Notre Dame Journal of Formal Logic Volume XV, Number 2, April 1974 NDJFAM

A STRONG COMPLETENESS THEOREM FOR 3-VALUED LOGIC

H. GOLDBERG, H. LEBLANC, and G. WEAVER

We establish here that Wajsberg's axiomatization of SC_3 , the 3-valued sentential calculus, is *strongly complete*, Theorem 1, p. 329, and by rebound *weakly complete*, Theorem 2, p. 329. Theorem 2 is a familiar result, obtained by Wajsberg himself in [5], and Theorem 1 can be recovered from results in [3]. But because of its simplicity and directness our proof of Theorem 1 may be worth reporting.¹

The primitive signs of SC_3 are '~', '⊃', '(', ')', and a denumerable infinity of sentence letters, say 'p', 'q', 'r', 'p'', 'q'', 'r'', etc. The wffs of SC_3 are those sentence letters, plus all formulas of the sort ~A, where A is a wff, plus all those of the sort (A ⊃ B), where A and B are wffs. The length l(P) of a sentence letter P is 1; the length $l(\sim A)$ of a negation ~A is l(A) + 1; and the length l((A ⊃ B)) of a conditional (A ⊃ B) is l(A) + l(B) + 1. We abbreviate the wff '~(p ⊃ p)' as 'f', and wffs of the sort $(A ⊃ \sim A)$ as \overline{A} . We also omit outer parentheses whenever clarity permits. The axioms of SC_3 are all wffs of SC_3 of the following four sorts:

 $\begin{array}{ll} A1. & A \supset (B \supset A), \\ A2. & (A \supset B) \supset ((B \supset C) \supset (A \supset C)), \\ A3. & (\overline{A} \supset A) \supset A, \\ A4. & (\sim A \supset \sim B) \supset (B \supset A). \end{array}$

A wff A of SC_3 is provable from a set S of wffs of $SC_3-S \vdash A$, for short-if there is a column of wffs of SC_3 (called a proof of A from S) which closes with A and every entry of which is an axiom, a member of S, or the ponential of two earlier entries in the column. A wff A of SC_3 is provable- $\vdash A$, for short-if A is provable from \emptyset . A set S of wffs of SC_3 is syntactically (in)consistent if there is a (there is no) wff A of SC_3 such that both A and $\sim A$ are provable from S. And S is maximally consistent if (a) S is

^{1.} Wajsberg's proof of Theorem 2 in [5] is "effective": it shows how to prove A whenever A is valid. Ours merely guarantees that A is provable.

syntactically consistent, and (b) $S \vdash A$ for any wff A of SC_3 such that $S \cup \{A\}$ is syntactically consistent.

Our *truth-values* are 0, $\frac{1}{2}$, and 1. *Truth-value assignments* are functions from *all* the sentence letters of SC_3 to $\{0, \frac{1}{2}, 1\}$,² and the truth-values under these of negations and conditionals are reckoned as the following matrix directs:

	Ma	tr	ix	Ι
--	----	----	----	---

			B		
A =	$\supset B$	0	$\frac{1}{2}$	1	$\sim A$
A	0 1 1	1 1 2 0	1 1 1 2	1 1 1	1 1 2 0

A set S of wffs of SC_3 is semantically consistent if there is a truth-value assignment under which all members of S evaluate to 1. S entails a wff A of $SC_3-S \models A$, for short-if, no matter the truth-value assignment α , A evaluates to 1 under α if all members of S do. And A is valid- $\models A$, for short-if, no matter the truth-value assignment α , A evaluates to 1 under α .

We collect in (lemma) L1 some auxiliary facts about provability and syntactic inconsistency. L1(a)-(d) hold by definition. Instructions for proving L1(e)-(p) can be found in [5].

