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LOGIC OF ANTINOMIES

F. G. ASENJO and J. TAMBURINO

Purpose There are essentially three ways of looking at antinomies.
The first is to consider them as undesirable anomalies. This is the
predominant view, and was Russell’s when he discovered the famous
antinomy that bears his name. Because of the devastating consequences
that result from the presence of a single antinomy in any system based on
classical logic, this view has been understandably strong. It is well known,
for example, that Frege reacted with extreme and lasting consternation to
Russell’s discovery. The second view considers antinomies less dramati-
cally, taking them as merely harmless abnormalities. Remarkably enough,
this was Cantor’s position ([4], pp. 384-5), as well as Wittgenstein’s: “‘If a
contradiction were now actually found in arithmetic—that would only prove
that an arithmetic with such a contradiction in it could render a very good
service’’ ([5], p. 181e). From this second point of view the problem with
antinomies is how to confine them, how to prevent their turning every
well-formed formula into a theorem without eradicating them and without
abandoning or radically altering the system in question. The third and last
view is to see antinomies as useful logical entities.' According to this
position antinomies must be integrated into logical systems starting with
the propositional calculus, bearing in mind that while some sentences have
only one truth value, others have two. To use an example from ordinary
language, a sentence such as ‘‘It is raining here now’’ can only be true or
false, but not both. In contrast, ‘‘Peter is a good man’’ is not a single-
valued sentence and no attempt should be made to make it one. There are a
number of more or less artificial interpretations of propositional seman-
tics whose chief objective is to suppress the antinomies’ first obvious
meaning, be the antinomies taken from ordinary language or from
mathematics. For example, it is against Cantor’s original conception of

1. There are several philosophic precedents to this position. Kant, for example,
attached to antinomies the positive function of preventing reason from slumbering
—apart from their playing a very important demonstrative role in his own
philosophy.
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set theory to interpret the multiplicity of all the sets which are not
members of themselves as a meaningless notion or as a class that is not a
member of any other class. This paper adopts the third viewpoint, at the
same time accommodating the second. Our aim is to construct an antinomic
logic which is not trivially inconsistent and is complete in the sense that
the theorems of the propositional and predicate calculi are, precisely,
those formulas which are true or antinomic in each of these calculi. As an
application of such calculi, an antinomic set theory is presented, one that
in various ways is closer to Cantor’s original naive idea of set. We found
that in addition to the intrinsic merit of building a set theory with a positive
attitude toward antinomies, working with antinomic sets provides a new
insight into classical axiomatic set theory.?

I. AN ANTINOMIC PROPOSITIONAL CALCULUS

1 Antinomies Semantically Considered There will be two kinds of state-
ment forms, those having only one truth value (true or false) and those
called antinomies having two truth values (both true and false). Labelling
truth, falsity, and antinomicity with the symbols 0, 1, and 2 respectively,
the propositional connectives can be defined by the following truth tables.

£1352 51&5‘2 Klvﬂz
ﬂz £2>

£y 0 1 2 B, 01 2

0 0 1 2 0 0 0 0

1 111 1 0 1 2

2 2 1 2 2 0 2 2
515052 151

B, B2

BN\ 0 1 2 BN\ |0 1 2 By |14,
0 01 2 0 011 0 1
1 1 01 1 1 01 1 0
2 2 1 2 2 1 1 2 2 2

The tables for conjunction, disjunction, and negation are the same as those
given in [2], p. 103, where motivation for the construction of these tables
is provided. The table for implication differs from that given in [2] for the
case in which #, has value 2 and 4, has value 1, a difference that is
justified by syntactic reasons. With these tables it is easy to verify that
some compound statement forms are antinomic for all possible assign-
ments of truth values to the atomic statement letters, while others are not.

2. The authors wish to thank Professor D. Randolph Johnson for his thoughtful read-
ing of this paper and for his valuable suggestions. Also, it should be noted that
portions of a previous version of this paper were used in the second author’s
doctoral dissertation.
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In fact, many classical tautologies still have the value 0 even where value 2
is involved (see examples at the end of this section). The statement form
£, =° B, can alternatively be defined as an abbreviation of (#;,=4£,) &
(181 = 18,).

Two alphabets will be used for atomic statement letters. The capital
Roman A,, A,, ... are statement letters that take only one of the truth
values 0 or 1, while the capital Roman B,, B,, ... are statement letters
that take only the truth value 2. Script of,, -f,, ... denote atomic or
compound statement forms that take only the truth values 0 or 1, and script
£y, L2, . ..denote any statement forms, either atomic or compound,
whatever their truth values. The formation rules for statement forms
follow (we shall let £, = £, stand for (£, D £,) & (B> O £1)).

1. All capital Roman statement letters are statement forms.

2. If £, and K, are statement forms, then £, O &, £, & L2, B1v K2, and 14,
are also statement forms (notice that since the o#’s are special cases of the
#’s, expressions formed using rules 1 and 2 and involving only -A’s or
combinations of #’s and £’s are also statement forms).

3. Expressions formed according to rules 1 and 2 are the only statement
forms (also called formulas, or well-formed formulas-wfs).

Statement forms taking only 0 or 2 for any arbitrary assignment of
truth values to their statement letters will be called tautologies. The next
metatheorems give some properties of tautologies.

Proposition 1.1. If £, and B, O B, are tautologies, then 8, is a tautology.

Proof: Suppose £, takes value 1, since &, is a tautology #, O &, cannot be
a tautology, contrary to the hypothesis.

Let us now distinguish between tautologies of type I—those having only
0’s as values—and tautologies of type II—those having 0’s and 2’s as
values.

Proposition 1.2. If o, and A, D oA, are both tautologies of type 1, then A,
is also a tautology of type 1.

Proof: By Proposition 1.1, o4, is a tautology. If 4, were to take value 2,
then A4, O A4, should also take value 2, contrary to the hypothesis.

Proposition 1.3. If 8; is a tautology containing as statement lettevs A,, ...,
Apy By, .. ., By, and Ji} avises from B;j by substituting statement forms
Ary ooy AmfOV Ay, . o ., Ap, and By, . . ., By for By, . . ., By, vespectively,
then Ji} is a taulology.

Proof: For a given assignment of truth values to the statement letters of

Rj, the statement forms o, ..., 4, take truth values %, ..., Xs, and
&£, . . ., By take truth values y,, . . ., y, (Where the x;’s are 0 or 1, and the
y:’s are 0, 1, or 2). If the truth values x,, . . ., x,, are assigned to 4,, . . .,

A,, and the truth values y,, . .., ¥, are assigned to B, . . ., Bs, then &;
takes the same value as /5,". Since £; is a tautology, then so is 5,'
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Proposition 1.4. If ,8; arvises from &; by the substitution of B, for one ov
move occurrences of £y, then (8, =° £,) O (B; =° B]) is a tautology.

Proof: Consider any assignment of truth values to the statement letters of
#; and B,. If either £, or K, takes value 1 and the other does not, then
£, =° B, takes value 1. If either £, or &, takes value 2 and the other takes
value 0, then #, =° B, takes value 1. So if #, and &, have different truth
values under the given assignment, then &£, =°#, takes value 1, and
(8, =" 8,) D (Bj =° &) takes value 0. If &, and &, have the same truth
values, then so do #; and &/, since &/ differs from &; only in some of those
places where #, occurs in £;. Thus, for the given assignment, &; =" &
takes value 0 or 2, and (£, =° £,) D (&8 =° &/) takes value 0 or 2.

The following list of statement forms, all tautologies, is given here for
future reference.

(1) (B12A) DO ((B12 1A) D 1K)
(2) (B.2 A) D (14,2 18
(3) By & £2) =° 1BV 18,
(4) 1(51V 52) =° 151 & 152
(5) (8,2 By) D 1Byv B,
6) B DO HL) =E & 1A
(7 Ay DBy =° -laﬁvﬂ1
(8) 51 =° 1151‘
(9) (B> H) DB DA,
(10) (812 B2) 2 (812 (B2 D B3) 2 (K1 2D £s))

The following classical tautologies are not tautologies in the present
calculus.

(1) (A2 B8)D(1B.2 1Ay

(2) (A Byv By) O (B, D &)

() #2182 A)

(4) 1Byv Bz = (£, D Re)

(5) (18,2 18, D ("B, D By) D LY

2 Antinomies Syntactically Considered and the Completeness Theorem
The same letters used for the various statement forms in the previous
section also apply here. We shall call a statement form (or wf) £, an
antinomy in the syntactic sense if and only if #, and 14, are both theorems.
Statement letters A,, A,, . .. will be atomic wfs that are not antinomic (in
the syntactic sense), and B,, B,, . .. will be atomic wfs such that both B;
and 1B; are provable. The rules of formation for wfs involving all or some
of these letters (A’s, B’s, o’s, or £’s) are the same as those given in the
preceding section. In addition, the following closure conditions are in
order for the syntactic determination of the -#-formulas.

Cla. All statement letters A,, A;, . . . are o4/-formulas.
Clb. The formulas A, D A,, A, &A,, A,vA;,1A,, B, D A,,and A, D (4,v B)
are all o/-formulas.
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C2a. If o4, and of; and of-formulas and &, is any wf, then o, D Ay, A, & As,
ALV Az, VoA, By D Ay and A, O (A v B) are A-formulas.

C2b. I 14, is an oA-formula, then £, is an -formula.

C3a. Axiom L3a and Axiom L3b are A#-formulas (see axioms below).

C3b. Theorems inferred from f-formulas by modus ponens are A-
formulas.

It should be noted that under these closure conditions the propositional
rule of inference of modus pomens plays a basic role in determining the
oA-formulas. Hence, the class of o-formulas will vary according to the
theory T under consideration. If new axioms are added to T, then the class
of A-formulas usually increases. If I'is a sequence of wfs to be added to
the axioms of a theory T (presumably I' would contain some new f-
formulas not provable in T), and if &, is an A-formula in the theory T’
obtained from T by adding the wfs of I" as axioms, then we shall say that in
the theory T &, is an A-formula relative to T.

The axioms and rule of inference for our propositional calculus L
follow.

