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A SOLE SUFFICIENT OPERATOR

T. C. WESSELKAMPER

Generations of students have been asked to prove (as an exercise) that
the Sheffer stroke operator is a sole sufficient operator to define all of the
monadic and dyadic operators in a two-valued space. A two-place
functionally complete operator has come to be called a Sheffer operator [1].
We define a three-place operator S suggested by the work of A. A. Markov
[2] in the theory of algorithms and prove that this operator is functionally
complete over any finite-valued space. The proof is constructive.

Let X(n) be the space of values T=1,2,...,n=F. Over X(n) define:
_ 2, ifx=y;
M Sxyz—{x’ if x # y.

Consider, as an example, the two-valued case, T =1, 2 = F. Negation,
implication, conjunction, alternation, and the Sheffer stroke are defined by:
(2) Nx = STxF; Cxy = STxy; Kxy = SxTy; Axy = SxFy; Dxy = x/y = STSxTyF.

From this it is clear that S is a sole sufficient operator in the two-valued
case.

In the general case we define n operators V;, 1 <j < n, such that V;x
has the value 1 if x = j, and V;x has the value n if x # j.

3) Vix = {SlSlxnn, ifj=1;

SSjxljn, if 2 <j < n.

Ifx=3j=1,V,1=S1S11nn = Slnn = 1.
If x#+j=1, Vix =S1S1lxnn = S11ln = n.
Ifx=j+1, Vix = SSjjljn = Sljn = 1.
Ifx#j+1, Vix =SSjxljn = Sjjin = n.

Hence definition (3) has the desired property. Define:
(4) Kxy = Sx1y.
Note that K11 = 1 and that K1z = Knl = Knn = n.
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Now suppose that x,, x,, ..., %, are k variables with values in the
space X(z), and suppose that, among all of the n* possible states of these
variables, @ is the state defined by x, = ¢,, x; = £, . . ., % = £z, where for
each ¢ such that 1 < ¢ <k, {; e X(r). Define:

(6) XM = KV, 5KV, %K . . . KVy_ %31 Vi %25

where A\ varies over the space of all possible states of the k variables
X1, . . ., Xp. Substitution of (3) and (4) into (5) produces an expression in
which S is the sole operator. Each of the arguments V,,. x; takes on only the
values 1 or n. By the remark following definition (4), Xo()) takes on the
values 1 if and only if V, x,=...=Vy,x% =1; that is, if and only if,
Xy =t),% =8, ...,% =l; that is, if and only if, A = Q. In every other one
of the possible states Xo()) = n.

Next suppose that f is a k-adic operator and suppose that f operating on
the k variables x,, ..., % in the state @ produces some result different
from 7 e X(n). Suppose that we wish to define a k-adic operator f' which
has the same effect as f in each of the n* - 1 states other than @ and which
produces the result 7 in the state €. Define:

SS1 Xo(A\)n1f(A), if r = n;
SS Xo(W1rnf()), if 7 + n.

If A=Q and 7 = n, f'(A) = SS11nl1f(A) = Snl1f()) ==.
If x=@Qand v #n, f'(A) = SS11rnf(\) = Srnf(A) = 7.
If A+ Qand 7 = n, f'(A) = SSlunlf(x) = S117(A) =f(2).
IfA+Qand 7 +mn, f'(N) =SSulrnf(\) = Senf(A) = f(A).

If f is defined in terms of S alone, then f' is defined in terms of S
alone.

(6) r'o =4

Theorem If f is a k-adic operator over X(n) then f can be defined by an
expression involving S as the sole opevator.

Proof: Let f, be an arbitrary k-adic operator over X(n) defined by an
expression with S as the sole operator. If f, = f for each of the n* possible
states, then there is nothing to prove. If f, and f differ for some finite
number of states (say %), then let @; be one of these states and suppose that
f(Q,) =7 # fo(@,). By (6) define a new operator f; such that in the states Q,,
f1 produces the result 7 and in every other state f; produces the same
result as f,. This new operator f, differs from fin # - 1 states. Applica-
tion of the process k times produces an operator f, which has the same
effect as f in each of the n* possible states.

For example, consider the following definition of equivalence proposed
by Lukasiewicz [3] for a three-valued logic:

M1 2 3
1|1 2 3
2 |2 1 2
3 /3 2 1
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We wish to express this in terms of S alone. A reasonable ‘‘first guess’’ is
obtained from the definitions of (2), namely:

E,xy= KCxyCyx = SSTxyTSTyx = SS1xy1Slyx,
This has the truth table:

E, |} 1 2 3
1 1 2 3
2 2 1 1
3 3 1 1

E, differs from E in the two states:
Ql: x=2;y=3;andQ2: x=3sy=2'

From (3), Vox = SS2x123; Vyx = SS3x133 = S3x1.
From (4) and (5), Xo,(\) = KV,xV3y = SSS2x1231S3y1.

We wish E, to differ from E, in the state @, by taking on the value 2 in that
state. Then,

E,(A) =SS XQL(A)123E0(7\) = §55552x1231S3y1123SS1xy1S1yx.
This differs from E only in the state @,.
Xo,(\) = KV3xV,y = SS3x11552y123.

We wish E, to differ from E, in the state @, by taking on the value 2 in that
state. Then,

E,(0) = 5%, (0)123E,()
= 55553x11552y123123555552xx123153y11235S1xy1S1yx.

Finally, Exy = E;xy.

The author is grateful to Mr. Eric Nixon of the University of London
Institute of Computer Science who conjectured this resuilt.
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