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ADMISSIBLE RULES, DERIVABLE RULES, AND
EXTENDIBLE LOGISTIC SYSTEMS

HOWARD C. WASSERMAN

Introduction.* At a 1957 conference at Cornell University of the Summer
Institute for Symbolic Logic [3] and in a paper [4] published in 1959, Hiz
presented a system of sentential calculus based on the axioms: ^(αDj3)Dα
and ~(a D β) z> ~/3, and on the inference rules: a D β, β D γ =Φ a D γ;
a D (β z> γ), a Z) 0 ==>α D y; and ~α Z) β, ~a 3 ~/3==>α. The system, which
shall be herein referred to as H, was proven by Hiz to be complete with
respect to the usual two-valued matrix 9W2. However, Hiz showed that the
system is extendible (i.e., not Post complete); in fact, the system admits
infinitely many distinct Post consistent extensions (although, as R. Harrop
pointed out, at a meeting in 1958 of the Logic Seminar at Pennsylvania
State University, no negation-free formula will extend H). What is more,
there exist inference rules which are admissible in H (i.e., with respect
to which the set of theorems of H is closed) but which are not derivable
in H (i.e., it is not the case that every application of such a rule can be
uniformly replaced by a specific finite application of the primitive rules of
H). Hiz writes in [4] that " . . . a result of this paper may be phrased:
there is a system of sentential calculus for which if alf a2, . . . , otn ==^mpβ,
then al9 a2, . . . , an=z>.nmpβ, but not if al9 a2, . . . , an hmpβ, then al9 a2, . . . ,

an hnmpβ.'91 Among the admissible non-derivable rules are a D β, a=Φβ,
~~a==>a, a, ~a=Φβ, a, β=Φa D β, and a, β=$>~a D ~β.

*This work is based on a dissertation in partial fulfillment of the requirements
for the Ph.D. degree in Linguistics at the University of Pennsylvania, May 1971.
The author wishes to thank Professor Henry Hi£ for directing this research..

1. In the terms of the present paper, there is an axiomatic system A = (-C, T0,i?) with
modus ponens not in R such that any rule admissible in L(A'^ is admissible in
L {A), but there is a rule derivable in L(Af) which is not derivable in L(A), where
A' = (JC , T0,R) U {modus ponens }.
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The existence of such rules shows, as Hiz writes in [4], that "the
opinion, sometimes expressed, that a complete system of tautologies con-
stitutes an adequate characterization of valid inferences of the sentential
kind is shown to be unjustified," and in [2], Harrop writes that "the
results . . . are seen to illustrate quite vividly the fact that reasonable
care must be taken before properties proved to hold for one formulation
of a calculus are used in connection with some other formulation of the
'same' calculus." R. Suszko concludes in [12] that logical calculi designed
to generate formulas rather than rules, are, in general, " . . . incomplete
constructions . . . . "

The notion of inference rule is quite specific for the system H. In fact,
Hiz writes in [4] that " . . . the only rules, besides the rule of substitution,
allowed here are of the form ζAl9A2, . . . ,Ai=^>B' where Al9 A2, . . . , A,
and B contain Greek letters and if one replaces the Greek letters by
sentential variables, and the arrows and the commas by the sign of condi-
tional, one obtains (after affixing proper parentheses) a formula of the
sentential calculus." Moreover, and this is quite important, " . . . the
restriction on the rules of inference has the effect of excluding trivially
extendible systems. Had one not required it, one could give as an example
of an extendible system the system based on: (a) every tautology is a
theorem, (b) the formula 'q D p' is a theorem."2 It should be noted that
the concept of inference rule adopted by Harrop in [2] is essentially the
same as Hiz's. In particular, the set of applications of a rule, in their
sense, is always an infinite but decidable w-ary relation. The criterion of
decidability was initiated by Frege. In [1], Frege wrote " . . . I demand—
and in this I go beyond Euclid—that all methods be specified in ad-
vance . . . . "

In [7], J. Los and R. Suszko define a notion of inference rule which
is far more general than that of Hiz. In particular, given a sentential
language -C, they define a rule of inference in «C to be any n-ary relation
R in ^(for n finite or infinite and for R finite or infinite in cardinality).
No assumption is made that a rule be decidable. A rule of inference R
is said to be structural in case it is closed under substitution, and R is
said to be sequential in case there is a sequence σ= (φ0, φl9 φ2, . . .) of
formulas of <£ such that R consists of all and only substitution instances of
σ. It is shown in [7] that every structural rule is a disjoint union of
sequential rules. It is easily seen that the connection between the notion
of rule expressed by Los and Suszko and that given by Hiz is that for any
sentential language «£, a relation in ^ is a finitary sequential rule if,
and only if it is the set of all applications in 4! (i.e., all substitution
instances) of an inference rule in the sense of Hiz.