Ll. B8, 2(8, 2O 4AK)

L2. (8,2 (B2 2 By) D (B2 By) DO (8,2 Ay)
L3a. -lall 2 (a’l ) 51)

L3b. 1A D A & BY)

L4. (8.2 #;) 2 (B D Ly 2 B)
L5. £,2 (18,2 1E D A))

L6. &£, 2 (8D (B & £K2))

L7a. ﬂl D 1A,

L7. 114,28

L8a. £, & B, DO A,

L8b. B, & B, D A,

L9a. 51 2 Is’lv ﬂz

L9b. 52 2 zﬁ’lv ﬁz

L10. 1&,v 18, D B, & &)

L1l. 18, & 18, 2 UByv E,)

L12. W&y D £o) O (B, & 14s)

L13. 1B; & B;

Rule of Inference
(Modus Ponens) £, and £, O K, yield £,.

Proposition 2.1. (Deduction Theorem) If I' is a set of wfs and 8, and B,
ave also wfs, and if T'y B, By, then T' =8, O B,.

The proof involves only axioms L1 and L2, and does not differ from the
classical Deduction Theorem. Cf. for example [3], p. 32.

Corollary 2.2.

(D) B2 By B2 D Bak B D By
(1) By 2 (B2 D By), By -8y D Ky
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Proposition 2.3. Every theovem is a tautology.

Proof: All the axioms of L are verifiable tautologies, and by Proposition
1.1 modus ponens yields only tautologies from tautologies.

The converse of Proposition 2.3 calls for the following lemma.

Lemma 2.4. Let 8 be any wf and let T be the sequence of statement letters
A,...,Apn, By, ..., Byof 8. For a given assignment of truth values to
Ay, . vy Amy By, « . ., By let B; be 1B; & B;. Let A} be A; if A; takes value
0 and let A; be 1A; if A; takes value 1. Let &' be B if B takes value 0; let
B' be 1B if B takes value 1; let B' be 1B & B if & takes value 2. Let T be
Al, ..., An, Bl, ..., Bi. ThenT'+#" and when & takes values 0 or 1, then
B is an A-formuld relative to T' and is not antinomic relative to T’ (i.e., it
is not the case that T'"+ & and T' -1 £).

Proof: By induction on the number » of primitive connectives. For the
case n =0 we just have the statement letter A, where k=0, or B, where
m = 0. In the first case, the lemma reduces to A, A, or 14, +1A4,. Since
B, takes value 2, then B{ is 1B, & B, and therefore 1B, & B, + 1B, & B;.

Assume & takes value 0, then # is A, (I’ is A,). A, takes value 0 since
R is A,, so £ is an A-formula by condition Cla for #/-formulas. If I'' 14,
and I'"+A,, then I'"+1A4, & A, by Axiom L6. But I' is A;, so by the
Deduction Theorem +A,D (14, & A,), a formula which should be a tautology
by Proposition 2.3. However, A, D (14, & A;) is not a tautology, so 4, is
not antinomic relative to I''.

Assume £ takes value 1. Then # is A, and I is 14,. A4, is an
A-formula by conditions Cla and Clb for o#-formulas. If I''+1A4, and
I'" +11A,, then T'+A, by Axiom L7b and so I''+1A4, & A, by Axiom L6.
By the Deduction Theorem 14, D (14, & A,), a formula which should be a
tautology by Proposition 2.3. However, 14, D (14, & A4,) is not a tautology,
so £ is not antinomic relative to I'.

We assume now that the lemma holds for all j < n.

Case 1. £ is 1#,. Then B, has fewer than z occurrehces of primitive
connectives.

Subcase la. Let #, take value 0 under the given truth value assignment.
Then # takes value 1. So A} is #; and &' is 14&. By inductive hypothesis
applied to #, we have I''+4#,. Then by Axiom L7a T’ 11#,. But 7114,
is B'.

Subcase 1b. Let #, take value 1. Then £} is 14, and £’ is £. By inductive
hypothesis I'' -14,. But 14, is £'.

Assume A takes value 1. Then &, takes value 0 and by inductive
hypothesis £, is not antinomic relative to I'' and is an #-formula relative
to I'". By condition C2a for #-formulas & is an of-formula. If I''+ 14,
and T''+114,, then using Axiom L7a I'"+14, and I+ #,. But &, is not
antinomic relative to I'', so & is not antinomic relative to I'.

Assume £ takes value 0. Then &, takes value 1. Since &, takes
value 1, by inductive hypothesis &£, is not antinomic relative to I'' and &, is
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an ~#-formula. Since &£, is an A-formula, 14, (which is £) is an o/-formula
by condition C2a for of-formulas. If I'"+14, and I'' - 11 4,, then I'' -4,
and I''+ £, using Axiom L7b. However, by inductive hypothesis, #, is not
antinomic relative to I'!, so &£ (which is 14,) is not antinomic relative to I''.

Subcase 1lc. Let £, take value 2. Then A#! is 14, & #£, and £' is 1K & A.
By inductive hypothesis applied to £, we get I'' - 148, & #,. By Axioms L8a
and L8b we have I'"+14, and T'+4,. By Axiom L7a we get I'' J14,.
‘Then by Axiom L6 we have I'' - 11&,; & 14; which is 14 & & and which is
also £'.

Case 2. His £, D £,. Then A, and A, have fewer occurrences of primitive
connectives than £.

Subcase 2a. £, takes value 1. Hence & takes value 0. Then &} is 14; and
B' is . So T'+14K,. By inductive hypothesis £, is an #-formula. By
Axiom L3a I''+-#8, O B,. £, D AL, is A.

Subcase 2b. &, takes value 0. .Then I'"~#8, and ' is £. By Axiom L1
T'-4, O K,. But £, D A, is A. ‘

Subcase 2c. &, takes value 1 and £, takes value 0 (or 2). Then & takes
value 1 and K’ is 14. By inductive hypothesis we have I''+ &, (or
I'+-14, & #£,) and T'+14,. Thus by Axiom L5 we have (£, O #,) which
is 8'.

Assume £ takes value 0. Let #, take value 1. By inductive hypothesis
£, is not antinomic relative to I'" and 4, is an o/-formula. &£, to take
value 1 implies I'' - 14,. Since &, is an o/-formula, then by condition C2a
for A4-formulas 114, is an of-formula. By condition C3a 14, D (8, O #,) is
an A-formula relative to I''. Since 14, and 1K, D (K, D K,) are A-
formulas, then (£, O £;) is an A#-formula relative to I'' by condition C3b
‘and the fact that T''+148,. £ I'"+ 4, DBy and T - (L, O &K,), then T'+ £, &
148, and I'" 4, by Axiom L12 and Axiom L8a. But £, is not antinomic
relative to I'', so # is not antinomic relative to I''.

Assume £ takes value 0. Let &, take value 0. By inductive hypothesis
#, is not antinomic relative to I'' and #, is an of-formula relative to I,
By condition C2a &, O &, is an of-formula. If T''+ (K, D K,) and T''+- K, D
Ry, then 'K, & 1L, I'"'+1L, and I'+ K, by Axiom L12, Axiom L8a and
Axiom L8b. Since I''+ &£, and I''+ £, DO K,, then IT''+ £,. However, &, is not
antinomic relative to I'', so & is not antinomic relative to I''.

Assume # takes value 1. Let £, take value 0 (or 2) and #, take value 1.
By inductive hypothesis the lemma holds for #,, so I'' - 14, £, is not
antinomic relative to I'" and 4, is an ~#-formula relative to I'"'. Since &4, is
an o-formula relative to I'', then by condition C2a for:of-formulas £, O &,
is an A-formula relative to I'". If T'+ (£, O #,) and I''+ K, O £,, then
T'+4, & 18, and T' -8, by Axiom L12 and Axiom L8a. Since I''+ &, and
T'+4#&, DO A,, then T'"+A,. However, K, is not antinomic relative to I, so
£ is not antinomic relative to I". '

Subcase 2d. &, takes value 2 and &, takes value 0 (or 2). Then £, D &,
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takes value 2. Thus &} is 18, & £, and K] is £, (or A, & 148,) and B’ is
148 & B. Therefore by inductive hypothesis I'' =18, & 8, and I'' - £,. Thus
by Axiom L8a we deduce 14, and by Axiom L5 we deduce (£, O #,) which
is 1#. With the use of Axiom L8b and Axiom L1 we have #; O &, which is
#. Thus it follows that we have (£, D &) & (£, O #,) which is 18 & & or
A'. (When £, takes value 1, and £, takes value 0 (or 2) then Subcase 2a
applies.)

Case 3. K is B, & #,. Then £, and K, have fewer occurrences of primitive
connectives than £, so by inductive hypothesis I'' - 8] and T'' - £3.

Subcase 3a. #, and &, take value 0. Then & takes value 0 and &' is &£, 8]
is #,, and #3 is B.. By inductive hypothesis I''+ £, and I''+£,. Then by
Axiom L6 we deduce £, & &> which is £&’'.

Subcase 3b. &, takes value 1. Then & takes value 1 and £'is 14, A is
14,. By inductive hypothesis I'' - 14,. By Axiom L9a we deduce 14,v 14,
and by Axiom L10 we deduce (&, & #,) which is &'. (When £, takes
value 1 the argument differs only in the use of Axiom L9b instead of L9a.)

Assume & takes value 0. Then &, and &, take value 0. By inductive
hypothesis #, and £, are not antinomic relative to I'', are #-formulas
relative to I'", and I''+ #&,. By condition C2a &, & #; is an A-formula
relative to I''. By Axiom L3a, '+ 1(#, & #,) O (B, & £») D 1H,). I I'+
(B, & B2) and T'+ (K, & HKo), then I'' +—14,. However, £, is not antinomic
relative to I'’, so & is not antinomic relative to I''.

Assume £ takes value 1. Let #, take value 1 (the proof is the same if
#, takes value 1). By inductive hypothesis I''+14,, #, is not antinomic
relative to I'’, and #, is an o/-formula. By Axiom L3b, I'' 14, D (4, &
#,). Since I'+14,, then I'+1(H, & £;). By conditions C3a and C3b
(£, & #,) is an A-formula. By condition C2b £, & &, is an A-formula. If
'+ (K & £2) and T'+~ KL, & K, then T'' L, by Axiom L8a. However, £,
is not antinomic relative to I'', so & is not antinomic relative to I'’.
Subcase 3c. &, takes value 2 and &, takes value O (or 2); then &’ is
18 & B, BLis 1A, & K, and B} is £, (or 1K, & ;). By inductive hypothesis
'8, &£, and T'—H, (or I' 18, & B5). From 14, & £, and Axiom
L8a and Axiom L8b we deduce 114, and #,. By Axiom L9a we have
14,v 18, and by Axiom L10 we have 1(#, & #,) which is 14. By Axiom L6
we have &£, & 8, which is & and by use of Axiom L6 again we have 148 & &
which is #'. (The proof when &, takes value 2 and &, takes value 0 (or 2)
goes along the same lines.)