L1. (a) If $S \vdash A$, then $S' \vdash A$ for every superset S' of S.⁴ (b) If $S \vdash A$, then there is a finite subset S' of S such that $S' \vdash A$. (c) If A belongs to S, then $S \vdash A$. (d) If $S \vdash A$ and $S \vdash A \supseteq B$, then $S \vdash B$. (e) $\vdash (A \supseteq (A \supseteq (B \supseteq C))) \supseteq ((A \supseteq (A \supseteq B)) \supseteq (A \supseteq (A \supseteq C)))$. (f) $\vdash \neg A \supseteq (A \supseteq B)$. (g) $\vdash A \supseteq A$. (h) $\vdash (A \supseteq \overline{A}) \supseteq \overline{A}$. (i) $\vdash \overline{A} \supseteq A$. (j) $\vdash \neg \neg \neg A$. (k) $\vdash A \supseteq \neg \neg A$. (l) $\vdash (A \supseteq B) \supseteq (\neg B \supseteq \neg A)$. (m) $\vdash \sim (A \supseteq B) \supseteq A$. (n) $\vdash \sim (A \supseteq B) \supseteq \sim B$.

⁽o) $\vdash A \supset (\sim B \supset \sim (A \supset B)).$

^{2.} The possibility of assigning truth-values to just the sentence letters occurring in (members of) a set S of wffs of SC_3 or in a wff A of SC_3 is considered on p. 328.

^{3.} In view of the last three definitions, 1 is our only "designated" value.

^{4.} Hence, in particular, if $\vdash A$, then $S \vdash A$ for every set S of wffs of SC_3 (a'); hence, in particular, if A is an axiom of SC_3 , then $S \vdash A$ for every S (a"). Because of (a'), each one of (e) - (p) holds prefaced with 'S', a fact we shall regularly take for granted.

(p) $\vdash \overline{A} \supset (\overline{\sim B} \supset (A \supset B)).$

(q) If $S \cup \{A\} \vdash B$, then $S \vdash A \supset (A \supset B)$. (The Stutterer's Deduction Theorem)⁵

(r) If S is syntactically inconsistent, then $S \vdash A$ for every wff A of SC_3 .

(s) S is syntactically inconsistent if and only if $S \vdash f$.

(t) If $S \cup \{A\}$ is syntactically inconsistent, then $S \vdash \overline{A}$.

(u) If $S \cup \{\overline{A}\}$ is syntactically inconsistent, then $S \vdash A$.

Proof: (q) Suppose the column made up of C_1, C_2, \ldots , and C_p constitutes a proof of B from $S \cup \{A\}$. We establish by mathematical induction on i that $S \vdash A \supset (A \supset C_i)$ for each i from 1 through p, and hence in particular that $S \vdash A \supset (A \supset B)$. Case 1: C_i is an axiom or a member of S. Then $S \vdash C_i$ by L1 (a) or L1 (c). But $S \vdash C_i \supset (A \supset C_i)$ by L1 (a''). Hence $S \vdash A \supset C_i$ by L1 (d). But $S \vdash (A \supset C_i) \supset (A \supset (A \supset C_i))$ by L1 (a''). Hence $S \vdash A \supset (A \supset C_i)$ by L1 (d). Case 2: C_i is A. Then $S \vdash A \supset (A \supset C_i)$ by L1 (a''). Case 3: C_i in the ponential of C_h and $C_h \supset C_i$. Then $S \vdash A \supset (A \supset C_h)$ and $S \vdash A \supset (A \supset (C_i) \supset (C_h \supset C_i))$ by the hypothesis of the induction. Hence $S \vdash A \supset (A \supset C_i)$ by L1 (c) and L1 (d).

(r) Suppose $S \vdash B$ and $S \vdash \sim B$ for some wff B of SC_3 . Then by L1 (f) and L1 (d) $S \vdash A$ for any wff A of SC_3 .

(s) $S \vdash p \supset p$ by L1 (g). Hence, if $S \vdash f$, then S is syntactically inconsistent. Hence L1 (s) by L1 (r).

(t) Suppose $S \cup \{A\}$ is syntactically inconsistent. Then $S \cup \{A\} \vdash \sim A$ by L1 (r), hence $S \vdash A \supset \overline{A}$ by L1 (q), and hence $S \vdash \overline{A}$ by L1 (h) and L1 (d).

(u) Proof by L1 (t), L1 (i), and L1 (d).