2. For, neither of the 'rules' (a), (b),applies to the non-theorem p D q, and hence p D q
could be added to the system without generating a variable.
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By a consequence in £, Los and Suszko mean an operation Cn: 2^ -* 2*
such that

1) for every XQ = ( , X C CnpO = Cn(Cn(X)) c £, and
2) for all X,Y c ^, if X c Y, then Cn(X) c Cn(Y).

In [12], Suszko defines a finitary rule Ro to be secondary with respect
to a consequence Cn in <£ (i.e., derivable with respect to Cn) in case
φoeCn({φl9 . . . , φn}) whenever (φθ9 φu . . . , φn)eR0.

Suppose that L is a sentential calculus, all of whose rules are finitary
sequential rules (or, as Suszko calls them in this paper, proper structural
rules), and let us take Cn to be the consequence such that for every X c J£,
Cn(X) is the set of all formulas of -C derivable in L from X. Then, in case
#0 is a proper structural rule, it is easily seen that Ro is secondary with
respect to Cn if, and only if it is derivable in L in the sense of Hiz and of
Kleene [6]; in fact, one will have that there is & uniform derivation which
works for all (n + l)-tuples in Ro. However, if Ro is structural but not
sequential, or worse yet, if RQ is not even structural, the uniformity of
derivation is lost completely (in fact, it would be difficult to formulate
what such uniformity would mean).

In 1968, W. A. Pogorzelski presented a paper [8] which addresses
itself to the problem of analyzing and explaining the apparently unusual
properties of the system H. In particular, it attacks the question of
whether there is a connection between the extendibility of H and the fact
that there are inference rules which are admissible in H but not derivable
in H. The paper is quite ambitious in scope, aiming at great generality.
However, the results obtained, while apparently correct in the context of
Pogorzelski's paper, are not applicable to the system H for several
reasons.

First of all, Pogorzelski does not adhere to the restrictions put
on the notion of inference rule by Hiz; namely, that the rules be presentable
by schemata of the form Al9A2, . . . ,An=ΦB such that each A, and B is
a sentential form. To exemplify and emphasize why this fact alone makes
Pogorzelski's paper inapplicable to H, we consider his theorem (3.1) which
states that a sentential calculus L is extendible if, and only if there is an
inference rule which is admissible in L but not derivable in L. As part
of his proof of (3.1), Pogorzelski assumes that L is extendible, and then,
under this assumption, "constructs" a rule which is admissible in L but
not derivable in L. However, this rule is a binary rule consisting of
exactly one ordered pair of formulas, and is thus extremely non-structural.

There are other difficulties with the proof of (3.1) and of lemma (2.3)
on which the proof of (3.1) is partially based, which derive from Pogor-
zelski's definitions of derivable rule and complete (i.e., non-extendible)
system. Due to the non-standard (and certainly non-Hizian) definition of
inference rule given by Pogorzelski, he was apparently forced to adopt
non-standard definitions of derivable rule and complete system. Pogorzel-
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ski defines a rule to be derivable in a system (R,A) (R a set of rules
and A a set of formulas in the sentential language S at hand) as follows:

reDer(R,A) = A [(φl9 . . . , φn) er=ΦφneCn(R,A +{φu . . . , <ρw-i})];
τl 'T«

i.e., a rule r is derivable in (β,A) if and only if for every instance
(ψiy . . , φn-u Ψn) o ί r , Ψn i s obtainable from A U {φl9 . . . , ^ . J by a
finite sequence of applications of the rules of R.

He also defines the system (ft,A) to be complete (i.e.,non-extendible)
as follows:

{R,A)eCP\%^RA)Cn(R,A+{φ}) = S;

i.e., the system (ft,A)is complete if and only if for every non-theorem φ,
every formula is obtainable from A U {φ} by a finite sequence of applica-
tions of the rules of R.

Consider the case that substitution is among the primitive rules R.
Now the traditional definition of derivability (e.g., Kleene [6] and Harrop
[2]) is that a rule r is derivable in (R,A) if and only if for all instances
{ψu ,Ψn-i> Ψn) of r, φn is obtainable uniformly from A U {φu . . . , φn^j}
by a finite sequence of applications of rules of R other than substitution.
Since Pogorzelski does not exclude substitution, the notion of non-extendi-
bility implying that every admissible rule is derivable is trivialized; for,
in this case, if (R,A) is complete, then all rules are derivable.