Case 4. £ is #B,vA,. Then £, and &, have fewer occurrences of primitive
connectives than #, and so by inductive hypothesis we have I'' #] and
'+ B3.

Subcase 4a. #, takes value 0. Then & has value 0, &' is £ and 8] is 4;.
Thus by inductive hypothesis I''+&#, and by Axiom L9a we have &,v &,
which is B'. (The case where £, takes value 0 is similar.)

Subcase 4b. £, takes value 1 and &, takes value 1. Then & takes value 1
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and A’ is 14, B{ is 14, and A} is 1K,. So by inductive hypothesis I'' 14,
and I'" +148,. Thus 14, & 1#, follows from Axiom L6 and by Axiom L11
we obtain (&, v &) which is 18 or £'.

Assume £ takes value 0. Let £, take value 0. By inductive hypothesis
I'+4,, £ is not antinomic relative to I'’, and &, is an A#-formula relative
to I'. T'+#&, DO (K vA,) by Axiom L9a. &, D (L, vAH,) is an A-formula

.relative to I'" by condition C2a for oA#-formulas, so £,v &, is an o/-formula

relative to I'' by condition C3b for o/-formulas. By condition C2a (&, v &,)
is an A-formula relative to I'', so I'' +1(B,v L) O (KLv By) D 1K) by
Axiom L3a. If I'" + (&, v &,) and I'' - B, v L, then I'' + 14,. However, &, is
not antinomic relative to I'', so & is not antinomic relative to I'". (The case
where &, takes value 0 is similar.)

Assume K takes value 1. Let £, and &, therefore take value 1. By
inductive hypothesis I''+-14; and I''+14;, £ and A, are not antinomic
relative to I'', and #, and &, are ~A#-formulas relative to I''. Since &, and
B, are A-formulas relative to I'', then by condition C2a for A-formulas
Biv B, is an A-formula relative to I''. By Axiom L3a I''+1(E,v L) D
((Byv B2) D B). If T'+1(Byv By) and T+ B, v K,, then I+ £,. However, £,
is not antinomic relative to I'’, so & is not antinomic relative to I''.

Subcase 4c. &, takes value 2 and &, takes value 1 (or 2). Then & takes
value 2. So £’ is 18 & &, B is 18, & K, and K is 1K, (or 1K, & K,). By
inductive hypothesis I''+ 18, & #, and T'+ 148, (or I'' 1K, & £,); it then
follows that 714, is obtained from Axiom L8a, 14, & 148, is obtained from
Axiom L6 and finally from Axiom L11 we get 1(#,v #,) which is 18. £,
follows from Axiom L8b and by Axiom L9a we have £,v#, which-is A.
Therefore by Axiom L6 we obtain 14 & & which is £'. (For the case when
£, takes value 1 (or 2) and £, takes value 2 the argument is similar.)

Proposition 2.5. If a wf £ is a tautology, then £ is a theorem.

Proof: Let £ be a tautology and let A,, ..., A,, By, . .., By be the state-
ment letters occurring in £. For any assignment of truth values to the
statement letters A,,...,A,, B), ..., By occurring in & we have by
Lemma 2.4 that Al, ..., A,, Bl, ..., Bi-&'. But since # is a tautology,
for any given assignment of truth values to the statement letters occurring
in £, the tautology & will take value O or 2. Thus &' is Sor £' is 1K & A;
in any case, A!, ..., An, B!, ..., Bi+ 8 for any assignment of truth values
to the statement letters occurring in #. By is 1B, & Biand A}, . . ., A,',,,
Bl, ..., 1B & By +~#8. By application of Proposition 2.1 (Deduction Theo-
rem) it follows that A}, .. ., A,',,, B!, ... Bi,+1B, & By D 8. By Axiom
L13 we obtain 1B, & Br. Thus we obtain Al, ..., An, Bl, ..., Bi,+ &.
By repeating this argument k-times we eliminate the B;’s. If A, takes value
0 for a given assignment of truth values to the statement letters, then A,',, is
A, and Al, ..., A1, A,+-8. If A, takes value 1 for another assignment
with the same truth value for the A,’s up to A,._,, then A}, ..., Aj_y,
1An+ &. Applying the Deduction Theorem is both cases it follows that
Al .. LA A, D Band A, ..., A, +1A, D #. By Axiom L4 we have
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! ..., AL, +&#. Repeating this argument m-times we eliminate the A4;’s.
Thus we obtain +&A.

Proposition 2.6. A wf £ is a tautology if and only if it is a theorem of the
theory L.

Proof: Proposition 2.3 and Proposition 2.5.

Corollary 2.7. The theory L is absolutely consistent (i.e., not all wfs are
provable).

Proof: There are wfs which are not tautologies.

It should perhaps be remarked that the metatheory employed so far
uses the entire classical propositional logic—not an antinomic one. In fact,
nowhere in the remainder of the paper will antinomic proof methods be
extended to the metatheory.

II. AN ANTINOMIC PREDICATE CALCULUS

3 Antinomic Predicate Formulas Semantically Considered In anticipation
of the formal definition below, we can say that an antinomic formula
Bi(%y, ..., x,) will be one that for all n-tuples x,, ..., x,, both £;(x,, ..., %)
and 14;(x,, . . ., %,) hold. Accordingly, (¥) ... (%) &;(%:, ..., %,) will be
an antinomic sentence if #;(x,, . . ., ¥,) is an antinomic predicate formula.
Let us use Roman capital A4,, 4,, ... for predicate letters which for no
n-tuple %, . . ., %, it is the case that both A;(x,, ..., %,) and 1A4;(x1, . . ., %)
hold, and let us use Roman capital B,, B,, ... for predicate letters for
which there exist at least one n-tuple x,, . ..., %, such that both Bi(x,,..., %,)
and 1B;(x,, . . ., x,) hold. Let us also use the predicate letters B¥, B¥, ...
to denote that subcollection of the B’s for which B¥(x,, ..., %) and
1B¥(%y, . . ., %,) both hold for all n-tuples. (n indicates the number of
arguments—or rank—of the predicate letters A; or B;, which is different in
general for each i) Let script of,, of3, ... denote predicate formulas
which for no n-tuple x,, ..., %, it is the case that both A4;(x,, . . ., %,) and
A i(%y, . . ., %) hold, and let script &,, &;, . . . denote predicate formulas
for which there may be n-tuples x,, ..., %, such that both &;(x,, . . ., %,)
and 1&;(xy, ..., %,) hold (obviously, the o#’s are particular cases of the
#’s). Let us use x;, %,...for individual variables, a,, a,, ... for
individual constants, the same symbols used before for the propositional
connectives (including =°), and the symbol (x;) for universal quantification
(existential quantification being defined in the usual way). The rules of
formation for terms and formulas follow.

1. Individual variables and individual constants are terms.

2. If ¢y, . . ., t, are terms, then A;ty, .. ., 7,) and B;(ty, . . ., ¢,) are atomic
formulas (assuming that both A; and B; are of the same given rank »).

3. Atomic formulas are wfs (well-formed formulas).

4. If £, and B, are wfs (in particular, if £, is of, and &, is of,), then so are
51 ) 53, 51 & 52, £1V(Eg, 151, and (x,-) 46’1(x,~).
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5. If A4, and &, are wfs, then so are of, D By, B, D Ay, A, & By, By & A4,
Alvﬂl, and 51V7’1.
6. These are all the terms and wfs.

Wifs have meaning only when an interpretation is given to the formal
language just described. An interpretation for us shall consist of the
following items.

1. A non-empty set D called the domain of the interpretation.

2. An assignment to each predicate letter A; of rank » of an n-place
relation A; in D.

3. An assignment to each predicate letter B; of rank n of a pair of
non-disjoint n-place relations Bj and Bj in D such that the union of B} and
B} is the whole cartesian product D"

4. An assignment of a fixed element of D to each individual constant.

The notions of satisfiability, truth, and antinomicity shall be made
precise in the following way. Let an interpretation with non-empty domain
D be given. Let Z be the set of all denumerable sequences of D. We shall
define what it means for a sequence s = (b, b,, . . .) in T to satisfy a wf 4;
or £; under the given interpretation. Let s* be a function of one argument
with values in D such that

(1) If tis x;, then s*(f) is b;.
(2) If ¢ is an individual constant, then s*(#) is the interpretation in D of
this constant.

Now we define the notion of satisfiability by induction.

la. If #; is an atomic wf of the form A,;(#, ..., %) and A; is the cor-
responding relation in the given interpretation, then the sequence s
satisfies #; if and only if A[(sX(#), ..., s¥(t)) (i.e., iff the n-tuple
(s*(#), . . ., s*(£,)) is in the relation A;).

1b. If #; is an atomic wf of the form B;(#, . . ., #,), then s satisfies #; if
and only if B;(s*(ty), . . ., s*(t,).

2a. If £; is an atomic wf of the form A;(¢, . . .,t,), then s satisfies 14; if
and only if s does not satisfy A;(¢,, . . ., ).

2b. If K;is an atomic wf of the form B;(¢,, . . ., 4,), then s satisfies 14; if
and only if B} (s*(t,), . . ., sX¢)).

2c. If #; is a wf (atomic or not), then s satisfies 114; if and only if s
satisfies &;.

If £; and &, are wfs, then

3a. s satisfies #; D B if and only if s does not satisfy &; or s satisfies #.
3b. s satisfies (&; O #) if and only if s satisfies #; and s satisfies 1£x.
4a. s satisfies (&; & #,) if and only if s satisfies #; and s satisfies &;.

4b. s satisfies 1(#; & #) if and only if s satisfies 14; or s satisfies 4.
5a. s satisfies &;v & if and only if s satisfies &; or s satisfies &;.

5b. s satisfies 'I(Js’,-v #,) if and only if s satisfies 14; and s satisfies 1.
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6a. s satisfies (x;) #; if and only if every sequence of T which differs from
s in at most the 7’th component satisfies &£;.