Now for proof that if a set S of wffs of SC_3 is syntactically consistent, then S is semantically consistent as well. We hew at first to two-valued precedent: i.e., we assume S to be syntactically consistent and then extend S into the familiar superset S_{∞} of two-valued textbooks.⁶ The members of S_{∞} , and hence those of S, will thereafter be shown to evaluate to 1 under some truth-value assignment of our own devising. Construction of S_{∞} , the reader will recall, is as follows: (a) Take S_0 to be S, (b) assuming the wffs of SC_3 to be alphabetically ordered and A_i to be for each *i* from 1 on the alphabetically *i*-th wff of SC_3 , take S_i to be $S_{i-1} \cup \{A_i\}$ if $S_{i-1} \cup \{A_i\}$ is syntactically consistent, otherwise take S_i to be S_{i-1} itself, and (c) take S_{∞}

Here as in the two-valued case, it is easily verified that:

(1) S_{∞} is syntactically consistent

and

(2) S_{∞} is maximally consistent.

^{5.} The familiar Deduction Theorem: If $S \cup \{A\} \vdash B$, then $S \vdash A \supset B$, does not hold here. Though $p \supset r$ is provable from (the set consisting of) $p \supset (q \supset r)$ and $p \supset q'$, $(p \supset (q \supset r)) \supset ((p \supset q) \supset (p \supset r))'$ is not valid and hence not provable.

^{6.} See, for instance, [2], p. 73. The primary source is of course [1].

For proof of (1), suppose S_{∞} were syntactically inconsistent. Then by L1 (s) and L1 (b) at least one finite subset S' of S_{∞} would be syntactically inconsistent. But S' is sure to be a subset of S_0 , or (failing that) one of S_1 , or (failing that) one of S_2 , etc., and each one of S_0 , S_1 , S_2 , etc. is syntactically consistent. Hence (1). For proof of (2), suppose not $S_{\infty} \vdash A$, where A is the alphabetically *i*-th wff of **SC**₃. Then by L1 (c) A does not belong to S_{∞} , hence A does not belong to S_i , hence $S_{i-1} \cup \{A\}$ is syntactically inconsistent, and hence by L1 (s) and L1 (a) so is $S_{\infty} \cup \{A\}$.

Departing now from two-valued precedent, let α be the result of assigning to each sentence letter P of SC_3 the truth-value 1 if $S_{\infty} \vdash P$ (and hence, by the syntactic consistency of S_{∞} , not $S_{\infty} \vdash \sim P$), the truth-value 0 if $S_{\infty} \vdash \sim P$ (and hence, by the syntactic consistency of S_{∞} , not $S_{\infty} \vdash \sim P$), otherwise the truth-value $\frac{1}{2}$. We proceed to show of any wff A of SC_3 that:

(i) If $S_{\infty} \vdash A$ (and, hence, not $S_{\infty} \vdash \sim A$), $\alpha(A) = 1$,

(ii) If $S_{\infty} \vdash \sim A$ (and, hence, not $S_{\infty} \vdash A$), $\alpha(A) = 0$,

(iii) If neither $S_{\infty} \vdash A$ nor $S_{\infty} \vdash \sim A$, $\alpha(A) = \frac{1}{2}$.

The proof is by mathematical induction on the length l of A.

Basis: l = 1, and hence A is a sentence letter. Proof by the very construction of α .

Inductive Step: l > 1.

Case 1: *A* is a negation $\sim B$. (i) Suppose $S_{\infty} \vdash \sim B$. Then not $S_{\infty} \vdash B$, hence by the hypothesis of the induction (h.i., hereafter) $\alpha(B) = 0$, and hence $\alpha(\sim B) = 1$. (ii) Suppose $S_{\infty} \vdash \sim \sim B$. Then by *L1* (j) and *L1* (d) $S_{\infty} \vdash B$, hence by h.i. $\alpha(B) = 1$, and hence $\alpha(\sim B) = 0$. (iii) Suppose neither $S_{\infty} \vdash \sim B$ nor $S_{\infty} \vdash \sim \sim B$. If *B* were provable from S_{∞} , then by *L1* (k) and *L1* (d) so would $\sim \sim B$ be. Hence neither $S_{\infty} \vdash B$ nor $S_{\infty} \vdash \sim B$, hence by h.i. $\alpha(b) = \frac{1}{2}$, and hence $\alpha(\sim B) = \frac{1}{2}$.

