A STRONG COMPLETENESS THEOREM
 FOR 3-VALUED LOGIC

H. GOLDBERG, H. LEBLANC, and G. WEAVER

We establish here that Wajsberg's axiomatization of SC_{3}, the 3 -valued sentential calculus, is strongly complete, Theorem 1, p. 329, and by rebound weakly complete, Theorem 2, p. 329. Theorem 2 is a familiar result, obtained by Wajsberg himself in [5], and Theorem 1 can be recovered from results in [3]. But because of its simplicity and directness our proof of Theorem 1 may be worth reporting. ${ }^{1}$
 infinity of sentence letters, say ' p ', ' q ', ' r ', ' p ', ' q ', ' r ', etc. The $w f f s$ of SC_{3} are those sentence letters, plus all formulas of the sort $\sim A$, where A is a wff, plus all those of the sort $(A \supset B)$, where A and B are wffs. The length $l(P)$ of a sentence letter P is 1 ; the length $l(\sim A)$ of a negation $\sim A$ is $l(A)+1$; and the length $l((A \supset B)$) of a conditional $(A \supset B)$ is $l(A)+l(B)+1$. We abbreviate the wff ' $\sim(p \supset p$)' as ' f ', and wffs of the sort $(A \supset \sim A$) as \bar{A}. We also omit outer parentheses whenever clarity permits. The axioms of SC_{3} are all wffs of SC_{3} of the following four sorts:
A1. $A \supset(B \supset A)$,
A2. $(A \supset B) \supset((B \supset C) \supset(A \supset C))$,
A3. $(\bar{A} \supset A) \supset A$,
A4. $\quad(\sim A \supset \sim B) \supset(B \supset A)$.
A wff A of SC_{3} is provable from a set S of wffs of $\mathrm{SC}_{3}-S \vdash A$, for short-if there is a column of wffs of SC_{3} (called a proof of A from S) which closes with A and every entry of which is an axiom, a member of S, or the ponential of two earlier entries in the column. A wff A of SC_{3} is provable$\vdash A$, for short-if A is provable from \varnothing. A set S of wffs of SC_{3} is syntactically (in)consistent if there is a (there is no) wff A of SC_{3} such that both A and $\sim A$ are provable from S. And S is maximally consistent if (a) S is

1. Wajsberg's proof of Theorem 2 in [5] is "effective": it shows how to prove A whenever A is valid. Ours merely guarantees that A is provable.
syntactically consistent, and (b) $S \vdash A$ for any wff A of SC_{3} such that $S \cup\{A\}$ is syntactically consistent.

Our truth-values are $0, \frac{1}{2}$, and 1. Truth-value assignments are functions from all the sentence letters of SC_{3} to $\left\{0, \frac{1}{2}, 1\right\},{ }^{2}$ and the truth-values under these of negations and conditionals are reckoned as the following matrix directs:

Matrix I

$A \supset B$		B			
		0	$\frac{1}{2}$	1	$\sim A$
	0	1	1	1	1
A $\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	1	1	$\frac{1}{2}$
	1	0	$\frac{1}{2}$	1	0

A set S of wffs of SC_{3} is semantically consistent if there is a truth-value assignment under which all members of S evaluate to 1 . S entails a wff A of $\mathrm{SC}_{3}-S \vDash A$, for short-if, no matter the truth-value assignment α, A evaluates to 1 under α if all members of S do. And A is valid $-\vDash A$, for short-if, no matter the truth-value assignment α, A evaluates to 1 under $\alpha^{3}{ }^{3}$

We collect in (lemma) L1 some auxiliary facts about provability and syntactic inconsistency. $L 1$ (a)-(d) hold by definition. Instructions for proving $L 1$ (e)-(p) can be found in [5].
L1. (a) If $S \vdash A$, then $S^{\prime} \vdash A$ for every superset S^{\prime} of $S{ }^{4}$
(b) If $S \vdash A$, then there is a finite subset S^{\prime} of S such that $S^{\prime} \vdash A$.
(c) If A belongs to S, then $S \vdash A$.
(d) If $S \vdash A$ and $S \vdash A \supset B$, then $S \vdash B$.
$(\mathrm{e}) \vdash(A \supset(A \supset(B \supset C))) \supset((A \supset(A \supset B)) \supset(A \supset(A \supset C)))$.
(f) $\vdash \sim A \supset(A \supset B)$.
(g) $\vdash A \supset A$.
(h) $\vdash(A \supset \bar{A}) \supset \bar{A}$.
(i) $\vdash \overline{\bar{A}} \supset A$.
(j) $\vdash \sim \sim A \supset A$.
(k) $\vdash A \supset \sim \sim A$.
(l) $\vdash(A \supset B) \supset(\sim B \supset \sim A)$.
$(\mathrm{m}) \vdash \sim(A \supset B) \supset A$.
(n) $\vdash \sim(A \supset B) \supset \sim B$.
(o) $\vdash A \supset(\sim B \supset \sim(A \supset B))$.