6b. s satisfies 1(x;) &; if and only if there is a sequence s' in T which
differs from s in at most the ¢’th component such that s’ satisfies 14;.

The definitions of true, false, and antinomic formulas are as follows.

D1. A wf #; is said to be true (for a given interpretation) if and only if
every sequence in Z satisfies &£;.

D2. A wf &; is said to be false (for a given interpretation) if and only if
every sequence in T satisfies 14;.

D3. A wf #; is said to be antinomic (for a given interpretation) if and only
if 8; is both true and false.

D4. An interpretation is said to be a model for a set I'" of wfs if and only if
every wf in T is either true or antinomic for that interpretation.

The following properties can be verified from the preceding definitions
plus definitions D5 to D8, which can be found after properties P10, P16,
and P18.

Pl. If a wf £, is an of; (for a given interpretation), then &, cannot be both

true and false (for that interpretation).

P2. If £, and &£, D K, are true and not antinomic (for a given interpreta-

tion), then so is &, (for that interpretation).

P3. I £, and £, D &, are antinomic (for a given interpretation), then so is

&, (for that interpretation).

P4. If B, is true but not antinomic and &, is antinomic (for a given inter-

pretation), then £, O £, is antinomic (for that interpretation).

P5. If #, is antinomic and &, is true but not antinomic (for a given

interpretation), then #; O &, is true and not antinomic (for that interpreta-

tion).

P6. If &, is true or antinomic and &, is false but not antinomic (for a given

interpretation), then #, O &, is false and not antinomic (for that interpreta-

tion).

P7. A sequence s satisfies &, = £, if and only if s satisfies both £, O &,

and £; O £,.

P8. A sequence s satisfies £, =° &, if and only if s satisfies both #, = &,
and 18, = 14,.

P9. A sequence s satisfies (3x;) £, if and only if there is a sequence s’

which differs from s in at most the ¢’th place such that s’ satisfies &,.

P10. &, is true (for a given interpretation) if and only if (x;) &, is true (for

that interpretation).

D5. By the closure of #; we mean the closed wf obtained by prefixing
universal quantifiers that quantify those variables which are free in £;. If
#; has no free variables, then the closure of &; is defined to be &; itself.

P11. &, is true (for a given interpretation) if and only if its closure is true
(for that interpretation).

P12. If #, is antinomic (for a given interpretation), then the closure of £,
is both true and false (for that interpretation).
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P13. Every wf £, obtained by substitution of wfs for the statement letters
of a tautology is either true or antinomic for any interpretation.

Pl4. If (x;) &,(x;) is satisfied by a sequence S, then so is #,(f), where ¢ is
an arbitrary term. Hence (x;) £,(x;) O £ (¢) is satisfied by all sequences in
any given interpretation.

P15. If &, does not contain x; free, then (x;)(B;, D £,) D (B, D (x;) ) is
satisfied by all sequences in any given interpretation.

P16. 1#,(x;) D 1(x;) B.(x;) is satisfied by all sequences in any given
interpretation.

D6. A wf &, is said to be logically valid if and only if it is true or antinomic
for every interpretation.

D7. £, is said to logically imply &, if and only if in any interpretation
every sequence which satisfies £, satisfies #,.

P17. £, logically implies &, if and only if &, O &, is logically valid.

P18. If #, logically implies &, and &, is satisfied by every sequence in a
given interpretation, then £, is satisfied by every sequence in that inter-
pretation.

D8. &, is a logical consequence of a set I' of wfs if and only if in any
interpretation every sequence which satisfies every formula in I' also
satisfies £;. :

P19. If A, is a logical consequence of a set I" of wfs and all wfs in I' are
satisfied by every sequence in a given interpretation, then £, is satisfied by
every sequence in that interpretation.

P20. A closed wf &, is antinomic for a given interpretation if and only if
14, is antinomic for that interpretation.

P21. A closed wf £, is true but not antinomic for a given interpretation if
and only if 14, is false but not antinomic for that interpretation.

P22. Let (x;) £,(x;) be a closed wf, then this wf is true for a given interpre-
tation and there is a term ¢ for which both #,(f) and 14,(¢) are true for that
interpretation, if and only if (x;) £,(x;) is antinomic for that interpretation.

4 Antinomic Predicate Formulas Syntactically Considered and the Com-
pleteness Theorem A well-formed predicate formula &; will be said to be
antinomic (in the syntactic sense) if and only if both &; and 1&; are
provable. We now introduce an axiomatic system K for a predicate calculus
which will include antinomies (in the syntactic sense). The symbols used
for the language of K are as follows. The same symbols introduced in the
preceding section for the propositional connectives, individual variables
and constants, and universal quantification will apply. Roman capital

Ay, Az, . . . will be used for predicate letters which for no n-tuple of terms
tiy . . ., tn it is the case that both A;(#, ..., ) and 14,(¢, ..., %) are
provable. Roman capital B,, B,, ... will be used for predicate letters

which for some n-tuple of terms #4,...,¢, both B4, ..., ) and
1By(t, . . .,t,) are provable. The symbols B¥, BY, ... will denote that
subsequence of the B’s which for all n-tuples of terms ¢, . . ., f,it is the
case that both B¥(,,...,¢,) and 1B¥(, .. .,t,) are provable. (In each
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case, n indicates the rank of the specific letter A; or B; under considera-
tion.) The rules of formation for terms and well-formed formulas are also
the same as those given in the preceding section (with script £’s again
denoting well-formed formulas in general), plus the following rule: If &, is
a wf, then (x;) £, is also a wf. In addition, we shall let script oAf,, Az, . . .
denote a subcollection of the set of #’s determined by the following closure
conditions.

la. All atomic wfs of the form A;(t,, . . ., t,) are o-formulas.

1b. If o, denotes A;(ty, . . ., In), oAz denotes o#;(sy, . . ., S,), and &, denotes
B(7y, . . ., 7)), then of, D oy, oA & Ary A1V Ay, VAy, A1 D (A v Ey), and
B, D oA, are all A-formulas (where the ’s, s’s, and #’s are all terms).

2a. If o, and o/, are of-formulas and &, is any wf, then of, D oAy, A, & A,
Arv Az, VA, (%) Ay, AL D (ALv 1), and B, D A, are all A-formulas.

2b. If 14, is an oA#-formula, then £, is an A-formula.

3a. Axioms K3a and K3b are #-formulas (see axioms below).

3b. Theorems deduced from f-formulas by modus ponens or generaliza-
tion are o/-formulas.

4. If the closure of &, is not antinomic, then it is an A-formula.

Axioms K1 to K12 of K are the same axioms L1 to L12 of L in
section 2 (interpreting the script letters as corresponding well-formed
predicate formulas); to these we add the following axioms.

K13. Bf(t, ..., t) & 1By, . . o t), (forj=1,2,...).

K14. (x;) B.(x;) D B.(¢), (where t is a term free for x; in #,(x;)).

K15. (x;)(8, D &,) D (B, O (x;) B,), (where £, does not contain x; free).
K16, 8.t . oy ) D xy) ... () Balxy, o X))

In additioh to modus ponens, we will also use generalization as a rule
of inference; i.e., (x;) 8, follows from #,.

Proposition 4.1.- Every wf B, that is an instance of a tautology is a theovew
of K.

(Proofs will not be given where there is no essential difference from
those of the corresponding propositions of the classical predicate calculus.
For example, see [3] for such proofs: we have patterned sections 1 to 4 as
much as possible after this reference to simplify our presentation.)

Proposition 4.2. The system K is absolutely consistent, that is, not all wfs
in the language of K are provable.

Proof: For each wf 8; of K, let 2(#;) be the expression obtained by erasing
all the quantifiers and terms in #; (together with the associated commas
and parentheses). Then %(#;) is a statement form with the A’s and the B’s
playing the role of statement letters. Clearly A(148,) = (&), KB, O By)=
W(By) D WBy), W(B, & By) = W(By) & h(B), and (B, vEs) = h(By) v h(B,). It can
be verified under this transformation that all the axioms of K become
tautologies. In addition, if #(&#,) and #(#&, O &) are tautologies, then #(#,) is
a tautology; and if #(£,) is a tautology, then so is #((x;) £,), which is the
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same as k(#,). Hence, if £, is a theorem of K, then i(#,) is a tautology. If
every wf were provable in K, then for every wf £, h(#,;) would be a
tautology under the mapping 2. In particular, if (A4, O (14, D #,)) were a
theorem of K, then A(1(ch D (A O £Y))) = 1h(A) D (Vh(A) D k(BY)))
would be a tautology, which is not the case. Therefore not all wfs are
theorems of K, and K is absolutely consistent.

Let 8y be a wf in a set I of wfs; assume that a deduction &,, . . ., £,
from I' is given, together with a justification for each step of the deduction.
We shall then say that &; (for i=1,2,...,7) depends upon &, in this
deduction if and only if:

(i) &; is &, and the justification is that it belongs to T; or

(ii) &; is a direct consequence by modus ponens or generalization of some
preceding wfs of the sequence where at least one of these preceding wfs
depends upon £,.

Proposition 4.3. If B, does not depend upon £, in a deduction T'y B, 8,,
then T+ &,.

Proposition 4.4. (Deduction Theorem) Assume that T, B, - B, where in the
deduction no application of the generalization vule to a wf which depends
upon B, has as its quantified variable a free variable of £,. Then
T'-£8,D £,.

Corollary 4.5. If .a deduction T, B,+ 8, involves no application of the
genevalization rule of which the quantified vaviable is free in B,, then
'8, D &,.

Corollary 4.6. If B, is a closed wf and T, B+ By, then T =8, D B,.
Proposition 4.7. Every theorem of K is logically valid.

Proof: Since all the axioms of K are logically valid, and by properties P11
and P17 modus ponens and generalization preserve logical validity, then
every theorem of K is logically valid.

Definition of similar wfs. If x; and x; are distinct, then &,(x;) and &,(x;)
are said to be similar if and only if x; is free for x; in #,(x;) and &i(x;) has
no free occurrences of x;. (It is assumed that #,(x;) is obtained from #,(x;)
by substituting x; for all free occurrences of x;.)

Lemma 4.8. If B,(x;) and B,(x;) ave similar, then —(x;) B,(%;) = (x;) By(x;).

