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PARTIAL UNIVERSAL DECISION ELEMENTS

J. C. MUZIO

Ί Introduction. Given any functor of 2-valued logic there is a correspond-
ing unit of computing machinery which is capable of completely represent-
ing the behaviour of that functor. These units are called decision elements.
The introduction of this term is due to Goodell [3].

Sobociήski [12] has shown that there exists a functor of four arguments
which may define any of the functors of one or two arguments by the
substitution of variables P, Q, etc., or constants 0, 1 in its arguments, this
functor only being used once in any definition. The latter clause is
important since it is well known that any Sheffer function can be used to
define any functor, but there is no restriction on the number of occurrences
of the function. Such a functor as that defined by Sobociήski is said to
"generate" all the functors of two arguments. Defining such a functor
corresponds to constructing a decision element which, by suitable setting
of the inputs, can represent any of the 2-place functors. Decision elements
of this type are called universal decision elements.

Following Sobociήski's work, Rose [9] gives several functors of four
arguments which correspond to universal decision elements and suggests a
method to determine all such functors. Pugmire and Rose [8] suggest a
very different approach to the same problem and Foxley [2] combined the
advantages of both methods to actually determine the set of all four-
variable formulae which correspond to universal decision elements. More
recently Rose [11] has investigated three-valued universal decision ele-
ments.

In the present paper we are concerned with generating functors which
will generate some particular subset of the set of functors of two argu-
ments, but not the whole set. For this purpose we shall be considering
three-place functors Φ(X, Y, Z). Such a functor cannot correspond to a
universal decision element since it can easily be shown that it cannot
generate a sufficient number of binary functors (see Sobociήski [12]).

The particular subsets which will be considered are defined in
section 3 but basically it is shown that:
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(i) no three-place functor can generate more than two of conjunction,
disjunction, incompatibility (NAND) and joint denial (NOR);
(ii) there is essentially one functor which will generate conjunction,
disjunction, exclusive or, equivalence, implication and non-implication in
addition to negation;
(iii) there is essentially one functor which will generate joint denial,
incompatibility, exclusive or, equivalence, implication and non-implication
in addition to negation.

Such a functor will be said to correspond to a quasi-universal decision
element which will be abbreviated to QUDE in the following sections. We
shall speak loosely of a functor Φ(X, Y, Z) being a QUDE to mean that the
functor corresponds to a quasi-universal decision element.

2 Notation and Definitions. For a two-place functor F(X, Y) we define its
value sequence to be (klmn) where F(0, 0) =χ&, F(0, 1) = τ I, F(l, 0) = τ m,
F(l, 1) = τ n and k, I, m, ne {0, l}. It is clear from the context whether or
not 0, 1 are being used to denote the two logical constants or the truth
values they assume. In discussing a particular two-place functor it will
often be convenient to identify it by its value sequence.

For the three-place functor Φ(X, Y, Z) which is considered in the later
sections it is supposed that Φ(0, 0, 0) =τa, Φ(0, 0, 1) = τ b, Φ(0, 1, 0) = τ c,
Φ(0, 1, 1) = τ d, Φ(l, 0, 0) = τ e, Φ(l, 0, 1) = τ / , Φ(l, 1, 0) =τg, Φ(l, 1, 1) = τ h,
where α, b, c, d, e, /, g, he {0, l}. Clearly the value sequence of Φ(X, Y, Z)
is (abcdefgh).

It is possible to obtain a maximum of nine binary functors from
Φ(X, 7, Z) by substitution of the variables P, Q or the constants 0, 1
subject to the conditions:

(i) the resulting functor contains both P and Q (to ensure a binary functor
results);
(ii) the first substitution of P into Φ(X, Y, Z) is in a place preceding the
first substitution of Q;
(iii) the latter condition is to avoid repetitions caused by the labelling of
the variables.