[^0](p) $\vdash \bar{A} \supset(\overline{\sim B} \supset(A \supset B))$.
(q) If $S \cup\{A\} \vdash B$, then $S \vdash A \supset(A \supset B)$. (The Stutterer's Deduction Theorem) ${ }^{5}$
(r) If S is syntactically inconsistent, then $S \vdash A$ for every wff A of SC_{3}.
(s) S is syntactically inconsistent if and only if $S \vdash f$.
(t) If $S \cup\{A\}$ is syntactically inconsistent, then $S \vdash \bar{A}$.
(u) If $S \cup\{\bar{A}\}$ is syntactically inconsistent, then $S \vdash A$.

Proof: (q) Suppose the column made up of C_{1}, C_{2}, \ldots, and C_{p} constitutes a proof of B from $S \cup\{A\}$. We establish by mathematical induction on i that $S \vdash A \supset\left(A \supset C_{i}\right)$ for each i from 1 through p, and hence in particular that $S \vdash A \supset(A \supset B)$. Case 1: C_{i} is an axiom or a member of S. Then $S \vdash C_{i}$ by $L 1$ (a) or $L 1$ (c). But $S \vdash C_{i} \supset\left(A \supset C_{i}\right)$ by $L 1\left(\mathrm{a}^{\prime \prime}\right)$. Hence $S \vdash A \supset C_{i}$ by $L 1(\mathrm{~d})$. But $S \vdash\left(A \supset C_{i}\right) \supset\left(A \supset\left(A \supset C_{i}\right)\right)$ by $L 1\left(\mathrm{a}^{\prime \prime}\right)$. Hence $S \vdash A \supset\left(A \supset C_{i}\right)$ by $L 1$ (d). Case 2: C_{i} is A. Then $S \vdash A \supset\left(A \supset C_{i}\right)$ by $L 1\left(\mathrm{a}^{\prime \prime}\right)$. Case 3: C_{i} in the ponential of C_{h} and $C_{h} \supset C_{i}$. Then $S \vdash A \supset\left(A \supset C_{h}\right)$ and $S \vdash A \supset(A \supset$ $\left.\left(C_{h} \supset C_{i}\right)\right)$ by the hypothesis of the induction. Hence $S \vdash A \supset\left(A \supset C_{i}\right)$ by $L 1$ (c) and L1 (d).
(r) Suppose $S \vdash B$ and $S \vdash \sim B$ for some wff B of SC_{3}. Then by $L 1$ (f) and $L 1$ (d) $S \vdash A$ for any wff A of SC_{3}.
(s) $S \vdash p \supset p$ by $L 1(\mathrm{~g})$. Hence, if $S \vdash f$, then S is syntactically inconsistent. Hence $L 1$ (s) by $L 1$ (r).
(t) Suppose $S \cup\{A\}$ is syntactically inconsistent. Then $S \cup\{A\} \vdash \sim A$ by $L 1$ (r), hence $S \vdash A \supset \bar{A}$ by $L 1$ (q), and hence $S \vdash \bar{A}$ by $L 1$ (h) and $L 1$ (d).
(u) Proof by $L 1$ (t), L1 (i), and L1 (d).

Now for proof that if a set S of wffs of SC_{3} is syntactically consistent, then S is semantically consistent as well. We hew at first to two-valued precedent: i.e., we assume S to be syntactically consistent and then extend S into the familiar superset S_{∞} of two-valued textbooks. ${ }^{6}$ The members of S_{∞}, and hence those of S, will thereafter be shown to evaluate to 1 under some truth-value assignment of our own devising. Construction of S_{∞}, the reader will recall, is as follows: (a) Take S_{0} to be S, (b) assuming the wffs of SC_{3} to be alphabetically ordered and A_{i} to be for each i from 1 on the alphabetically i-th wff of SC_{3}, take S_{i} to be $S_{i-1} \cup\left\{A_{i}\right\}$ if $S_{i-1} \cup\left\{A_{i}\right\}$ is syntactically consistent, otherwise take S_{i} to be S_{i-1} itself, and (c) take S_{∞} to be $\sum_{i=0} S_{i}$.

