only one tm is in K; the
general case follows by induction. Let tm = a e K. Then for some J =
{il9 . . ., in] c I and for some H c J, Ftι . . . tn = Fix . . . in(aH), the formula
got from Fiί . . . in by putting a for ie H (<?/., (3.16)). Let a be represented
by the algebraic constant α, so that Fix . . . i(aH) = a(H)Fix . . . «„. Then for
allΛΓeX1:

μFί! . . . tn(x) = μα(H)Fii . . . ίn(x)
='b(H)μFt1 . . .tΛ*) (by (8.6))
= μFtx . . . in(xH) (by (8.5))
= f(x^, . . . , 4 ) (by (8.4))
= /(*!, .,^W)

where (for m = 1, . . ., rc)#w = ̂ ί m if im^H, and ̂  = x\> if zOT€ H. Now if tme I,
then 4 / H , so that xm = xfm = xifn =xtfn. And if tmfίl, then i m /H, so that
^« = ̂ b = μ*^ = Xtm (8.7) is thereby proved.

Let £ be a formula of Lu, with μ, μ*, and x as above.

(8.8) x satisfies p under μ* iff μp(x) = 1.

Proof: For atomic formulas 1 ^ . . . tn of Lπ> Ŷ (8-7) and condition (1) in
the definition of satisfaction in section 7:

(I) x satisfies Ftx . . . tn under μ* iff μFt1 . . . ̂ W = 1.

Since μ is a polyadic homomorphism, for all formulas q and r of Lχ\:

(II) μ(q & r)(Λr) = 1 iff μq(x) = 1 = μr(x)
(III) μ(~<r)M = 1 i« μtf(*) = 0
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(IV) μ(3iq)(x) = 1 iff 3 {*} μq{x) = 1

iff V{μq(y): *{*}θ>} = 1
iff μq\y) = 1 for some y which differs from

x at most atXi.

Thus by (2)-(4) in the definition of satisfaction, and by the above properties
(II)-(IV) of the homomorphism μ, valuation of xe X1 as 1 by μp is fixed
exactly as is satisfaction of p by x under μ*. This proves (8.8).

From (8.8) it follows that, since all sentences of Ts are mapped by μ
to the unit element of $$ (the model of Lχ\ under μ), all sentences of Ts are
satisfied by all xe X1 under μ*. Then T$ holds in £<$ under μ*, and (A) is
thereby proved.

(B) The mapping μ —> μ* defined in (A) is an onto mapping.

Proof: Let £ = (X, R) be a model of T$ under an interpretation μ*. Then
each predicate F of Lγ\ is associated with a relation μ*F =/e R, and each
name a of Lχ\ is associated with an element μ*α of X. Let B be the set of
all functions from X1 into the simple Boolean algebra. We then define a
mapping μ from the formulas Q of Lγ\ into B, such that for each atomic
formula Ftλ . . . tn of Q and for each xe X1:

(8.9) μFh . tn(x) =f(xtv . . ., xrn),

where / = μ*F and (for m = 1, . . ., n) xtfn = x(tm) if tme I, and xtfn = μ*^ if
tm e K. The mapping μ may then be extended over Q, and polyadic opera-
tions defined on the range μQ of μ, for all subsets J and transformations
T of I, in the following natural way. For all p, qeQ:

μ(p & q)(x) = μp(x) A μq(x) = (μp*μq)(x).

K* W) μ3(J)p(x)=v{μP(y): xJ*y} = B(J)μp(x).
μS(τ)p(x) = μp(τ*x) = S(τ)μp(x).

Since for all μpeμQ, 3{J)μp exists and belongs to μQ, and S(r)μp belongs
to μQ, 3$ = (μQ, I, S, 3) is a model of JLπ under the polyadic homomorphism
μ defined by (8.9) and (8.10). Moreover, by (8.9) (since μ* is onto R) each
relation/ = μ*F of R satisfies (8.4), so that X is of the form #« in the proof
of (A). In this case, (8.8) holds, and (B) is thereby established. It remains
to show:

(C) The mapping defined in (A) is one-one.

Proof: Let^8x and$$2

 toe models of L\\, under distinct interpretations μ1 and
μ2, respectively, and let X± = £ β and £2 - £<& be the associated models of
T$. If ^ i and^82 have distinct domains, (C) is evident. Let 3^ and$B2 have
domain X. It is required to find some f1 = μx*F of Xx distinct from
Λ = M2*^ of ^2 If the polyadic homomorphisms μλ and μ2 agree on atomic
formulas of Lγ\, then they agree on Q, which is constructed from atomic
formulas by operations of the polyadic algebra Lγ\. In this c a s e ^ ! = ^ 2 ,
against the hypothesis of (C). Then there must be an atomic formula
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p = Ftx . . . tn of Q such that μ1Ft1 . . . t» Φ ̂ 2Ftx . . . tn- If all terms of p
are in I, then by (8.4), fx Φf2, so that Xx Φ X2- If some term of p is in K,
then this case reduces to the previous one as follows.

We consider the case in which one term of p is in K; the general case
follows by induction. As shown in the proof of (8.7), μιFtx . . . tn(x) =
μiΛ'i . . . in(xH), for all ^eX1, for some J = {ilf . . . ,4 }c |, and for some
H c J; similarly for μ2. By hypothesis μ1Ft1 . . . tn(x) Φ μ ^ i . . . tn(x), for
some xe X1; then for such*, μ.1Fiί . . . in(xH) * μJFi - . in(xH), which is the
case already considered. (C) is thereby established. (8.1) follows from
(A),(B),and(C).
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