The nine possible substitutions, with the resulting binary value
sequences, are listed in Table 1. The binary value sequences are numbered
at the right for easy identification.

substitution binary value sequence

X/P, Y/P, Z/Q (abgh) (1)
X/P, Y/Q, Z/P (acfh) (2)
X/P, Y/Q, Z/Q (adeh) (3)
X/O, Y/P, Z/Q (abed) (4)
X/P, Y/O, Z/Q (abef) (5)
X/P, Y/Q, Z/O (aceg) (6)
X/P, Y/Q, Z/\ (bdfti) (7)
X/P, Y/\, Z/Q (edgk) (8)
X/l, Y/P, Z/Q (efgh) (9)

Table 1
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3 Classification of the 16 binary functors. There are 16 binary functors

which are listed in Table 2. Of these, six are trivial in the sense that they

simplify to unary functors (1, 4, 6, 11, 13 and 16) and we group them into a

class K4. The remaining ten functors are divided into three classes as

follows :

Kx = { P Λ Q , P V Q , P/Q, P \ Q, PΘQ},

K2 = {P = Q, FX(P, Q), d ( P , <?)},

K3 = {F2(P, Q), G2(P, Q)},

where F,(P, Q), F2(P, Q) e {P => (?, Q D P}, Λ(P, Q) * F 2(P, Q), and GL(P, Q),

Ga(P, «) e {P £ Q, Q P P}, G^P, Q) Φ G2(P, «).

The functors which are included in Kx are those which seem to be the

most useful from the standpoint of logical design (XOR is included because

of its frequent occurrence in functional units such as adders). Use will be

made of a class which is a subclass of Ki, viz. K{ = {P Λ Q, P V Q, P/Q, P \ Q}.

We shall write that Φ(Xf Y, Z) generates K/f (1 ^ j < 4) to

value sequence functor notation

1 (0000)

2 (0001) AND, conj unction P Λ Q

3 (0010) non-implication PpQ

4 (OOll) P

5 <0100> non-implication Q p P

6 (0101) Q

7 (0110) XOR, exclusive or P θ Q

8 (0111) OR, disjunction PvQ

9 (1000) NOR, joint denial P I Q

10 (1001) equivalence P = Q

11 (1010) ~Q

12 (1011) implication Q 3 P

13 (1100) - P

14 (1101) implication P^Q

15 (1110) NAND, incompatibility P/Q

16 (1111)

Table 2

mean that Φ(Z, Γ, Z) generates each functor in K/.

4 Aw initial result.

T h e o r e m 4 . 1 . If Φ(X, Y, Z) generates P Λ Q and PvQ then it cannot

generate either of P/Q or P \Q.

Any functor F(P, Q) which can be generated by Φ(X, Y, Z) must be such

that either F(0, 0) = τ a or F(l, 1) = τ h. Consequently, to generate (0001)

and (0111) there are three possible pairs of values for (a, h), viz.

(i) (α, k) = (0, 0); (ii) (a, h) = (1, 1); (iii) {a, h) = (0, 1).

Now (i) requires
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(0001), (0111) e {(abed), (abef), (accg)}

and for (ii)

(0001), (0111) e{(bdfh), (edgh), (efgh)}

which lead respectively to the conditions

(0,0), (1, l)6{(δ,c),(6,β), (c, e)}

and

(0, 0),(l, ΐ)e{(dJ),(d,g)Λf,g)},

neither of which is possible. Consequently to generate (0001) and (0111) we
have {a, h) = (0, 1). However this precludes the possibility of generating
either (1110) or (1000) since both of these require either a = 1 or h = 0.
The theorem follows.

The converse result which we give below follows immediately by
interchanging 1, 0 in the above proof.

Corollary 4.2. If Φ(X, Y, Z) generates P/Q and P\Q then it cannot

generate either of PΛQ or Pv Q.

Corollary 4.3. Φ(X, Y, Z) cannot generate four distinct functors from K^

This is a trivial consequence of the theorem since it would require
Φ{X, Y, Z) to generate three distinct functors from K{ contrary to the
theorem.

5 The two decision elements. The two main results of this section show
that, excluding permutations, there are just two distinct three-place
QUDEs. It will be seen that, by permutations of the variables, five
related QUDEs can be obtained from each. This can be proved indepen-
dently since it can be shown that a necessary condition for a three-place
functor to generate three functors from Kx and two from K2 is that the
functor is fully conjugated, (see [7]).

Let K U = {PΛQ, P V Q , PΘQJ, and K12 = {P/Q, P\Q,PΘQ}.