Lemma 4.9. If a closed wf 18, of a first-order theory T based on K is not
provable in T, then the theory T' obtained from T by adding B, as an axiom
is absolutely consistent.

Proof: Assume T' is not absolutely consistent. Then for any wf #; we have
H/#; and ,14;. By the Deduction Theorem, it follows that 8, O 14,, and
by the tautology 14, DO 18, we get 148, O 1#,. Thus, by the tautology
(18, 2 18;) D (8, D 18,) D 18,) and modus ponens, 148, which contra-
dicts our hypothesis that 14, was not provable in T. Thus the theory T' we
obtain by adding &, to the theory T is absolutely consistent.
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Lemma 4.10. The set of expressions of a first-ovder theorvy T is
denumerable. (Hence the same is true of the set of terms, wfs, and closed
wfs of T.)

Definition of Completeness. A first-order theory T is complete if and only
if for any closed wf 8; of T either {14; or 4.

Definition of Extension. A first-order theory T’ having the same symbols
as the first-order theory T is said to be an extension of T if and only if
every theorem of T is a theorem of T'.

Lemma 4.11. (Lindenbaum’s Lemma) If T is an absolutely consistent
first-order theory, then theve is an absolutely consistent and complete
extension of 1. If B; is a closed formula of T, then B; is an A-formula in
T if and only if B; is an A-formula in that complete extension of T. Hence
a closed formula B; is antinomic in T if and only if it is antinomic in the
complete extension of T,

Proof: Let 8, 85, . . . be an enumeration of all closed wfs of T, by Lemma
4.10. Define a sequence Jg, Jy, . . . of theories in the following way. J,is
T. Assume J, is defined, with » > 0. If it is not the case that 5 1&,,,, then
let J,., be obtained by adding £,,; as an additional axiom. On the other
hand, if 5, 14,,,, then let J, = J,,,. Let J be the first-order theory obtained
by taking as axioms all the axioms of all the J;’s, including J, = T. To show
that J is absolutely consistent it suffices to prove that the formula
A, & 14, is not provable in J. If oA, & 14, were provable in J, the proof
would involve only a finite number of axioms; hence, for some n A, & 14,
would be provable in J,. Therefore in order to prove that J is consistent,
we must prove that in all the J;’s A4, & o4, is not provable. If oA, & 14, is
provable in J,, then by Axiom K8a, Axiom K8b, and Axiom K3a, any
formula £; would be provable in J,. But J,= T is absolutely consistent,
therefore £, & 14, is not provable in J,. Now assume that o, & 14, is
not provable in J;. If J; = J;y,, then o, & 14, is not provable in J;,. If
Ji # Jiy1, then B, is added to J; to form J;,,. Suppose that 1, , A & 14,
or expressing this another way, £;,:5,o: & o1 I Biy ;o1 & 14,, then
by Axiom K8a and Axiom K8b, £, and ;1. Hence by the
Deduction Theorem, bj, &£,y O A1 and 1y, 8,1 O 4. By the tautology (&; 2
A 2 (B; 2 1) D 18;), then 5,1&;,,. But 14, is not provable in J;, so
A, & 14, is not provable in J;,,. Therefore J;,, is absolutely consistent
and so is J. To prove the completeness of J, let £; be any closed wf. Then
#; is B;., for some i=0. Now either }ji-hgi*l or ;. &, since if not-
'j,.'l(ﬂm, then £;,, is added as an axiom in J;,;. Thus either H14&;,, or
H #ir1. Hence J is complete.

Assume #; is an of-formula in J. If #; is not an -formula in T,
then—by condition 4 for of-formulas—since &;. is closed it is antinomic in
T. Because all theorems of T are theorems of J, by Axiom K3a any
formula £; is provable in J (since &; is an of-formula in J). This contra-
dicts the absolute consistency of J. Thus #; is an o/-formula in T. Suppose
now that #; is an A-formula in T and &; is not an o-formula in J. By
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condition 4, &; is antinomic in J. Since &; is not antinomic in T, take the
least ¢ for which fj;,, #; and tj, | 1#;. By Axiom K6, tj, A& & 1&j; using
reasoning similar to the above, we can then show that any formula &, is
provable in J, which contradicts the absolute consistency of J. Therefore
for all 7 not-tj, #; & 1£; and & is an A-formula in J. If &; is antinomic in
J, B is antinomic in T, for if #; is not antinomic in T, then (since &; is
closed) it is an o-formula in T; hence #; would be an A4-formula in J by
the preceding proof. If #; is antinomic and is an .#-formula in J, then by
Axiom K3a any formula & is provable in J. But J is absolutely consistent.
Thus £; must be antinomic in T. Conversely, since all theorems of T are
theorems of J, if #; is antinomic in T, then #; is antinomic in J.

Proposition 4.12. Every absolutely consistent fivst-ovdev theory T has a
denumevable model.

Proof: Add to the symbols of T a denumerable set {b,, b, . . ., bp, . . .} of
new individual constants. Call this new first-order theory T,. Its axioms
are those of T plus those logical axioms which involve the new constants.
T, is absolutely consistent. For if it were not, then *-Toﬂi for any wf £;.
Replace each b; appearing in this proof with a variable which does not
appear in the proof. This transforms axioms into axioms and preserves the
correctness of the applications of the rules of inference. The final proof is
then a proof in T. Thus we would have for any wf £, in the language of T
that 3 &g, which contradicts the absolute consistency of T.

By Lemma 4.10 let #,(x;,), . . ., Klxy), . . . be an enumeration of all
wfs having at most one free variable. (Let x;, be the free variable of £, if
the latter has a free variable, otherwise let x;, be x,.) Choose a sequence

bj, bjy, - . . of some individual constants such that b;, is not contained in
Byx;), . . ., Bulxy) and such that b;, is different from each of b;,, bj,,. . .,
bj, ..

k-1

If (x;,) Br(x;,) is not antinomic in the theory T,, then we shall let the wf
(Se) be Bi(bj,) D (xi,) Brlxy,)

where (x;)#8i(x;,) is an oA-formula by condition 4. If (x;) Bulx;) is
antinomic in the theory T,, then we shall let the wf

(Sk) be 'I(x,-k)ﬂk(x,-k) D —lﬂk(bjk) & ﬂk(bik)'

Let T, be the first-order theory obtained by adding (S)), . . ., (S,) to the
axioms of T,, and let T, be the theory obtained by adding all the (S;)’s to
To. If 14, & o4, were provable in T, then by Axiom K8a, Axiom K8b, and
Axiom K3a, any wf &; would be provable in T, which then would not be
absolutely consistent. If 1.4, & o, were provable in T, then its proof
would contain a finite number of the (S;)’s and therefore would be a proof in
some T,. Hence, if in all the T;’s 1.4, & o4, is not provable, T« is
absolutely consistent. The proof that in all T;’s 14, & o4, is not provable
is by induction. In T,, 14, & of, is not provable because if it were, then by
the same reasoning as above, T, would not be absolutely consistent.
However, T, is absolutely consistent, so 1.4, & -/, is not provable in T,.
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Assume Tof; & of, is not provable in all T;’s for ¢ <n. The case in which
(x,) Brlx;y,) is an A-formula in (S;) is the same as the classical one. The
case in which (x;,) Bi(x;,) in (Sp) is antinomic in T, is proved as follows.
Assume kg Tof & ofy, or in other words (S») §,_,oh & 1A,. By the Deduc-
tion Theorem, f _ (S)) 2 o) & 1o4,; but since (S,) =° I(Sy) is a tautology we
also have h,_ 1(S,) O of, & 1o, SO by Axiom K4 H,.,7h & 1A.. This
contradicts the inductive hypothesis that in the theory T,.;of; & 14, is not
provable. Thus 4, & 14, is not provable in T, for all n, so T« is
absolutely consistent.

For any closed wf #, & is an of-formula in T, if and only if it is an
A-formula in T.. Suppose £ is an o-formula in Ty and not an #-formula
in Tw. By condition 4, £ is antinomic in Te. If £ is antinomic in T,
then take the least n for which (S,) i,_ #x and (S,) %,.. 148, where &, is an
A-formula in T, , and is antinomic in T,. By the Deduction Theorem,
H,-1(S)) D B and &, (S,) O 1B If (S,) is antinomic in T,.,, then H ey B
and &, _ 14 By Axiom K3a, any formula &; is provable in T,.,, which
contradicts the absolute consistency of T,.,. If (S,) is not antinomic in T,_,,
then since (S,) is closed by condition 4, (S,) is an of/-formula in T,.,. By the
tautology ((S,) 2 &) 2 (((S) 2 18 D 1(S,)), it is the case that I-Tn_l‘l(s,,).
But (S,) is added to T,., to form the theory T,, and (S,) is an #-formula in
Tn; so by Axiom K3a, any formula &#; is provable in T,. But T, is absolutely
consistent. Thus &, is an o-formula in T.,. Conversely, assume &, is an
A-formula in T and not an oA#-formula in T,, then £, is antinomic in T, by
condition 4. Since all theorems of T, are theorems of T, & is antinomic
in Tw. Since A is an A-formula in T o, then by Axiom K3a any formula &;
is provable in Tw. But T is absolutely consistent. Thus & is an
A-formula in T,. Hence by reasoning similar to that of Lemma 4.11, it
follows that £, is antinomic in T, if and only if &, is antinomic in Tew. T
is an extension of T, and by Lemma 4.11 we shall let J be an absolutely
consistent and complete extension of Tw. The denumerable interpretation
M shall have as its domain the set of closed terms of T, which by Lemma
4.10 is a denumerable set. If ¢ is an individual constant of T,, then its
interpretation shall be c itself. For a predicate letter A; of K, the
associated relation A] in M shall hold for arguments #,, . . ., %, if and only
if HA;(¢t,, . . .,t.). For a predicate letter B;of K, the associated relation
B; shall hold for arguments £,, . . ., {, if and only if f:,Bj(tl, .+« L), and the
associated relation B,-' ' shall hold for arguments %, . . ., f, if and only if
HyAB(ty, . . ., t). To show that M is a model for T, (and therefore also for
T, since every theorem of T is a theorem of T,), it suffices to show that
any closed wf &; of T, is true and not antinomic in M if and only if H 8,- and
not-H14;, and that a closed wf &; of T, is antinomic in M if and only if
H&#; and 5 14;, since all theorems of T, are theorems of J. The proof is
given by induction on the number of connectives and quantifiers in the wf
Kij. I B is a closed atomic wf, then by definition £; is true and not
antinomic in M if and only if HA; and not-H14;, and K; is antinomic in M
if and only if H&; and H74&;. We shall assume for the inductive step that if
#ris any closed wf with fewer connectives and quantifiers than 4£;, then £
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is true and not antinomic in M if and only if &} and not- H 18}, and £ is
antinomic in M if and only if &} and 144

Case 1. & is 1&}.
Subcase la. &; is antinomic in 9 if and only if Fj&; and H14;.