Secondly, consider the case that substitution is not among the primitive
rules R. Now the traditional definition of (Post) completeness (e.g.,
Post [9]) is that a system (R,A) is complete if and only if for every
non-theorem φ, all formulas are obtainable, by the rules of R, from A
together with all substitution instances of φ. Since Pogorzelski excludes
these substitution instances, the notion that incompleteness implies the
existence of an admissible non-derivable rule is somewhat trivialized by
the possibility that the "extending" formula φ is such that although φ
extends the system, the set of all substitution instances of φ might not.
More importantly, though, as mentioned before, the notion is essentially
trivialized by allowing the non-derivable rule whose existence is to be
shown to be non-structural.

Thus, it seems clear that a prudent approach to an analysis of prob-
lems and questions raised by the system H is, at least initially, to restrict
oneself to an approximation to traditional notions, and, in particular, to
observe the restrictions placed on the concept of inference rule by Hiz.

Whether Pogorzelski's theorem (3.1) is true when all the concepts
involved are taken to be the traditional ones remains an open problem,
but a partial solution to this problem is given in the present paper, along
with an analysis of the concepts of admissible rule, derivable rule, and
extendible system, the relationships among these concepts and several
model-theoretic considerations.
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I: BASIC CONCEPTS

1 Sentential Languages, Given a denumerable set V of symbols (called
sentential variables), a countable (possibly null) set K of symbols (called
sentential constants), and a finite non-empty set C of symbols (called
sentential connectives) each having associated with it a positive integer
(called its arity), the sentential language over V U K u C is the sublanguage
-C V.K.C oί the s e t ( F U K U C ) * o f all words over V Ό K U C defined as the
intersection of all subsets S of (V U K U C)* satisfying the following
conditions:

(1) if φeV, then φeS,
(2) if φeK, then φeS,
(3) if φl9 . . . , φneS and if feC is n-ary (i.e., the arity of/ is «), then

fφ1 . . . <ρweS.

Throughout, *C shall denote a sentential language, and V = {ft, />2,
/>3, . . .} shall be the set of sentential variables of £. We abbreviate />x, />2,
and p3 by p, q, and r , respectively. For simplicity, we shall assume that -C
has no sentential constants. The members of £ shall be called formulas.

2 Substitution and Logistic Rules. For any mapping μ: V -* <£ and any
formula φe £, we let Substμ(φ) be the formula obtained from φ by substitut-
ing μ(α) for every occurrence in φ of every variable a. For S c ^ , we de-
fine Subst(S) to be the set {Substμ(<ρ): φeS and μ: V -* -£}, and we say that
S is closed under substitution in case S = Subst(S).

By a logistic rule for *C we mean an expression of the form ψu . . . ,
φn==>φ (na positive integer),3 where φu . . . , φn, φe ^ .

For S c ^ and r: φx, . . . , φn=Φcp3. rule, by an application of r in S,
we mean an (w + l)-tuple of formulas (<pj, . . . , φn, φ) such that for some
μ: V -* *C 9 φ' = Substμ(φ) and φ\ - Substμ(<ρ, ) (1 <z < n ) .

Let S c £ and let β be a set of rules for X. We define the closure
of S under R, written ClsR(S), as the intersection of all subsets S' of *C
satisfying the following conditions:

(1) if φe S, then φ e S';
(2) if (</>!, . . . , φn9 φ) is an application inS ' of a rule of R, then φeSr.

We say that S is closed under R in case S = C\sR(S). Note that S is
closed under R if, and only if for every application (φl9 . . . , φU9 φ) in S
of a rule of β, </>e S.

3 Logistic Systems. By a (logistic) system we mean an ordered triple
(*C , T , β ) ( f r e q u e n t l y t o b e a b b r e v i a t e d (T9R))9 w h e r e T i s a n o n - e m p t y

3. One should not confuse the use here of *=Φ' with the use in [4]. In [4], Hiz writes
<o?1, cι2, . . . , an =Φ a' to mean that a is a theorem (of a given sentential calculus)
whenever av . . . , a}l are theorems (i.e., in the terms of this paper, the rule
alf . . . , at1 =Φ a is admissible) whereas the use here of <cv1, . . . , oιu =Φ &% can
be viewed just as a suggestive notation for the (n + 1)-tuple (alt . . . , a,,, a).
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subset of X, R is a finite set of rules for -C, and T is closed both under
substitution and under R. We shall call the members of T theorems of
(T ,R ) and we shall write \-φ to assert that φ is a theorem.