Here as in the two-valued case, it is easily verified that:
(1) S_{∞} is syntactically consistent
and
(2) S_{∞} is maximally consistent.

[^1]6. See, for instance, [2], p. 73. The primary source is of course [1].

For proof of (1), suppose S_{∞} were syntactically inconsistent. Then by $L 1$ (s) and L1 (b) at least one finite subset S^{\prime} of S_{∞} would be syntactically inconsistent. But S^{\prime} is sure to be a subset of S_{0}, or (failing that) one of S_{1}, or (failing that) one of S_{2}, etc., and each one of S_{0}, S_{1}, S_{2}, etc. is syntactically consistent. Hence (1). For proof of (2), suppose not $S_{\infty} \vdash A$, where A is the alphabetically i-th wff of SC_{3}. Then by $L 1$ (c) A does not belong to S_{∞}, hence A does not belong to S_{i}, hence $S_{i-1} \cup\{A\}$ is syntactically inconsistent, and hence by $L 1$ (s) and $L 1$ (a) so is $S_{\infty} \cup\{A\}$.

Departing now from two-valued precedent, let α be the result of assigning to each sentence letter P of SC_{3} the truth-value 1 if $S_{\infty} \vdash P$ (and hence, by the syntactic consistency of S_{∞}, not $S_{\infty} \vdash \sim P$), the truth-value 0 if $S_{\infty} \vdash \sim P$ (and hence, by the syntactic consistency of S_{∞}, not $S_{\infty} \vdash P$), otherwise the truth-value $\frac{1}{2}$. We proceed to show of any wff A of SC_{3} that:
(i) If $S_{\infty} \vdash A$ (and, hence, $\operatorname{not} S_{\infty} \vdash \sim A$), $\alpha(A)=1$,
(ii) If $S_{\infty} \vdash \sim A$ (and, hence, not $S_{\infty} \vdash A$), $\alpha(A)=0$,
(iii) If neither $S_{\infty} \vdash A$ nor $S_{\infty} \vdash \sim A, \alpha(A)=\frac{1}{2}$.

The proof is by mathematical induction on the length l of A.
Basis: $l=1$, and hence A is a sentence letter. Proof by the very construction of α.
Inductive Step: $l>1$.
Case 1: A is a negation $\sim B$. (i) Suppose $S_{\infty} \vdash \sim B$. Then not $S_{\infty} \vdash B$, hence by the hypothesis of the induction (h.i., hereafter) $\alpha(B)=0$, and hence $\alpha(\sim B)=1$. (ii) Suppose $S_{\infty} \vdash \sim \sim B$. Then by $L 1$ (j) and $L 1$ (d) $S_{\infty} \vdash B$, hence by h.i. $\alpha(B)=1$, and hence $\alpha(\sim B)=0$. (iii) Suppose neither $S_{\infty} \vdash \sim B$ nor $S_{\infty} \vdash \sim \sim B$. If B were provable from S_{∞}, then by $L 1(\mathrm{k})$ and $L 1$ (d) so would $\sim \sim B$ be. Hence neither $S_{\infty} \vdash B$ nor $S_{\infty} \vdash \sim B$, hence by h.i. $\alpha(b)=\frac{1}{2}$, and hence $\alpha(\sim B)=\frac{1}{2}$.
Case 2: A is a conditional $B \supset C$. (i) Suppose $S_{\infty} \vdash B \supset C$. If $S_{\infty} \vdash \sim B$, then $\alpha(B)=0$ by h.i. If $S_{\infty} \vdash C$, then $\alpha(C)=1$ by h.i. If $S_{\infty} \vdash B$, then $S_{\infty} \vdash C$ by $L 1$ (d), and hence again $\alpha(C)=1$. And, if $S_{\infty} \vdash \sim C$, then $S_{\infty} \vdash \sim B$ by $L 1$ (1) and $L 1$ (d), and hence again $\alpha(B)=0$. Hence, if any one of $B, \sim B, C$, and $\sim C$ is provable from S_{∞}, then $\alpha(B)=0$ or $\alpha(C)=1$, and hence $\alpha(B \supset C)=1$. If, on the other hand, none of $B, \sim B, C$, and $\sim C$ is provable from S_{∞}, then $\alpha(B)=\alpha(C)=\frac{1}{2}$ by h.i., and hence $\alpha(B \supset C)=1$. (ii) Suppose $S_{\infty} \vdash \sim(B \supset C)$. Then by $L 1(\mathrm{~m})-(\mathrm{n})$ and $L 1$ (d) both $S_{\infty} \vdash B$ and $S_{\infty} \vdash \sim C$, hence by h.i. $\alpha(B)=1$ and $\alpha(C)=0$, and hence $\alpha(B \supset C)=0$. (iii) Suppose neither $S_{\infty} \vdash B \supset$ C nor $S_{\infty} \vdash \sim(B \supset C)$. Then $\alpha(B)$ cannot equal 0 nor can $\alpha(C)$ equal 1 , for by h.i. $\sim B$ or C would then be provable from S_{∞}, and hence by $L 1$ (f), L1 (a), and $L 1$ (d) so would $B \supset C$ be. Now suppose first that $\alpha(B)=1$. Then $\alpha(C)$ cannot equal 0 , for by h.i. $\sim C$ would then be provable from S_{∞}, and hence by $L 1$ (o) and $L 1$ (d) so would $\sim(B \supset C)$ be. Hence $\alpha(C)$ must equal $\frac{1}{2}$, and hence $\alpha(B \supset C)=\frac{1}{2}$. Suppose next that $\alpha(B)=\frac{1}{2}$. Then $\alpha(C)$ cannot equal $\frac{1}{2}$, for by h.i. neither B nor $\sim C$ would then be provable from S_{∞}, hence by the maximal consistency of S_{∞} both $S \cup\{B\}$ and $S \cup\{\sim C\}$ would be syntactically
inconsistent, hence by $L 1$ (t) both \bar{B} and $\overline{\sim C}$ would be provable from S_{∞}, and hence by $L 1(\mathrm{p})$ and $L 1(\mathrm{~d})$ so would $B \supset C$ be. Hence $\alpha(C)$ must equal 0 , and hence $\alpha(B \supset C)=\frac{1}{2}$.