Pyroof: If 14, is antinomic in M, then K; is antinomic in M. By the
inductive hypothesis, £} is antinomic in M if and only if &, and H148;. By
Axiom K7a, we have H174j;. Thus if 14} is antinomic in M, then 514} and
H 11 4#). Conversely, assume H14), and Hj774,. By Axiom KT7b, we have
48y and H1 4. Thus by the inductive hypothesis, £} is antinomic in M. If
By is antinomic in M, then 14} is antinomic in M.

Subcase 1b. 14 is true but not antinomic in M if and only if 514} and
not- Hj 114;.

Proof: Assume 14} is true and not antinomic in M. Therefore A} is false
and not antinomic in M. Since J is complete, it follows that K8, or
H 118,. Assume first that 148, and H1148;. By Axiom K7b we obtain
H#rand H14;. By the inductive hypothesis, £} is antinomic in M. It was
assumed, however, that £ is not antinomic in M, so 14} is not antinomic
in J. Assume that H174; and not-H14,. It follows by Axiom KT7b that
H &, and not-+14). By the inductive hypothesis it follows that £ is true
and not antinomic in M. But &K is false and not antinomic in M. Thus
Fj 14 and not- 5 1143, On the other hand, assume H148, and not- 118, B
14} is antinomic in M, then AK; is antinomic in M. If K} is antinomic in M,
then by the inductive hypothesis, H &, and H514;,. By Axiom KT7a we
obtain '57714,, which is contrary to our assumption, so 14, is not
antinomic in M. Assume now that 14, is false and not antinomic
in M, then A is true and not antinomic in M. By the inductive hypothesis
it follows that Hj &, and not-H14,. By Axiom KT7a, 114, which is
contrary to our assumption. Thus &, is true and not antinomic in
m.

Case 2. &; is £, DO #,.

Subcase 2a. £; 2 £, is antinomic in M if and only if HA, 2 AL and
5 (81 O B).

Proof: If B,O B, is a closed wf, then so are £, and £,. £, DK, is
antinomic only when £, is antinomic in M and &, is true or antinomic in M.
By the inductive hypothesis we have H#, (or &, and H14,), 14, and
H&,. By Axiom K1 we obtain H#,; O £,. By Axiom K5 we obtain H (&, D
#,). Conversely, we assume H&, D £, and H1(#; D £;). By Axiom K12 we
obtain Fj £, & 18,. By Axiom K8a and K8b we obtain H&, and +14,. So by
H#1 D By and HH,582. By the inductive hypothesis, #,; is true or anti-
nomic in M and A, is antinomic in M. Therefore XK, O L, is antinomic
in M.

Subcase 2b. #; O K, is true but not antinomic in M if and only if HB1 2 K
and not- 'j -|(£1 ol 52)-
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Proof: Assume that £, DO #; is true and not antinomic in M. There are two
subcases to consider. First, £, is false and not antinomic in M and &, is
true, false, or antinomic in M, and second, &, is true and not antinomic and
£, is true, false, or antinomic in M. Let us first assume that &, is false
and not antinomic in M. By Case 1b and the fact that 14, is true and not
antinomic in M, it follows that tj14,; and not- H;7114,. 14, is not antinomic
in J, therefore—since 14, is closed—by condition 4, 14, is an /-formula
and £, is also an of-formula by condition 2b. By Axiom K1, H14;, D 14,
and by the tautology (18; O ;) O (A; D B;), B D By K HUB, O B,
then by Axiom K12, Axiom K8a, and Axiom K7a we have H114,. This is
impossible since it is not the case that H114,. Thus not-H1(#, D &.).
For the second case, let us assume that &, is true and not antinomic in M.
By the inductive hypothesis, hj#, and not-H14,. By H &, and Axiom K1,
H#1 D By. I H5(B, O A,), then by Axiom K12 and Axiom K8b, 5 18,. This
is impossible, so not-H1(#, D #;). In both cases hj#; O £, and not-
5 (#, O #£2). On the other hand, assume that &, O &, and not-H (B, 2
£,). If B, DO B, is antinomic in M, then A, is antinomic and &, is true (or
antinomic). By the inductive hypothesis, Hj £, 14, and Hj £, (or K&, and
H14,). By Axiom K5, H (&, D £,), which is contrary to our assumption;
s0 £, D A, is not antinomic in M. Now suppose that £, O K, is false but not
antinomic in M. It follows that &, is true and not antinomic in M (or &, is
antinomic in M) and A, is false and not antinomic in M. So by the inductive
hypothesis and Case 1b, Fj&,, not- 514, (or &, and H14,), and 514, and
not- j11#,. By Axiom K5, H1(#, D £,), which is contrary to our assump-
tion; so &, O A, cannot be false and not antinomic in M. Thus K, D A, is
true and not antinomic in M.

Case 3. Bjis £, & £,.

Subcase 3a. £, & £, is antinomic in M if and only if &, & AL, and
|‘J By & 52)-

Proof: If B, & £, is antinomic in M, then one of the A’s is true or
antinomic in M and the other is antinomic in M. Assume that &, is true or
antinomic in M and &, is antinomic in M. By the inductive hypothesis,
Hj 81, 15 148,, and H&,. By Axiom K6 we obtain H&, & £,. By Axiom K9b we
obtain H1#;v 14, and by Axiom K10 we obtain + 1(#, & #,). Conversely,
we assume H1(#; & £;) and &, & £,. By conditions 2a and 2b, if £, and
B, are oA-formulas, then 1(#, & &,) is an A-formula.. Since (B, & &,) is a
closed wf (because #, and &, are closed), then by condition 4 (8, & £,) is
not antinomic in J. So &, (or &,) is not an #-formula. If &, (or £,) is not
an o-formula, then by condition 4 £, (or #,) is antinomic in J. By the
inductive hypothesis, £, (or #,) is antinomic in M. Since H#; & &,, then by
Axiom K8a and Axiom K8b j#,; and Hj&,. If £, is not antinomic in J, then
by the inductive hypothesis, &, is true and not antinomic in M. Thus
8. & £, is antinomic in M. :

Subcase 3b. £, & £, is true and not antinomic in M if and only if &, & &>
and not- (4, & £,).
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Proof: Assume that £, & £, is true and not antinomic in M. Therefore £,
and £, are true and not antinomic in M. By the inductive hypothesis, 5 #,,
not-t14,, Hj#,, and not-H14,. So by condition 4, £, and £, are -
formulas, and by condition 2a, £, & &, is an o-formula. By Axiom K86,
H B & By. I (B, & A2), then by Axiom K3a any formula &) is provable,
which contradicts the absolute consistency of J. Thus H &, & £, and
not-+51(#, & £,). On the other hand, assume that &, & £, and not-
H (A, & B,). First, if £, & £, is antinomic in M, then F, is antinomic in
M and A, is true (or antinomic) in M. The argument is similar if &, is
true (or antinomic) in M and K, is antinomic in M. Therefore, by the
inductive hypothesis, I &, and 5 14,, and by Axiom K9a 5 148,v14#,. By
Axiom K10, H(#, & #;). But this is contrary to our assumption, so
81 & B, is not antinomic in M. Suppose now that &, & &K, is false but not
antinomic in M, hence £, (or K,) is false and not antinomic in M. By Case
1b, it follows that 514, and not-t1714,;. By Axiom K9a, H18yv 18,2, and
by Axiom K10, H 1(#, & #,), which is contrary to our assumption. Thus
&1 & B, is true and not antinomic in M.

Case 4. B is BivAB,.
Proof: Both subcases are similar to the subcases in Case 3.
Case 5. &B; is (x,) Bs.

Since we have an enumeration of all formulas with at most one free
variable, we may assume that &}, is £i(x;z).

Subcase 5a. (x,)#B(r;x) is antinomic in M.if and only if Hj (x,) Bu(rix) and
H (%) Brlxir).

Assume first that x, is not xi, then Au(x;z) is closed and does not
contain %, free. If K(v;x) is closed, then it is clear from the definition of
satisfiability that (x,)#i(x;x) is antinomic in M if and only if Ky(x;) is
antinomic in M. We shall show that (x,) £,(x;.) is antinomic in J if and only
if ABy(x;) is antinomic in J. Assume £; is antinomic in J. If B(x;) is not
antinomic in J, being a closed wf it is an ./-formula. Therefore, by
condition 2a, (x,) Bu(xix) is also an o-formula. Since H#; and tj 14}, then
by Axiom K3a any wf #; is provable in J, which contradicts the absolute
consistency of J. Therefore #i(x;) is antinomic in J. On the other hand,
assume that #(x;) is antinomic in J. By generalization, H(x,) £x(xi), and
by Axiom K16 and Hj 18k(x;z), we also have that 51 (x,) Bi(x;e). Thus &£; is
antinomic in J. By the inductive hypothesis, subcase 5a is proved for x,
different from x . '

Assume now that «x,is xi. If (%) Bu(x;x) is antinomic in M, then for
some closed term ¢ we have that £.(f) is antinomic in M by property P22.
By the inductive hypothesis, 5 #(¢) and j 18(f). We shall prove that
(x;2) Bir(x;) is not an A-formula. Assume that it is, then by the complete-
ness of J either hj(xu) Si(vie) or H1(x¥x)B(xi). If K is antinomic in J,
then by Axiom K3a any wf £, is provable in J contradicting the absolute
consistency of J. Therefore #; is not antinomic in J. Assume that H #; and
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not-+14&;. Since H 14(f), then by Axiom K16 H1(x;) Silxi), which con-
tradicts the assumption. Assume now that Ij14; and not-H4&;. Since &; is
not antinomic in J, (Sg) is #(bi) O (xix) Brlxik). A; is antinomic in M, then
by property P22 and definition 6a of satisfiability, &i(x;) is true or
antinomic in M. By the inductive hypothesis, it is the case that rj&.(b:)
(or 5 Br(bix) and 5 18k(bie)), which together with (S,) leads to ij £}, contrary
to the aSSumptmn Hence #; is not an of-formula, and it follows from
condition 4 for A-formulas that #; is antinomic in J. On the other hand,
assume that (x;)#i(x;x) is antinomic in J. By Proposition 4.11 and the
reasoning offered earlier, (x;)&.(x;) is antinomic in .T,. Hence (Sg) is
V(xi) Be(xin) O 1Bu(bir) & Be(bir). Let t be any closed term of T,. Since
H (%) Br(x), by Axiom K14 it is the case that H#(f). By the inductive
hypothesis, #,(¢) is true in M for every ¢ in the domain of M, therefore
(xi1) Br(x;) is true in M. By the inductive hypothesis, #x(d;) is antinomic
in M since F(b;x) is antinomic in J. Thus (x;z) Be(xiz) is antinomic in M by
property P22.