One may observe that we, just as Harrop [2], do not treat substitution
as a rule. This may be justified on at least two counts: firstly, by the
fact that all logistic rules are "structural" (see Suszko [12]) but substitu-
tion is not, and secondly, by "fact" (1) of section II. In fact, our attitude is
to treat substitution not as a rule but as an operation basic to the notion
of system.

We define an axiomatic system to be an ordered triple (-C,Γ0,Λ>,
where To is a non-empty finite subset of «£, and R is a finite set of rules
for -C. The logistic system L(A) generated by an axiomatic system
A= (<£,Tθ9R) is the system (JC,T,R), where T = ClsΛ(Subst(Γ0)). A
logistic system L is said to be axiomatizable in case L = L(A) for some
axiomatic system A. In this paper, we make no assumption that a logistic
system be axiomatizable.

4 P-Consistency and Extendibility. A system shall be called p-consistent
in case its set of theorems is a proper subset of £ (this notion originated
with Emil Post [9]). We shall henceforth use the expression 'system' to
mean p-consistent system. A system («C,T,β) shall be called extendible
in case there is a non-theorem φ such that ^ Φ Clsβ(T U Subst(φ)) (i.e., such
that the triple ( ^ , ClsΛ(T U Subst(<p),)β) is a {p-consistent) system). By an
extension of a system L = (-C,T,β), we mean a system L' = (JH.9T'9R)9

where T c T' c «£. Obviously, a system L is extendible if, and only if
L has an extension. Frequently, a non-extendible system is said to be
Post complete (see Emil Post [9]).

5 Admissible and Derivable Rules, A rule r is said to be admissible in a
system (T,fl) in case T is closed under r (i.e., under {r}). Given
ψi, 9 ψn, φt oC , we shall say that φ is deducible from φl9 . . . , φnin
L(L = (T,β)) in case φeClsR(T U {φl9 . . . , φn})y and we shall write
Ψu i Ψn i- Ψ- Clearly, φl9 . . . , φn \- φ if, and only if there is a finite
s e q u e n c e ηl9 . . . , ηm, ηm+1 {m > 0) s u c h t h a t ηm+1 = φ,η1eT u{φl9 . . . , φn}9

and for each i e {2, . . . , m + ϊ}9 either η{ e T U {φl9 . . . , φ^} or 77, is
obtained by applying a rule of R in {ηl9 . . . , η/-i). Following Harrop [2],
we say that a rule φl9 . . . , φn=Φφ for J£ is a derivable rule of L in case
<p is deducible from <p!, . . . , φn in L. We note in passing that Kleene [6]
uses the term 'derived rule' to mean a rule which is either admissible
or derivable (in our sense), and his notion of 'direct rule' corresponds to
our notion of derivable rule.

6 Derivation Sets. By a derivation set for L = ( - C , T , R ) we m e a n any
set JZ> of rules for -C which contains R and every rule φu . . . , φn=Φφ
for which ^ e T U {φl9 . . . , φ^9 and which satisfies the following:

(i) If r e JZ>, where r = φl9 . . . , φn = > φ and if {^, . . . , φn] c

{vu > ̂ w), then ?7i, . . . , ηOT =#> <ρ belongs to J2> (which implies, in par-
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ticular, that if φl9 . . . , φn=Φφ belongs to -Z>, then φπa)9 . . . , φπ(n) =Φ φ
belongs to J2> for any permutation 77 of {l, . . . , n)),

(ii) If ( φ u . . . , φn, φ) is an application (in -C) of a member of JZ>,
then φί9 . . . 9 φn=$>φ is a member of Jb,

(iii) If φl9 . . . , φn=^'ψi belongs to «Z)(l<z< k) and if pί9 . . . , pm =Φ p
is a member of J2> such that {ρu . . . , ρm] c {<pl5 . . . , φn9ψl9 . . . 9 ψ j ,
then ψi, . . . , φn=Φp belongs to JZ>,

and

(iv) If ψi, . . . , ψn =^> <P belongs to & (n > 2) and if i-φ^ for some
i e {1, . . . , n}9 then φl9 . . . , ^ - i , <p, + 1, . . . , (pw==>(p belongs to i>.

It is clear that the intersection J$L of all derivation sets of L is,

itself, a derivation of L. For example, if C is a binary connective in JQ,

if CpCqp is a theorem of L, and if Cp3p±, p3=$>p4 is a rule of L, then

CpCqp, p =ΦCqp belongs to JfcL ( b v (**))» a n c * hence /> =Φ Cqp belongs to

* l > y (iv)).