Case 2: A is a conditional $B \supset C$. (i) Suppose $S_{\infty} \vdash B \supset C$. If $S_{\infty} \vdash \sim B$, then $\alpha(B) = 0$ by h.i. If $S_{\infty} \vdash C$, then $\alpha(C) = 1$ by h.i. If $S_{\infty} \vdash B$, then $S_{\infty} \vdash C$ by L1 (d), and hence again $\alpha(C) = 1$. And, if $S_{\infty} \vdash \sim C$, then $S_{\infty} \vdash \sim B$ by L1 (l) and L1 (d), and hence again $\alpha(B) = 0$. Hence, if any one of B, $\sim B$, C, and ~ C is provable from S_{∞} , then $\alpha(B) = 0$ or $\alpha(C) = 1$, and hence $\alpha(B \supset C) = 1$. If, on the other hand, none of B, $\sim B$, C, and $\sim C$ is provable from S_{∞} , then $\alpha(B) = \alpha(C) = \frac{1}{2}$ by h.i., and hence $\alpha(B \supset C) = 1$. (ii) Suppose $S_{\infty} \vdash \sim (B \supset C)$. Then by L1 (m)-(n) and L1 (d) both $S_{\infty} \vdash B$ and $S_{\infty} \vdash \sim C$, hence by h.i. $\alpha(B) = 1$ and $\alpha(C) = 0$, and hence $\alpha(B \supset C) = 0$. (iii) Suppose neither $S_{\infty} \vdash B \supset C$ C nor $S_{\infty} \vdash \sim (B \supset C)$. Then $\alpha(B)$ cannot equal 0 nor can $\alpha(C)$ equal 1, for by h.i. $\sim B$ or C would then be provable from S_{∞} , and hence by L1 (f), L1 (a), and L1 (d) so would $B \supseteq C$ be. Now suppose first that $\alpha(B) = 1$. Then $\alpha(C)$ cannot equal 0, for by h.i. $\sim C$ would then be provable from S_{∞} , and hence by L1 (o) and L1 (d) so would ~ $(B \supset C)$ be. Hence $\alpha(C)$ must equal $\frac{1}{2}$, and hence $\alpha(B \supset C) = \frac{1}{2}$. Suppose *next* that $\alpha(B) = \frac{1}{2}$. Then $\alpha(C)$ cannot equal $\frac{1}{2}$, for by h.i. neither B nor $\sim C$ would then be provable from S_{∞} , hence by the maximal consistency of S_{∞} both $S \cup \{B\}$ and $S \cup \{\sim C\}$ would be syntactically inconsistent, hence by L1 (t) both \overline{B} and \overline{C} would be provable from S_{∞} , and hence by L1 (p) and L1 (d) so would $B \supset C$ be. Hence $\alpha(C)$ must equal 0, and hence $\alpha(B \supset C) = \frac{1}{2}$.

Since every member of S belongs to S_{∞} and hence by L1 (c) is provable from S_{∞} , every member of S is thus sure to evaluate to 1 under α . Hence:

L2. If S is syntactically consistent, then S is semantically consistent.

Our completeness theorems are now at hand. For suppose $S \models A$. Then, as the reader may wish to verify, $S \cup \{\overline{A}\}$ is semantically inconsistent, hence by, $L2, S \cup \{\overline{A}\}$ is syntactically inconsistent, and hence by L1 (u) $S \vdash A$. Hence:

Theorem 1 (The Strong Completeness Theorem) If $S \vDash A$, then $S \vdash A$.

Hence, taking S to be \emptyset :

Theorem 2 (The Weak Completeness Theorem) If $\models A$, then $\vdash A$.

Since the converse of L^2 is also provable, it follows from L^1 (b) and L^1 (s) that if every finite subset of S is semantically consistent, then S is syntactically consistent. Hence, as a further corollary of L^2 :

Theorem 3 (The Compactness Theorem) If every finite subset of S is semantically consistent, then S is semantically consistent.

Four closing remarks are in order.