Subcase 5b. (x,) Bu(x;x) is true and not antinomic in M if and only if
H () Br(xix) and not- 5 1(x,) Bulxie)-

Assume first that x, is not xit, then #i(x;) is closed and (x,) Bu(¥iz) is
true and not antinomic in M if and only if &(x;z) is true and not antinomic
in M by definition of satisfiability. We shall prove that H(xy,) Bi(x:e) if and
only if H&i(xix). Assume that b (xa) Bi(xix); by Axiom K14, HjBi(%i). Con-
versely, assume that Hj&i(x;), then by generalization, H(x,) #x(xx). By the
inductive hypothesis, subcase 5b is proved for x, different from x;.

Assume now that x, is x;. Further, assume that .#; is true and not
antinomic in M. Since J is complete, either HB; or H148;. We shall show
that 14; is not provable in J and #; is not antinomic in J. Suppose that 14;
is provable in J. (Sy) is either &Br(bip) O (%) Be(xi) or (x) Br(xie) O
18(x;) & Br(xix). By the tautology (By, D of,) D (14, D 18,), we obtain
(xi) Bu(¥ix) O 1HB(bir) whenever &; is not antinomic (and therefore an
A-formula by condition 4). If 14; is provable in J, whatever the form of
(Se) it follows that +j1#(bi) (using Axiom K8a when necessary). If Bi(bix)
is antinomic in J, then by the inductive hypothesis, #,(b;) is antinomic in
M. By property P22, (x;)#i(x;) is then antinomic in M, which is a
contradiction. Therefore AH(b;) is not antinomic in J. I 18(b;) is
provable in J, then by Case 1b 14(b;;) is true and not antinomic in M.
Since (x;) Bi(xz) is true in M, Kp(b;) is true in M. This would mean that
#r(b;) is antinomic in M. By property P22, (x;;) K(xix) is again antinomic
in M, which is a contradiction. Therefore 14(b;;) is not provable in J.
Hence 14#; is not provable in J. That #; is not antinomic in J is proved as
follows. If &; is antinomic in J, then (S,) is 1(x;z) Br(%ix) O 1B(bir) & Br(b;e);
as a consequence, #,(b;z) is antinomic in J and therefore in . Thus ﬁj'is
antinomic in M—a contradiction. Hence H&; and not-H14;. On the other
hand, assume that '—5, and not-+14;. First suppose that #j is false and not
antinomic in M. Then for some closed term £ in M, /Sk(t) is false and not
antinomic in M. By Case 1b, 14 (#) and not- I—'|‘|¢Kk(t) Hence not- 5 &(?).
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By condition 4, #,(#) is anof-formula. By Axiom K14, (x;) Bu(xix) 2 £(?),
and the tautology (£, O ofy) D (14, D 18,), we obtain 5 (xy) £ (x;), which is
a contradiction. So #£; cannot be false and not antinomic in M. Suppose now
that £; is antinomic in M, then for some closed term ¢, K (¢f) is an-
tinomic in M. By the inductive hypothesis, &,(f) is antinomic in J, but then
lj1(x,-k) Br(xir) by Axiom K16, which is contrary to our assumption. Hence
#; cannot be antinomic in M and must be true and not antinomic in M.

Proposition 4.13. If a wf #; is logically valid, then B; is provable in T.

Proof: We shall consider only closed wfs, since a wf £; is logically valid if
and only if its closure is logically valid, and &#; is provable in T if and only
if its closure is provable in T. Assume that &; is a logically valid closed
wf. If £ is antinomic in the theory T, then &; is of course provable in T.
Assume that #; is not provable in T, then by Lemma 4.9 we can add 14 to
T to form the theory T', which will be absolutely consistent. Suppose that
18; FAj. It follows that & 14; O &; by the Deduction Theorem, and since
#; O Bj is a tautology, we have k&; by Axiom K4, which is contrary to our
assumption. Therefore 14#; is not antinomic in T’ by Axiom K7b. By
condition 4 for of-formulas, 14; is an o/-formula in T'. By Proposition
4.12, we can construct a model M such that 14; is true and not antinomic
in M if and only if F574; and not- /174, and 14; is antinomic in M if and
only if H14; and H114;, where J is the complete and absolutely consistent
extension of T, constructed as in the proof of Proposition 4.12. If 14; is
antinomic in M, then H14K; and ' 114K;. Since 14; is an of-formula in T/,
then it must be an of-formula in T{ (where T{is T' with the addition of the
- constants b,, b,, . . . as in the proof of Proposition 4.12). If this were not
the case, then we would have proofs in Ty of 14; and #;. If we were to
replace all occurrences of the b;’s by variables not occurring in the proofs
of 14; and #;, then the resulting proofs would be proofs in T'. But &; is an
A-formula in T', and by Axiom K3a any wf would be provable in T', which
contradicts the absolute consistency of T'. Hence 14; is an o#-formula in
To. 148; is also an oA-formula in Ti (see the proof of Proposition 4.12 and
also Lemma 4.11), therefore 14; is an o#-formula in J. But then by Axiom
K3a any wf £, would be provable in J. Since J is absolutely consistent, 14;
cannot be antinomic in M. Because 14; is provable in J, it is true and not
antinomic in M by the proof of Proposition 4.12. Since &; is logically
valid, #; is also true in M. £; is not antinomic in M because 14; is not
antinomic in M. Hence 14; is both true and false, and also not antinomic
in M, which is impossible. Thus, £; must be a theorem of T.

Proposition 4.14. A well-formed formula of T is logically valid if and only
if it is a theorem of T.

Proof: Propositions 4.7 and 4.13.
III. AN ANTINOMIC SET THEORY

5 Antinomic Sets and Ordinals We shall use two predicate letters, = and ¢,
the first an A-letter, the second a B-letter (see section 3). Definitions D1
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to D4 introduce respectively inclusion, union, intersection, and comple-
mentation. These definitions are identical to those of classical set theory,
except that here = is replaced by =° in each definition. In addition, we need
the following.

D5. xCy="(xCy&x+9Y) (Proper Inclusion)
D6. ()(teD="t#1) (Null Set)
D7. (Htev=t=1 (Universal Set)
D8. x=*y="()(tex ="tey)

D9. (A(tefr,y}="t=*xvi=*xy) (Unordered Pair)
D10. (&) (te (x,y) ="t =*x{x}vi =* {x, 9y} (Ordered Pair)
Di1l. (D(tewxz ="t =*(u,v) &uew &vez) (Cartesian Product)
D12. Rel(¥) =°xCV x V (Binary Relation)
D13. () (teE =°t =* (u,v) & uev) (e -relation)

D14. x lrr vy =° ({)(tey D (¢, 1) ¢ x) & Rel(x¥) (x is an irreflexive relation on y)
D15. x Wey ="Rel(x) & x Irr ¥ & (2)(2 C ¥ & (F)(te2) D (Bw)(wez &

Wwez &v +*w D w,v)ex & (w,v)ex & W, wyex D

w =%.)))) (x well orders y)
D16. Trans(x) =° ()(tex Dt C %) , (x is transitive)
D17. O(x) =° Trans(x) & E We x
D18. Ord(x) = O(x) & (¥)(O(¥) & vey D xey) & (¥)(O) &xex Dyex) &

WO Cx&tey &ty Dy Ct) & Mex DOWY))

(x is an ordinal)

D19. x e On =° Ord(x)

Sets ¥ for which there is a ¢ such that fey and £¢y will be called
antinomic, and ¢ will be called an antinomic member of y. Sets without
antinomic members will be called consistent. Axioms for a Set Theory S
follow (not all independent).

S1.  (x)(x =x)
S2a. (u)(@)(2)(w =z D (By(u,v) O By(u, 2)))
S2b.  (w)@)(2)(u = z D (By(u, v) D Bi(z,v)))

In Axioms S2a and S2b £, is any wf containing an arbitrary finite
number of free variables.

S3. (W) x=y &y=zDx=2)
S4. ())x=*y=x=y) (Axiom of Extensionality)

This axiom states that two sets are identical if they contain the same
consistent and antinomic members.

S5. @)@)3)@H)(tez =t =*xxvt=*y) (Axiom of Unordered Pairs)
S6. (32)(x)(xez =°x #x) (Null Set Axiom)
S7. ()@)(3z)B)(tez ="tex &tey) (Intersection)
S8. X)(3y)O)(tey =°t¢x) (Complementation)

S9. (Iy)x)(xey =° B,(x)), where x occurs free in B,(x) but y does not, and
where RK.(x) is a wf that contains only occuvrences of e, or only
occurrences of =, ov if it contains occurvences of both predicate
letters then not-+H(x) = x # x. (Axiom of Comprehension)
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Proposition 5.1. Ord(x) Dx¢x & (u)(uex D udu).

Proof: SinceOrd(x), then E is Irreflexive on x; so (u)(uex Dudu). If xex,
then x ¢ x.

Proposition 5.2. E lrr On.
Proof: Let xe On, then Ord(x). By Proposition 5.1 it follows that x ¢ «.
Proposition 5.3. Ord(x) & Trans(y) & ¥y Cx D yex.