II: THE DERIVABILITY PRINCIPLE

Theorem (the derivability principle). Let r: φl9 . . . , φn==> φ be a rule for
£. Then the following are all equivalent:

(1) r is a derivable rule of L.
(2) reJZ>L.
(3) 5 is closed under r, for every subset S of £ such that T c S and S is

closed under R.

Proof. (1) -> (2): Assume that φl9 . . . , φn μ φ. Then let ηl9 . . . , τ?w, τ?w+1

be a finite sequence with ηmJrl = φ9 ηλ e T U {φl9 . . . 9 φt}9 and such that for
each i e {2, . . . , m + l}, either ηέ e T U {<pi, . . . , φn] or 77/ is obtained
from an application in {ηl9 . . . , 77,-1} of a rule of R. The proof proceeds
by showing inductively on j e {l, . . . , m + 1} that the rule r ; : </?! , . . . ,
φn=Φη- belongs to «2>L. (2) -* (3). Proof proceeds by induction on the
recursive definition of Jb^. (3) -> (1). Immediate.

We note in passing that Suszko [12] proved a variation of the equiva-
lence of (1) and (2) of this theorem in a rather different context. We also
note that Hiz [4] made implicit use of this theorem in showing that modus
ponens is not derivable in the system H.

Let us say that formula φe<£ is a falsehood of L in case Subst({(̂ )) c
JC - T. We shall say that the logistic system L has the falsehood property
in case every non-theorem of L has a substitution instance which is a
falsehood of L. All the classical two-valued systems have the falsehood
property, including the system H. An example of a well-known system
which fails to have the falsehood property is any system having the
conditional as its only connective and which is complete with respect to
the usual two-valued matrix for the conditional; in fact, it is easily seen
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that such a system has no falsehoods whatsoever, since every non-theorem
has a substitution instance which is a theorem. The following two facts are
obvious:

(1) For S c £, Clsκ(SubsKS)) is closed under substitution,

and

(2) A system (T,β) is extendίble if and only if there is a non-theorem

φ such that V Π ClsR(T U Subst({φ})) = 0.

Using these two facts one may infer from the derivability principle
the

Corollary (1) If a rule is derivable in L, then it is admissible in L and in
every extension of L.

(2) If L has the falsehood property, then L is extendible only
if there is a rule which is admissible but not derivable in L.

We do not prove this corollary here because a strengthening of it will
be given in the next section, where it will be seen that a notion called
model-wise derivability is more to the point than the notion of derivability.

Ill: MODEL-WISE DERIVABILITY AND EXTENDIBILITY

1 Interpretations, Tautologies, and Valid Rules. By an interpretation of a
system L = (-C,T,β) we mean an ordered triple 3JI = (u,v,Γ), where u
is a non-empty set, v c u, and Γ is a mapping such that for each n-ary
connective / o f -£, Γ(/) is an n-ary operation on u. We call the members
of u values, those in v designated, and those in u - v undesignated.

Given an i n t e r p r e t a t i o n 9W = (u9v, Γ ) of a s y s t e m L = <-C,T,r ) and

a mapping <A : V -*u, we define <AT\ <£ -* u r e c u r s i v e l y , a s follows: Let

φ e ^ . Then

(i) if φe V, then <JΓ(φ) = c4{φ),

and

(ii) if φ =fφλ . . . φn, then c4T{φ) = Γ ( / ) U Γ ( ^ ) , . . . , c4T{φn)).

By an 2W-tautology, we mean a formula φe£ such that σ4T{φ)ev for
every <A : V -* u. We write 1=̂  φ to mean that φ is an Wl -tautology.

A rule φl9 . . . , φn=^>φ for ^ is said to be (weakly) Wl-valid in
case )=m Substμ(φ) whenever μ: V -> *C such that |=TO Substμ(φz ) (1 < z < w);
it is said to be strongly SW -valid in case cAT(φ) is designated whenever
c^ : F -> M such that cAT^ψi) is designated (1 < z < n) (see Harrop [2] for the
distinction between weak and strong validity). We write φl9 . . . , φn \=m φ
to mean that φu . . . , φn=Φφ is strongly Wl-valid.