Since every member of S belongs to S_{∞} and hence by $L 1$ (c) is provable from S_{∞}, every member of S is thus sure to evaluate to 1 under α. Hence:

L2. If S is syntactically consistent, then S is semantically consistent.

Our completeness theorems are now at hand. For suppose $S \vDash A$. Then, as the reader may wish to verify, $S \cup\{A\}$ is semantically inconsistent, hence by, $L 2, S \cup\{\bar{A}\}$ is syntactically inconsistent, and hence by $L 1$ (u) $S \vdash A$. Hence:

Theorem 1 (The Strong Completeness Theorem) If $S \vDash A$, then $S \vdash A$.
Hence, taking S to be ϕ :
Theorem 2 (The Weak Completeness Theorem) If $\vDash A$, then $\vdash A$.
Since the converse of $L 2$ is also provable, it follows from L1 (b) and $L 1$ (s) that if every finite subset of S is semantically consistent, then S is syntactically consistent. Hence, as a further corollary of $L 2$:

Theorem 3 (The Compactness Theorem) If every finite subset of S is semantically consistent, then S is semantically consistent.

Four closing remarks are in order.
(1) Słupecki noted in [4] that ' \sim ' and ' \supset ' are not 'functionally complete," but ' \sim ', ' \supset ', and the connective ' T ' are ($T A$ evaluates to $\frac{1}{2}$ no matter the truth-value of A). If with Słupecki we add to $A 1-A 4$ on p .325 the following two axiom schemata:

A5. $\mathrm{T} A \supset \sim \mathrm{~T} A$,
A6. $\sim \mathrm{T} A \supset \mathrm{~T} A$,
the above proof of $L 2$ easily extends to the case where A is of the sort $\mathrm{T} B$. Indeed, neither $S_{\infty} \vdash \mathrm{T} B$ nor $S_{\infty} \vdash \sim \mathrm{T} B$ (by $L 1$ (a) and $L 1$ (d) S_{∞} would otherwise be syntactically inconsistent), and $\alpha(\mathrm{T} B)=\alpha(\sim T B)=\frac{1}{2}$. (i)-(iii) on p. 328 are therefore sure to hold true.
(2) Suppose the truth-values of $\sim A, A \supset B$, and $T A$ are reckoned as the following matrix directs:

Matrix II

$B \supset B$						0
$\frac{1}{2}$		1	$\sim A$	$\mathrm{~T} A$		
A	0	1	0	1	0	0
	$\frac{1}{2}$	1	1	1	1	0
	1	0	$\frac{1}{2}$	1	$\frac{1}{2}$	0

Suppose also the truth-value assignment α on p. 328 is so redefined as to
assign value 1 to P if $S_{\infty} \vdash P$, value $\frac{1}{2}$ if $S_{\infty} \vdash \sim P$, and value 0 if neither $S_{\infty} \vdash P$ nor $S_{\infty} \vdash \sim P$. Then the argument on pp. 328-9 will show that: (i') If $S_{\infty} \vdash A, \alpha(A)=1$, (ii') if $S_{\infty} \vdash \sim A, \alpha(A)=\frac{1}{2}$, and (iii') if neither $S_{\infty} \vdash A$ nor $S_{\infty} \vdash \sim A, \alpha(A)=0$. So $L 2$ holds true again. But, if $S \vDash A$, then $S \cup\{\bar{A}\}$ is again semantically inconsistent. So Theorems 1-2 hold true whether the truth-values of $\sim A, A \supset B$, and $T A$ be reckoned the familiar Łukasiewicz way or as Matrix II directs. That SC_{3}-as axiomatized by Wajsberg and Słupecki-is strongly (and hence weakly) sound and consistent under two different readings of ' \sim ', ' \supset ', and ' T ' (and, incidentally, under two only) may not have been reported before.
(3) As noted on p. 326, our truth-value assignments are to all the sentence letters of SC_{3} rather than just those occurring in (members of) a set S of wffs of SC_{3} or just those occurring in a wff A of SC_{3}. However, the argument on pp. 327-9 is easily sharpened to show that if S is non-empty and syntactically consistent, then there is a truth-value assignment to just the sentence letters in S under which all members of S evaluate to 1. Hence proof can be had that (a) if, no matter the truth-value assignment α to the sentence letters in $S \cup\{A\}, A$ evaluates to 1 under α if all members of S do, then $S \vdash A$, and (b) if, no matter the truth-value assignment α to the sentence letters in A, A evaluates to 1 under α, then $\vdash A$.
(4) S is sometimes taken to entail A if, no matter the truth-value assignment α, A does not evaluate under α to less than any member of S does. The account does not suit Wajsberg's axiomatization of SC_{3} since ' f ' is provable from (the set consisting of) ' p ' and ' $\sim p$ '.

REFERENCES

[1] Henkin, L., "The completeness of the first-order functional calculus," The Journal of Symbolic Logic, vol. 14 (1949), pp. 159-166.
[2] Leblanc, H., Techniques of Deductive Inference, New York (1966).
[3] Rosser, J. B., and A. R. Turquette, Many-valued Logics, North-Holland Co., Amsterdam (1952).
[4] Słupecki, J., "The full three-valued propositional calculus,' in Polish Logic, Storrs McCall, editor, Oxford, Clarendon Press (1967), pp. 335-337.
[5] Wajsberg, M., "Axiomatization of the three-valued sentential calculus," in Polish Logic, Storrs McCall, editor, Oxford, Clarendon Press (1967), pp. 264-284.

Temple University
Philadelphia, Pennsylvania,
Temple University
Philadelphia, Pennsylvania
and
Bryn Mawr College
Bryn Mawr, Pennsylvania

[^0]: 2. The possibility of assigning truth-values to just the sentence letters occurring in (members of) a set S of wffs of $\mathbf{S C}_{3}$ or in a wff A of $\mathbf{S C}_{3}$ is considered on p. 328.
 3. In view of the last three definitions, 1 is our only "designated" value.
 4. Hence, in particular, if $\vdash A$, then $S \vdash A$ for every set S of wffs of $\mathbf{S C}_{3}$ (a'); hence, in particular, if A is an axiom of $\mathbf{S C}_{3}$, then $S \vdash A$ for every S ($\mathrm{a}^{\prime \prime}$). Because of (a^{\prime}), each one of $(e)-(p)$ holds prefaced with ' S ', a fact we shall regularly take for granted.
[^1]: 5. The familiar Deduction Theorem: If $S \cup\{A\} \vdash B$, then $S \vdash A \supset B$, does not hold here. Though ' $p \supset r$ ' is provable from (the set consisting of) ' $p \supset(q \supset r)$ ' and $' p \supset q$ ', ' $(p \supset(q \supset r)) \supset((p \supset q) \supset(p \supset r))$ ' is not valid and hence not provable.