Proof: Let us consider the set z defined in the following way: vez =vex &
v¢y (i.e., z is the intersection of x and the complement of y). It follows
that z C x. Since Ord(x), x is well-ordered and therefore there is a w which
is the least member of z (then, for all v, v #* w & vez Dwev). Since wex,
if y =* w, then y e x by Axiom S4 and Axiom S2b. In order to prove y =* w,
the following cases should be proved (see definition of y =* x): Case 1,
tey Dtew (i.e., y Cw); Case 2, tew Dtey (i.e., w Cy); Case 3,t¢y D
tdw; Case 4, tdw Dtey.

Case 1. Assumetey and t¢w. Since x is well-ordered and the set {t, w} is
a subset of x, then {f,w} has a least member. There are two cases to
consider: (i) when it is the case that #¢w and #e w; (ii) when it is not the
case that tew. In either case we shall reach the conclusion that xex.
First let us assume that few and #¢w. Since Ord(x) and w € x, then e x and
O(t). Ord(x), we x, tew, and ¢ ¢w imply w C ¢. But few and w C fimply that
tet. Ord(x), O(t), tet imply xet. Trans(x), Xet, and fex imply xex. We
shall now assume that it is not the case that e w, then w e ¢ (there is a least
member of the set {t,w}). Trans(y), wet, and tey imply wey. Because
we z, it follows from the definition of z that w¢ y also. By the definition of
Ord(x) it follows that Ord(x),y C x, we y, and w¢y imply y C w. Since we y
and y C w, then we w. Since we x and Ord(x), then O(w). By the definition of
Ord(x), Ord(x), O(w), and we w imply xe w. Since xe w and we x, then by
transitivity of x, xe x. Since x is well-ordered and y is a subset of x (by
assumption), then y is well-ordered (a subset of a well-ordered set is
well-ordered). Since by assumption Trans(y) and E We y, then O(y). By the
definition of Ord(x), Ord(x), O(y), and xe x imply ye x. Also, xew and w C y
imply xey (xew and w C y in both cases above). Consider the set {x, y},
which is a well-ordered subset of x. Thus the set {x,y} has a least
member. By the definition of well-ordering, x #* y, xe y, and ye x imply
x =%y, If x=*%y, then by Axiom S4 x = y. Therefore by assuming #¢ w we
obtain y = x (i.e., t¢ w D x = y). Since x = y is an oA-formula, it follows by
the tautology (14, D oA4) O (W, D £y (in which &, is te w and of, is x = y)
that x # 9 D te w. By assumption y is a proper subset of x, so x # y by the
definition of proper subset. Thus x # y and x # y D te w imply fe w.

Case 2. Assume few and ¢¢y. tex and t¢y by assumption, so it follows
from the definition of z that e z. Since fe z, then we ¢ (where w is the least
member of z). Consider the set {t,w}, which is a subset of x. x is
well-ordered because Ord(x), therefore {f,w} has a least member. As in
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Case 1, tew and we ¢ imply £ = w. By Axiom S2b, fe w and {= w imply
we w. By definition of Ord(x), we.x implies O(w). By definition of Ord(x),
Ord(x), O(w), and we w imply xe w. Consider the set {x,w}, which is a
subset of the well-ordered set w. The set {x,w} has a least member.
Again, as in Case 1, xew and we x imply w = x; furthermore, also as in
Case 1,0(y). By Axiom S2a, w =« and xew imply xe x. Ord(x), O(y), and
xe x imply ye x by the definition of Ord(x). Let us consider the two cases
vey and y¢y. If yey then, since Ord(x) and O(y), it follows from the
definition of Ord(x) that xe y. Consider the set {x,y}, which is a subset of ¥.
Since y is well-ordered, there is a least member of {x,y}. By the same
argument used in Case 1, xe y and ye x imply ¥y = x. If y¢ ¥, and since ye %,
then by the definition of 2z, ye z. It follows then that we y because w is the
least member of z. By Axiom S2b, w = x and we y imply ¥ ey. Again by
considering the set {x,y}, it follows through the same reasoning used above
that xe y and ye x imply y = x. By Axiom K4 (where &, is ye ¥ and &, is
y = x), it follows that y=%. So by assuming #¢y, we obtain y =x (i.e.,
t¢y Dy =x). By the tautology (148, D ofy) O (14, O K, (where £, is tey
and o, is y = x), and because y #x (since y is a proper subset of x), then
tey. Thustew Dtey.

Case 3. t¢y Dt¢w. Assume £¢y and few, then y = x where the proof is
like that in Case 2 (i.e., tew Dy = x). By the tautology (£, 2 o) D (1f,; D
14, (where £, is tew and o4, is y = x), and because y # x, it follows that
tdw.

Case 4. tdw Dt¢y. Assume ¢¢w and fey. Assuming that fey, we obtain
y=x (i.e., tey Dy =x) with the same proof used in Case 1. By the
tautology (#, D o) D (Nofy O 1#,) (where #, is tey and o, is ¥ = x), and
the fact that y # x, it follows that £¢ y.

Proposition 5.4. Ord(x) & Ord(y) D (¥e yvyex vx = 9).

Proof: Assume Ord(x), Ord(y), and x #y. Now xNyCx and xNYy C Y.
Since x and y are transitive and well-ordered, then x N y is transitive and
well-ordered; so O(xNy). If xNyCx and xNy Cy, then xNyex and
xNyey by Proposition 5.3, hence xNyexNy. By definition of Ord(x),
Ord(x), O(xN'y), and x N yex Ny imply xe x Ny, and similarly for Ord(y),
yex N Y. The set {x, xN y} C x Ny and contains a least member because x
is well-ordered. As in the reasoning used in Case 1 of Proposition 5.3,
xexNyand ¥ Ny ex imply ¥ = x N y; similarly, y=xNy. By Axiom 83,
x = 9, which is contrary to our assumption. Thus XNy C x orx Ny C I.
Since x+#y, then xNyCx or xNyCy, so x €Ty or yC x. Thus by
Proposition 5.3, xe y or ye x.

Proposition 5.5. Ord(x) & ye x D Ord(y).

Proof: Since by assumption yex, then O(y) by the definition of Ord(x). In
order to prove that Ord(y) we must prove the following:

(1) (2)(O(2) & zez D ye2);
(2) (2)(O(2) & yey Dzey);
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(3) (ADzCy&tez&itdzDzCH);
(4) w)(uey DO)).

(1) Assume O(2) and zez. By the definition of Ord(x), Ord(x), O(2), and
zez imply xe z. Since yex, xe 2z, and Trans(z), then ye z. Hence (2)(0(z) &
Z€z D yez).

(2) Assume O(z) and y e y. By the definition of Ord(x), Ord(x), O(y), and ye y
imply xey. Since O(y), then y is well-ordered, so the set {x, y}, which is
a subset of y, has a least member. As in Case 1 of Proposition 5.3, xey
and yex imply ¥ =y. By Axiom S2a, x =y and xey imply xex. By the
definition of Ord(x), Ord(x), O(z), and xex imply ze x. By Axiom S2a, zex
and x = y imply ze y. Hence (2)(O(z) & yey D zey).

(3) Assume z C vy, tez, and £¢z. Since by assumption y € x, the transitivity
of x implies y C x, so because z C y and y C x it follows that z C x. By the
definition of Ord(x), Ord(x), 2 C x, te 2z, and ¢¢ z imply z C £. Hence (2)(£)(z C
y&lez &tdzDzCH).

(4) Assume uey. Since Trans(x), then uey and yex imply uex. By the
definition of Ord(x), Ord(x) and u € x imply O(x). Hence (u)(xey D O(n)).

Proposition 5.6. E We On.

Proof: Assume x C On and x #* . If y is the least member of x, then the
proof is finished. If y is a member of x but not its least member, then
xNy#*@P. Sincex Ny Cy and y is an ordinal, then x Ny is well-ordered.
Let w be the least member of x Ny; w is an ordinal because wex. If {is
any ordinal of x, then by Proposition 5.4 tew or wet or t = w. If for all ¢
inx, wet or w=£, then w is the least member of x. On the other hand, if
for some ¢ tew, we shall show that w =¢. Assume f{ew. Since {ew and
wey, then fey by the transitivity of y. Thus fex Ny; so it follows that
wet, since w is the least member of x Ny. Consider the set {w, ¢} included
in y. The set y is well-ordered because y is an ordinal, so {w,#} has a
least member. As in Case 1 of Proposition 5.3, we? and fe w imply ¢ = w.
Thus w is the least member of x.

Proposition 5.7. Trans(On).

Proof: Assume u€ On, We shall show that if v € «, then v e On. Since u€ On,
then by definition of On it follows that Ord(x). By Proposition 5.5, v € « and
Ord(#) imply Ord(v), therefore v € On.

Proposition 5.8. O(On).
Proof: By Propositions 5.6 and 5.7.
Proposition 5.9. (Ord(x) & xex &Ord(y) & yey) Dx =1y,

Proof: x and y are any two ordinals that are members of themselves.
Consider the set {x,y} C On. Since On is well-ordered, the set {x,y} has a
least member. By the definition of ordinal, from Ord(x),Ord(y), ¥ € x, and
yey we obtain xey and yex. By the same argument used in Case 1 of
Proposition 5.3, xey and y e x imply x = y.
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Proposition 5.10. Ord(w) & we w D w = On.

Proof: Since Ord(w), we w, and O(On), it follows from the definition of
Ord(w) that One w. Consider the set {On, w} C w, which has a least member.
As in Case 1 of Proposition 5.3, we On and One w imply w = On.

Proposition 5.11. Ord(On) and hence One On.

Proof: By Axiom S9, there is a w such that we w and Ord(w). On = w follows
from Proposition 5.10. Therefore by Axiom S2b, Ord(On).

Proposition 5.12. (3y)(x)(xey =° x¢x).
Proof: x¢x satisfies the conditions of the Comprehension Axiom.

The set y in Proposition 5.12 is Russell’s antinomic set, which in this
theory does not have the same radical consequences that it had in classical
set theory.

Since the set of A#-formulas of our antinomic predicate calculus is not
recursively decidable, it is not possible to assign to every one of them an
identifiable G8del number. Therefore, it is not possible to arithmetize the
metamathematics of systems based on such a calculus and as a con-
sequence the proof of Godel’s incompleteness theorem does not apply to
these systems. Furthermore, having admitted inconsistencies, it is now
possible for set theory to be complete. Which specific axioms are required
to produce such a complete set theory is still an open question.
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