By a (weak) model of L (resp. strong model of L), we mean an inter-
pretation 9)1 = (u,v,Γ) of L such that every theorem of L is an 3Λ-tautology
and every rule of L is (weakly) 2W-valid (resp. strongly 9W-valid).
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2 Model-Wise Ώeriυability. A rule r shall be called model-wise derivable
in L in case r is weakly valid in every model of L. It shall be called
model-wise non-derivable otherwise. Given an expression E and symbols

[ X XyΆ

1 ' n\ shall denote the expression obtained
yi - - - ynj

from E by replacing each occurrence of %i in E by yi (1 < i < w).
Lemma. For every rz/Zβ r /or -C which is admissible in L, if r is model-
wise non-derivable in L, then there is an extension of L in which r is
inadmissible.
Proof. Suppose that r is a rule for *C which is admissible in L, and
suppose that 5JΪ = (u,v, Γ) is a weak model of L in which r is not weakly
valid.

Let T = the set of all ^-tautologies. Let μ: V - < and let φeTf.
Let a x , . . . , αw be the variables in φ.

Then Substμ(φ) = <?ΓQ ί*l / \ ' ' ' c u ^ / \1

Let CT/ : F -* w be a r b i t r a r y . Since < p e T ' , cArΓ{φ) e v for every

c4': V-+u. Define ^ 0 : ^-> ^ by *40(a) = ΛΓ(Sυbsϊμ(a)) (aeV). Now, it is
trivial to see that for every ψe£, ^Γ(Substμ(ψ)) = */0Γ(i//). Thus
^/Γ(Substμ((^)) = ̂ o Γ (^) € f. Hence, Substμ(φ) eT'. Thus, T' is closed under
substitution. Moreover, since 9tf is a weak model of L, T' is closed under
R; and since there are admissible rules (e.g., r) which are not weakly
valid in 9W, T' is a proper subset of *C, and T is a proper subset of T\
Thus, L' = (X,T' ,β) is an extension of L, which proves the lemma.

We note in passing that in [4], Hiz showed that modus ponens is non-
derivable in H actually by showing that it is model-wise non-derivable in H.
Clearly, by the derivability principle (see II), every model-wise non-
derivable rule is a non-derivable rule.

Theorem. Let r be any rule for £ which is admissible in L. Then the
following conditions are equivalent:

(i) r is model-wise non-derivable in L.
(ii) There is an extension of L in which r is inadmissible.

Proof, (i) -» (ii) is immediate from the lemma. We show the converse.
Suppose that L' = (T ' ,#) is an extension of L in which r is inadmissible.
Let u - £ and v = T', and let Γ(/) (φl9 . . . , φn) = fφx . . . φn for all
φl9 . . . , φn e -C a^d every w-ary connective f{n > 1). Let 9JZ = (u,v,Γ).

It is a trivial matter to see that for every φ e ̂  and every <A : V -+ u,
c4T(φ) = Subst̂ (φ). Thus we have that every theorem of L is an 9JΪ-
tautology. Moreover, since ΊΓ is closed under R, every rule of R is weakly
valid in 9JI. Hence 9W is a weak model of L. But since r is inadmissible
in L;, T' is not closed under r, and thus r is not weakly 2W -valid, which
proves the theorem.
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The corollary to the derivability principle states that every derivable
rule of L is admissible in L and in every extension of L. More strongly,
it can be shown that if a rule r for «C is model-wise derivable in L, then γ
is admissible in L and in every extension of L—for given any logistic
system Lo = (X,T 0 ,β 0 ), the trivial Lindenbaum model 9WL = (-C,T0, Γ)
where Γ(f)(φl9 . . . , φn) =fφ1 . . . φtn is easily seen to be a weak model
of Lo in which a rule is weakly valid if, and only if it is admissible in Lo,
and thus, since r is model-wise derivable in L, it is weakly valid in 2JΪL,

hence is admissible in L, and thus, by the preceding theorem, r is admis-
sible in every extension of L. Moreover, the converse of this follows
immediately from the preceding theorem. Thus, we have established

Corollary 1. A rule r for *C is model-wise derivable in L if, and only
if r is admissible in L and in every extension of L.

Now, the corollary to the derivability principle also states that for a
system L = («C ,T,β) which has the falsehood property, if L is extendible,
then there is a rule for <£ which is admissible in L but is not derivable in
L. More strongly, it can be shown that for a system L = (J£,T,R) which
has the falsehood property, if L is extendible, then there is a rule for *C
which is admissible in L but is model-wise non-derivable in L—for given
an extension L' = (j£,T,R) of L, letting φeJ' - T, and letting φ0 be a
substitution instance of φ which is a falsehood of L, we have that the
rule r: φ=^>p is admissible in L but inadmissible in L', and hence, by the
preceding theorem, r is model-wise non-derivable in L. Moreover, the
converse of this follows immediately from the preceding theorem. Thus,
we have established

Corollary 2. Suppose that L has the falsehood property. Then L is ex-
tendible if, and only if there is a rule for Jζ which is admissible in L but
is model-wise non-derivable in L.

