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A NOTE ON NATURAL DEDUCTION IN MANY-VALUED LOGIC

BRUCE WHITE

Natural-deduction techniques have not been applied very much in the
formalization of many-valued logics, since the deduction theorem fails for
many interesting systems; this point is made, for example, by Ackermann
[1], Nevertheless, natural-deduction formalizations are possible—an in-
teresting example is Woodruff's [3]. In this note I describe a very simple
natural-deduction system Q with rules in the style of Suppes [2]. The
theorems of Q coincide with the theorems of P, which are the consequences
under modus ponens of the axiom schemes

Al A — (B — A)
A2 (A-*B)-* ((B - C) -> (A - O)
A3 A -> ((A -*B)->B)

In Q the items in proofs are pairs m A where m is a set, possibly
empty, of positive integers and A is a formula. The numbers in m indicate
the assumptions upon which A depends. The rules of Q are

R1 For any formula A, the pair (i) A may be introduced at step number i in
a proof.

R2 If m and n are disjoint, k B may be inferred from m A and n (A —» B), k
being the union of m and n.

R3 From (i) A occurring at step i and m B one may infer k (A -» B), where
k is the result of removing i from m.

A is a theorem of Q if φ A is provable, φ is the null set. A1-A3 are easily
shown to be theorems of Q:

1. (1)A RΊ
2. (2) B R1
3. (l)B-> A 1, 2,R3
4. φA-*{B-*A) 1,3, R3

Henceforth we omit φ.

1. (1)A — B R1
2. (2)B—C Rl
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3. (3) A R1
4. ( 1 , 3 ) 5 1 , 3 , R 2

5. ( 1 , 2, 3) C 2 , 4 , R2
6. ( 1 , 2 ) A - > C 3, 5, R3
7. (1) (B-> C) - (A-> C) 2, 6, R3
8. (A - B) - ((J3 - C) - (A - O) 1, 7, R3
1. (1) A R1
2. (2) A -* B R1
3. (1, 2) B 1, 2, R2
4. (1) ( A - £ ) - > £ 1, 3, R3
5. A - * ((A-+ B ) - > B) 1, 4 , R 3

The class of theorems of Q is closed under modus ponens, since 0 is
disjoint from φ. Q has the nice feature that not only is it easy to construct
proofs in the system but it is also easy to see what cannot be proved in it.
For example, any attempt to prove (A -* (A -» B)) -> (A -+ B) is blocked by
the disjointness provision in R2.

To see that every theorem of Q is a theorem of P one gives an
inductive proof that if m A occurs in a proof of Q then Am is a theorem of
P. A% is A if m is empty, otherwise it is the implication of A by the
assumptions whose numbers are in m. Thus if m is (1, 2, 3) and the z'th
assumption is B{, then A% is B1 —» (B2 —» (£ 3 —> A)).

The formal proof of this will be omitted. Instead I shall give an
example. Suppose (1, 2, 3) B occurs in a proof as a result of (1) A and
(2, 3) A —> B. Suppose B1 is C, B2 is C, JB3 is D and we know that (a) C —> A
and (b) C -* (D — (A — £)) are theorems of P. The following are well-
known theorems of P:

(c) (A - (B - O) - (5 - (A - O)
(d) • (C - (A - 5)) - ((C - A) - (C - (C - 5)))

Applying (c) and (d) to (b) and using A2 we have D —* ((C —> A) -* (C —> {C —••
£))), and then (C — A) -> (C — (C -» (Z) -» B))). Therefore, using (a), C ->
(C -* (D-* B)), i.e., £f1?2>3) is a theorem of P.

Thus one can see that the disjointness requirement,in R2 derives from
the fact that (d) is a theorem of P but (C — (A-> B)) — ((C — A) — (C — B))
is not. Q may of course be extended by adding rules for negation, disjunc-
tion, and the quantifiers.
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