Theorem 5.1. There is essentially only one QUDE which generates

κnuκ2.
Initially we deduce the necessary conditions for Φ(X, Y, Z) to generate

Kn. It is easily seen that a = 0 and h = 1 are necessary since otherwise
(0, 0), (1, l)e{(d,f), (d,g), (f,g)} (to generate (0001) and (0111) from (7),
(8) and (9)) and (0, 0), (1, l)e{(6, c), (6, e), (c, e)\ (to generate (0111) and
(0001) from (4), (5) and (6)), respectively, and neither of these is possible.
At this stage the nine binary functors which can be generated have the
following value sequences: (1) (Obgl), (2) (Oc/1), (3) (Odel), (4) (Obcφ,
(5) (06e/>, (6) (Oceg), (7) (bdfl), (8) {cdgl), (9) (efgl).

Now for PΦQ:

(0110) e {(0bcd>, (Obef), (Oceg)}
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so at least two of b, c, e will be 1. Further Oe{by c, e] since otherwise

PΛQ cannot be generated. Suppose b = c = 1, e = 0. The other two cases

follow by interchanging X, Y or X, Z in Φ(X, Y, Z) in the succeeding work.

The only difference that this causes is that in some cases we shall generate

P D Q, Pp Q instead of Q D P, Q p P respectively. If b = c=l,c = 0 then

d = 0 to generate P θ Q. To generate PvQ:

(0111) e{(01gl), (01/1), (Ofgl)} so 1 e {g,f\.

This gives the conditions to generate Kn and now we consider K2 To

generate P = Q we require

(1001) e {(10/1), (lOgl)} so 0 e {& /}.

Suppose g = 1,/= 0. The alternative case follows by an interchange of

the variables X, Z in Φ(X, F, Z). The nine functors which can be generated

by Φ(Xf F, Z) now take the following form:

(1) (0111), (2) (0101), (3) (0001), (4) (0110), (5) (0100),

(6) (0101), (7) (1001), (8) (1011), (9) (0011).

(1), (3), (4), (5), (7), (8) are PvQ, P A Q, PΘ Q, Q p P, P Ξ Q, Q D P respec-

tively showing that Φ(X, F, Z) can generate Kxl U K2. The other three

functors generated by Φ(X, Y, Z) are unary functors.

The exact conditions governing Φ(X% F, Z) in order to generate

K u U K2 are:

(i) (fl, Λ) = (0, 1);

(ii) either (a) b = c = 1; d = e = 0; 1, 0 e {/, #};

or (b) c = e = 1;£ = δ = 0; 1, 0e{ί/,/};

or (c) e= 6= l ; / = c = 0; 1,0c {?, d}.

These conditions lead to the six distinct functors that we expect.

Theorem 5.2. There is essentially only one QUDE which generates

K12 U K2.

This follows from Theorem 5.1 by interchanging 1, 0 in the proof.

This gives us the generated sets required since Kn u K2 —» K12 U K2 on the

interchange of 1, 0.

To avoid confusion we shall use Φ(X, F, Z) for the QUDE of Theorem

5.1 and Φ(X, Y, Z) for that of Theorem 5.2. The exact specification for

Φ(X, Y, Z) is as follows:

(i) (a, h) = (1, 0);

(ii) either (a) 6 = c = 0; d = e = 1; 1, Oe {/, g}]

or (b) c = e = 0; g = 6 •= 1; 1, 0 e {rf, /};

or (c) e = ft = 0; / = c = 1; 1, 0 e {§\ 4

As expected these conditions yield six functors.

The next theorem summarizes the two previous results and shows how

negation may be defined. Let K5 = {~PJ.
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Theorem 5.3. There are, excluding permutations, only two three-place
functors which can generate K2 u K5 in addition to three functors from Klβ

Clearly these are the functors of the two above theorems as long as
negation can be defined. For this we may use

~ P = τ Φ(0, 1, P) and ~ P = T Φ(P, 1, 1).

Theoretical justifications of these are included in the following
sections in which formulae corresponding to the QUDEs are obtained, using
the conditioned disjunction functor of Church [l] which is defined by

[X, Y, Z]=dfX*Yv~Y*Z.