(1) Słupecki noted in [4] that '~' and ' \supset ' are not ''functionally complete,'' but '~', ' \supset ', and the connective 'T' are (TA evaluates to $\frac{1}{2}$ no matter the truth-value of A). If with Słupecki we add to A1-A4 on p. 325 the following two axiom schemata:

the above proof of L2 easily extends to the case where A is of the sort TB. Indeed, neither $S_{\infty} \vdash TB$ nor $S_{\infty} \vdash \sim TB$ (by L1 (a) and L1 (d) S_{∞} would otherwise be syntactically inconsistent), and $\alpha(TB) = \alpha(\sim TB) = \frac{1}{2}$. (i)-(iii) on p. 328 are therefore sure to hold true.

(2) Suppose the truth-values of $\sim A$, $A \supset B$, and TA are reckoned as the following matrix directs:

Matrix II							
				В			
ł	4 ⊃	В	0	$\frac{1}{2}$	1	$\sim A$	ΤA
_		0	1	0	1	0	0
1	4	$\frac{1}{2}$	1	1	1	1	0
		1	0	$\frac{1}{2}$	1	$\frac{1}{2}$	0

Suppose also the truth-value assignment α on p. 328 is so redefined as to

assign value 1 to P if $S_{\infty} \vdash P$, value $\frac{1}{2}$ if $S_{\infty} \vdash \sim P$, and value 0 if neither $S_{\infty} \vdash P$ nor $S_{\infty} \vdash \sim P$. Then the argument on pp. 328-9 will show that: (i') If $S_{\infty} \vdash A$, $\alpha(A) = 1$, (ii') if $S_{\infty} \vdash \sim A$, $\alpha(A) = \frac{1}{2}$, and (iii') if neither $S_{\infty} \vdash A$ nor $S_{\infty} \vdash \sim A$, $\alpha(A) = 0$. So L2 holds true again. But, if $S \models A$, then $S \cup \{\overline{A}\}$ is again semantically inconsistent. So Theorems 1-2 hold true whether the truth-values of $\sim A$, $A \supset B$, and TA be reckoned the familiar Łukasiewicz way or as Matrix II directs. That SC_3 -as axiomatized by Wajsberg and Shupecki-is strongly (and hence weakly) sound and consistent under *two* different readings of ' \sim ', ' \supset ', and 'T' (and, incidentally, under two only) may not have been reported before.

(3) As noted on p. 326, our truth-value assignments are to *all* the sentence letters of SC_3 rather than just those occurring in (members of) a set S of wffs of SC_3 or just those occurring in a wff A of SC_3 . However, the argument on pp. 327-9 is easily sharpened to show that if S is non-empty and syntactically consistent, then there is a truth-value assignment to just the sentence letters in S under which all members of S evaluate to 1. Hence proof can be had that (a) if, no matter the truth-value assignment α to the sentence letters in $S \cup \{A\}$, A evaluates to 1 under α if all members of S do, then $S \vdash A$, and (b) if, no matter the truth-value assignment α to the sentence letters in A, A evaluates to 1 under α , then $\vdash A$.

(4) S is sometimes taken to entail A if, no matter the truth-value assignment α , A does not evaluate under α to less than any member of S does. The account does not suit Wajsberg's axiomatization of SC_3 since 'f' is provable from (the set consisting of) 'p' and '~ p'.

REFERENCES

- [1] Henkin, L., "The completeness of the first-order functional calculus," *The Journal of Symbolic Logic*, vol. 14 (1949), pp. 159-166.
- [2] Leblanc, H., Techniques of Deductive Inference, New York (1966).
- [3] Rosser, J. B., and A. R. Turquette, *Many-valued Logics*, North-Holland Co., Amsterdam (1952).
- [4] Słupecki, J., "The full three-valued propositional calculus," in *Polish Logic*, Storrs McCall, editor, Oxford, Clarendon Press (1967), pp. 335-337.
- [5] Wajsberg, M., "Axiomatization of the three-valued sentential calculus," in Polish Logic, Storrs McCall, editor, Oxford, Clarendon Press (1967), pp. 264-284.

Temple University Philadelphia, Pennsylvania,

Temple University Philadelphia, Pennsylvania

and

Bryn Mawr College Bryn Mawr, Pennsylvania