IV: THE COINCIDENCE OF ADMISSIBLE AND DERIVABLE
RULES-CLASSICAL SYSTEMS AND FAITHFUL MODELS

1 Firm Completeness. Given a strong model 9W of L, we say that L is
firmly complete with respect to 9M in case

(i) Every 2W -tautology is a theorem of L,

and

(ii) For every rule φu . . . , φn =Φ φ for -C, if φu . . . , φn \=m φ, then
ψi, , ψn^ψ (i.e., every strongly 9W-valid rule is a derivable
rule of L).

Note that the property of firm completeness with respect to a model
is, in general, stronger than the property of completeness with respect
to a model but weaker than the property of strong completeness with
respect to a model. For systems in which a deduction theorem holds,
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completeness and firm completeness coincide. Also, for any system L,
whenever 9JΪ is a strong model of L with respect to which L is compact
(i.e., if c4Γ{ψ) is designated for every ψ in some subset S of <ί implies
a4T(φ) is designated, then there are φl9 . . . , φn e S such that φl9 . . . ,
φn \=mφ)9 then firm completeness of L with respect to 9ft coincides with
strong completeness of L with respect to SDί.

2 Systems Having Faithful Models. Let us say that a strong model 9W =
(u9v9Γ) of L is faithful in case

(i) L is firmly complete with respect to 9W,

and

(ii) for every x eu9 there is φ e <£ such that cAT(φ) = x for every cA : V -* u.
This latter condition (ii) may be paraphrased by saying that every

truth-value of the model 2JΪ is definable in the system L. This is a very
natural and desirable property. In this regard, see Shipecki [10].

Theorem 1. Let L = (£. 9Ί9R) be a system ivhich has a faithful model.
Then

(1) Every rule for £ which is admissible in L is a derivable rule of L,

and

(2) L has the falsehood property.

Proof. Suppose that L has a faithful model 2W = (u,v, Γ).

(1) Suppose that r: φl9 . . . , φn=>φ is a rule for £ which is admissible
in L. Just suppose that φl9 . . . , φn y- φ. Then φl9 . . . , φn ψm φ. Hence
there is cA : V -> u such that cAT(φϊ) e v (1 < i < n) but c4Γ(φ)jίv. Let
# ! , . . . , ak be the variables occurring in r. For each j e {l, . . . , k}9

let ψf e £ such that */'Γ(i//; ) = ^ ( α , ) (1 < j < fe) for every ^/': 7 -• u.

Then, for every c4r: V -> u, cA'V (φi Γ^1 * * " ^*1)= ^Γ(φi)ev (1 <z < w),

but ^ r ( ^ [ J ; J*]) = ̂ r ( , ) / , Hence, ^ Ψ i [ ^ J*] (i ^< . , )

-^4;:::::] τ h u s '^::::;:] (—»-^::::ϊ]
»-•<<:::£] 4;::::M::::?J>1™"-
cation in T of r ending with a non-theorem, contradicting the assumption
that r is admissible., Thus φl9 . . . , <pM μ φ9 and r is a derivable rule.

(2) Let φ be any non-theorem. Then by firm completeness, ψ^φ. Hence,
there is cA: V -* u such that c4T(φ) eu-v. Let ^x, . . . , ak be the variables
occurring in φ. Then, for each j e {l, . . . , k}, let ψj e <£ such that
c?4'Γ( ψj) = <JT(oίj) for every J'\ V -> u. Then for every J'\ V -* u,

cA'T (φ . 1 ,k \) e u - v. Hence, for every μ: V -> °C a n d every

V LΨi Ψ*J/
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cA': V - u, ^'Γ/substμ/VΓ^1 ' ' * a,k^\))e u - υ\ f o r otherwise, letting
\ \ L î ψkj//

J"; V -> u such that cA"{a) = <Λ'Γ(μ(α)) (a e v), we have that

c4ffτ(φ\aι ' ' ' Qk]\ = c/'rfsubstμ (φ\ai ' ' ' ak]\) e v, a contradiction.

Thus, for every μ: V -* -C, Substμ (φ * ' ' ' k\ ) is a non-theorem, and L

has the falsehood property.

Corollary. Let L be α system which has a faithful model. Then L is not
extendible.

Proof. Immediate from the preceding theorem and the corollary to the
derivability principle.