6 Description of the QUDEs. As previously noted, both Φ and Ψ are fully
conjugated, i.e., there are six distinct functors for each. Details of these
are given in Table 3, the abbreviation of Φ for Φ(X, Y, Z), etc. being used in
the headings.

X Y Z Φ Φi Φ2 Φ3 Φ4 Φ5 Ψ Φx % % Φ4 * 5

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

0 0 1 1 1 1 1 0 0 1 0 0 0 1 0

0 1 0 0 1 1 0 1 1 0 0 1 0 0 1

0 1 1 0 0 0 1 1 0 0 1 1 1 1 0

1 0 0 1 0 0 1 1 1 0 1 0 1 0 0

1 0 1 0 0 1 0 0 1 1 1 1 0 0 1

1 1 0 1 1 0 0 0 0 1 0 0 1 1 1

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

Table 3

The following formulae corresponding to these functors can easily be
deduced:

Φ(X, Y, z) =τ [x, Y, XΘZ], ψ(x, Y, z) =τ [γ®z, x, ~ F ] ,
Φi(x, Y, z) =τ [F, x, FΘZ], vάx, Y, z) =τ [x® Y, Z, ~ r],
Φ2(X, F, Z) = τ [Z, X, F θ Z], Ψ2(Xt Y, Z) = τ [ I θ F, Z, ~X],
Φ3(X, Y,Z)=τ [Z, F, XΦZ], Φ3(X, F, Z) = τ [X® Z, F, ~X],
Φ4(X, F, Z) = τ [F, Z, I θ F], Ψ4(X, F, Z) = τ [XΘZ, F, ~ Z ] ,
Φ5(X, F, Z) = τ [X, Z, I θ F], ΦB(X, Y, Z) = τ [FΘZ, X, ~ Z ] .

Taking Φ(X, F, Z), Ψ(X, F, Z) as typical the following definitions of the
binary functors may be made:

P A Q =df Φ(Λ Q, i3), ^P/Q =rf/ Φίi1, Λ Q),
P vQ =rf/ Φ(P, P, Q), P I Q =df*(P, Q, 0),

PΦQ= r f / Φ(P, 0, Q), P Φ Q ^ / Φ ί l , P, Q),

P ^ Q = r f /Φ(P, Q, 1), P Ξ Q =rf/Φ(P, Q, 0),
P 3 Q= r f / Φ(l, Q, P), P=>Q=rf/Φ(P, 0, Q),
PpQ =dfΦ(0, Q, P), P ^ β = r f / Φ ( P , 1, Q),

~ P = r f /Φ(l, 0, P), ~ P = r f /Φ(l, P, 1).
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Direct verification of these definitions follows easily since

PΛQ=Ύ[P> Q, 0], P/Q=Ύ[P®Q, P, ~ P ] ,

P v Q = τ [P, P, PΦ Q], P\Q = τ [QΘ Q, P, ~ Q],

P Θ Q = T [ P , 0, P Θ Q ] = τ [ P θ Q , 1, ~ P ] ,

p Ξ ρ = τ [p, ρ, P Φ l] = τ [Qeo, P , ~ ρ ] ,

P D Q = T [ 1 , Q, PΘ1] = τ [QΘ0, P, 1],

P £ Q = τ [0, Q, ^ Φ 0] = τ [QΘ 1, P, 0],

~ P = τ [ l , 0, P θ l ] = T [ P Φ 1 , 1, ~ P ] .

7 Various results involving QUDEs. In this section we prove four

elementary theorems.

Theorem 7.1. The undefined functors of Kι can be defined using two

QUDEs.

This follows since:

P/Q= T Φ(1, 0, Φ(P, Q,P»,

P I Q = T Φ ( 1 , 0, Φ(P, P, Q)),

P Λ Q = T Φ ( 0 , Φ(P, P, Q), 0),

Pvρ= τ^(o, Φ(P, ρ, ρ), o).

Theorem 7.2. Φ(X, Y, Z) is a Sheffer function though Φ(X, Yy Z) is not.

^(X, Y, Z) is a Sheffer function since we have

X/Y = τ Ψ(X, X, Γ).

However Φ(0, 0, 0) = τ 0 so Φ possesses the proper closure property

and is consequently not a Sheffer function (see [5] or [6]).

So far we have not established the connection between Φ(X, Y, Z) and

ψ(X, Y, Z). The following theorem accomplishes this:

Theorem 7.3. Φ(~X, ~ F, ~Z) = τ Φ(F, X, Z).

The proof is very straightforward since

Φ(~X, ~ F , ~Z) =T[~X, ~ F , ~XΘ~Z]

= τ [-XΘ-Z, F, ~X]

=T[XΘZ, F, -X]

=TΨ(F, X, Z).

Negated output from QUDEs can be obtained simply by negating a

single input as the following theorem shows.

Theorem 7.4. (i) - Φ(X, F, Z) = τ φ(~X, F, Z);

(ii) ~Ψ(X, F, Z) = τ Φ(X, - F, Z).

The proof is based on the result that ~[P, Q, R] =τ [~ P, ρ, ~ i?]. We have

(i) ~ Φ(ΛΓ, F, Z) = τ ~[X, F, XΘZ]

=τ[~-y, F, ~(YΦZ)]

=T[~X, F, ~XΘZ] since ~(XΘZ) = τ ~XΘ Z

= τ Φ(-X, F, Z);
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(ii) ~ Ψ ( X , Y, Z) = τ ~ [ F ® I , X,~Y]

=τ [~FΦX, x, ~(~r)]
=r *(*, ~Y,Z).

If functional units are constructed out of these Φ-gates and Ψ-gates
(a Φ-gate being a decision element corresponding to Φ(X, Y, Z)) then a
considerable reduction in the number of gates required for a particular
unit can be obtained, when compared with the number of NAND gates which
would be used for the same circuit. The penalty, of course, is that each
Φ-gate is considerably more complex than a basic NAND gate. For
example, two-level full adder circuits can be made using four Φ-gates or
four Ψ-gates (compared with the eight or nine NAND gates normally used).

REFERENCES

[1] Church, Alonzo, ''Conditioned disjunction as a primitive connective for the
propositional calculus," Portugaliae Mathematica, vol. 7 (1948), pp. 87-90.

[2] Foxley, Eric, '"Determination of the set of all four-variable formulae corre-
sponding to universal decision elements using a logical computer," Zeitschrift
fur mathematische Logik und Grundlagen der Maίhematik, vol. 10 (1964), pp.
302-314.

[3] Goodell, John D., "The foundations of computing machinery I , " The Journal of
Computing Systems, vol. 1 (1952), pp. 1-13.

[4] Lode, Tenny, "The realization of a universal decision element," The Journal
of Computing Systems, vol. 1 (1952), pp. 14-22.

[5] Martin, N. M., ' 'The Sheffer functions of 3-valued logic," The Journal of Sym-
bolic Logic, vol. 19 (1954), pp. 45-51.

[6] Muzio, J. C , "The cosubstitution condition," Notre Dame Journal of Formal
Logic, vol. XIV (1973), pp. 87-94.

[7] Muzio, J. C , "Concerning QUDEs," University of Manitoba, Scientific Report
No. 34.

[8] Pugmire, J. M. and A. Rose, ' 'Formulae corresponding to universal decision
elements," Zeitschrift fur mathematische Logik und Grundlagen der Mathe-
matik, vol. 4 (1958), pp. 1-9.

[9] Rose, A., "'Nouvelle methode pour determiner les formules qui correspondent
a des elements universels de decision," Comptes Rendus hebdomadaires des
Seances de VAcademie des Sciences (Paris), vol. 244 (1957), pp. 2343-2345.

[10] Rose, A., "The use of universal decision elements as flip-flops," Zeitschrift
fiir mathematische Logik und Grundlagen der Mathematik, vol. 4 (1958), pp.
169-174.

[11] Rose, A., "Sur les elements universels trivalents de decision," Comptes
Rendus hebdomadaires des Seances de PAcademie des Sciences {Paris), vol.
269 (1969), pp. A1-A3.

[12] Sobociήski, B., "On a universal decision element," The Journal of Computing
Systems, vol. 1 (1953), pp. 71-80.

University of Manitoba
Winnipeg, Manitoba, Canada