3 Classical Systems. Let us say that L is weakly substitutional if it is
the case that for every n-ary connective/ and for all formulas φl9 . . . , φn,
ψΊ, - 9 ψή e *C, if ψi and φ\ are both theorems or are both falsehoods
(1 < i < n), then / ^ . . . φn and /(^ί . . . φ'n are both theorems or are both
falsehoods. A system L shall be called classical in case L has the false-
hood property, L is weakly substitutional, and every rule which is admis-
sible in L is derivable in L.

In the following discussion we assume that L is a classical system.
Let F be equal to the set of all falsehoods of L. Let ~ be the equivalence
relation on -C defined by φ ~ ψ if, and only if φ \-ψ and ψ \- φ (φ,ψe -C).
Let U = T U F, u = U/~, and v - T/~. Obviously, a formula φ is ~ - equiv-
alent to a theorem if, and only if φ is a theorem. Thus υ - T/~ = {T}.
Note also that if φ e F and ψ e *Q - F, then φ */> ψ, because there is a
mapping μ: V -* -C such that Substμ(ψ)e T (and, of course, Substμ(</?)e F), and
thus ψ ^ f Moreover, for φ, ψe F, <p =^>ψ and ψ =#> φ are admissible,
hence derivable rules; and thus φ ~ ψ. Thus F/~ = IF), and u = {T, F}.

For each n-ary connective/, let Γ(/): ww -»w be defined as follows:

For all χl9 . . . , xneu, T{f) (pl9 . . . , #„) = fφx . . . φw/^, where
ψi € ΛΓ; (1 < e < n).

We must see, in fact, that T(f) is single-valued and assumes only
values in u: Suppose φi9 ψz e Xj (1 < z <w). To see that/φΣ .,. . φn ̂ /ψi
. . . ι//w, it suffices to show that the rules / φ x . . . φn==>fΨi . . "ψn and

/ψi . . . ψn=>fφi . . . φn are admissible. Since ψi9 ψi e Xi, either φi9 ψi e T
or φi9 ψi e F. Hence, since L is weakly substitutional, either fφx . . . φn

and/ψi . . . ψn are both theorems or are both falsehoods. In either case,
the two rules in question are admissible.

Thus Γ(/) is single-valued. That Γ(/) assumes only values in u follows
immediately from the fact that L is weakly substitutional. Let 9WL =
(u,v, Γ) = ({T, F}, {T}, Γ). It is not difficult to establish

Theorem 2. Every classical system L has a two-valued faithful model,
namely 9tt L
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Corollary 1. Let L be a weakly substitutional system having the falsehood
property. Then the following statements are equivalent:

(i) L has a faithful model.
(ii) L has a two-valued faithful model.

(iii) Every rule for <£ which is admissible in L is a derivable rule of L.

Proof, (i) —* (iii) by Theorem 1. (iii) -> (ii) by the immediately preceding
theorem, (ii) -» (i) is trivial.

Corollary 2. Let L be a weakly substitutional system. Then L has a faith-
ful model if, and only if L has a two-valued faithful model.

Proof. Immediate from Corollary 1 and the fact that if L has a faithful
model, then L has the falsehood property.

We note that the classical two-valued systems (with negation) have
the falsehood property, are weakly substitutional, have all their admissible
rules derivable, and have faithful models (i.e., are classical in the present
sense). The system H, however, though having the falsehood property and
being weakly substitutional, has rules which are admissible but non-
derivable, and therefore has no faithful model. This latter fact is im-
mediate from Theorem 1. It is easily seen that if a system has a
two-valued faithful model, then it is weakly substitutional. This fact,
together with Theorems 1 and 2, yields

Theorem 3. A system is classical if and only if it has a two-valued faithful
model.

Let us say that two interpretations ( w i , ^ , ^ ) and {u2,v2,T2) are
isomorphic in case there is a one-to-one mapping Φ of uγ onto u2, mapping
vx onto v2, and such that ^Γ^f)^, . . . , xn)] = T2(f) (Φ [AΓJ, . . . , Φ[xn])
for every n-stry connective / and all xl9 . . . , xne uλ (such a mapping being
called on isomorphism). Then we have

Theorem 4. A system has at most one two-valued faithful model {up to
isomorphism).

Proof. Suppose Wlλ = (u1,v1,Γ1) and 9W2 = (u2,v29 Γ 2) are faithful models
of the same system L. Say uγ = {tuf^, v1 = {tλ}, u2 = {t2,f2}9 v2 = {t2}
(obviously, every faithful model has at least one designated value and at
least one non-designated value). It is easily seen that the mapping Φ which
takes tx to t2 and/x to/ 2 is an isomorphism of ^3l1 onto 3Π2.

Corollary. A classical system has a unique {up to isomorphism) two-
valued faithful model.
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