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MODELS OF Ίh((ωω, <»

JOHN W. ROSENTHAL

In this paper* we characterize the models of Th((cυω, <)). Our main
tool will be the game-theoretic characterization of elementary equivalence
given by Ehrenfeucht in [2] (cf. also Fraisse [3]). In particular our work
may be viewed as a generalization of Theorem 13 in [2] which gives a
characterization of the standard, i.e., well-ordered, models of Th((ωω, <)).

The main result, Theorem 3 of section 2, is that a model of Th((ωω, <})
consists of an ultrashort model of Th ((ωω, <)) followed by at each point of an
arbitrary linear order ultrashort models of Th((coω, <)) or of Th ( ( . . . + ωn +
ω1'1 + . . . +ω + 1 + ωω, <)), where by an ultrashort model is meant one
such that for any two points x, y there is an upper bound on n such that if
z is between x and y, z may be a limw. In Theorems 1 and 2 of section 2 we
characterize ultrashort models of these two theories in terms of models of
Th((cow, <)). In section 1 we characterize models of ΊU((ωn, <)). In section 3
we discuss short models, namely models having no elements which are lίmn

for every n. In section 4 we briefly discuss how the techniques of section 2
can be used to classify the completions of the theory of well-ordering and
the element types of Th((ωω, <».

We will assume the reader is familiar with the results and techniques
in Ehrenfeucht [2]. In particular we will freely use these without further
reference or mention. Several lemmas, in particular Lemmas 6, 7, 8
essentially appear in [4]. We include them for completeness and self-
containment.

Our notation in general will follow that suggested in Addison, Henkin
and Tarski [l]. The games Gw are as denoted in Ehrenfeucht [2]. We now
briefly indicate our notation for linearly ordered sets:

Ordinals will be denoted as usual.
Usually if it is clear specific mention of the linear order of a linearly
ordered set will be omitted.
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If A, B are linearly ordered by <Λ, <B respectively, then A + B denotes
Au B linearly ordered by <A+B where x <A+B y <^(xe AΛye B) v(x, ye A A
x <A y) v(x, ve BΛX <B y). (We assume A, B are disjoint. Otherwise, they
should first be made disjoint. Henceforth we will assume as needed that
sets are disjoint).
More generally if A is linearly ordered by <A, and if for each aeA,Aa is

linearly ordered by <a, thenTjaeAAa denotes LLfAAβ linearly ordered by
<ΣAa where x <%Aa y ^> (.v eAaΛyeAbAa<Λb)v {x, yeAaΛX<a y).
If A, B are linearly ordered by <A, <B respectively, then A x B denotes
ΣJX€BΛ.

If A is linearly ordered by <A, then A* denotes A linearly ordered by <Λ*
where x <Λ* y if v <Λ X.

^aeλAa = ^aeA*Aa.

ωω* = Σ * ω ωn.

If A is a linearly ordered set, a, be A, then

[a, b) = b - a = {xeA\a ^x < b}
[0, b) = b = {xeA\x< b}
[a, °°) = A - a = {x e A \ a ^ x}.

(a, b), etc. are denoted similarly.
If a, be A, B, then we write [a, b) , [a, b)B, etc. to distinguish these
intervals in A and B.
n = class of all discrete linear ordered sets with first and last elements.
We identify order isomorphic elements.

n 0 = n U {0}.

n 0 is partially ordered by < given by A < B iff (3/) (/: A 1-1 order
isomorphically onto an initial segment of B). So ω is an initial segment of n 0.

If φ is any sentence in the first order language for < and ψ(x0) is a
formula (perhaps with parameters) then φ^x^ is φ relativized to ψ(x0).

Definition: limo(#) =df (x = x)

I ' Ϊ T W I (x) =df (Vy)(y < x — (3*)(;y <Z<XA \'\mm(z)))

x = 0 =df ~ϊ(3y)(y <x)

t =df {limw(AΓ0)|»eω}

t =df t U {x0 Φ 0}

1 Models of Th«cow, <)). As is well-known:

Proposition 1. (77, <) (= Th((ω, <>) iff 3 ( r , <) a linearly ordered set (possibly
empty) such that η = ω + (*ω + ω) r .

Proof: Omitted.

Proposition 2. <τj, <> hTh«uΓ\ <)) iff 3{μ, <) l=Th«ω, <)), Vαe μ, 3(μQ, <)N

Th«ωw, <» such that η =Σacμ μα



124 JOHN W. ROSENTHAL

Proof: Assume (η, <) h Th«ωw+1, <)).
Now 1) (ωnΛ\ <>h<p l im»(xo> for each φe Th «ω, < » ,
2) (ωn+\ <> h Vx Vv ((limw(λ:)Λ limw(y)Λ AT < y*{Vz)(x < z < y - Ί limβ(2))) -
<p*^o<y) f 0 Γ each φ e Th«ωw, < » ,

and 3) (ωn+\ <> t= VΛΓ Ξ y (3; <Λ;Λ limn(;y)Λ Ί(3>ε)(v < z ^XA \\mn(z))).

So <r), <)N the sentences in 1), 2), 3). Let

μ = {aeη\(η, <O\=\\mn(xo) [α]}.

And for each en e μ, let

μ« = {β€T7lα <βA<7?, <)hi(3z)(xo< z ^ ^ Λ l i m ^ ) ) [a, β]}.

Then by 1), (μ, <> h Th«ω, <» and by 2), ( ^ <) μ Th((ωn, <)) and clearly
77 = Σ α 6 μ μαby 3).

Conversely, assume the conclusion. So player II has a winning strategy in
Gm«ω, <), <μ, <)) and in Gm((ωm, <), <μα, <)), Vαeμ, for every m >0.

We give a winning strategy for II in Gm((ωw+1, <), (n, <)). Given a move
of I, II chooses which <ωn' segment of model to use by winning strategy in
the first game and then which point in it to use by winning strategy in the
appropriate latter game.

2 Main Theorems:

Definition: A model of Th«u>ω, <)) or of Th«ωω*+ω, <)) which omits t is
called a short model.

If (ηf < ) h Th«ωω, <)) or N Th «ωω*+ω, < » , it is called ultrashort if
V#, yer),(x<y-* (3n)(Vz)(x< z < y-+Ί \\mn(z))).

Clearly any ultrashort model is short.

Theorem 1. (77, <) is an ultrashort model of Th((u>ω, <)) iff 3 for each neω a
model (ηn, <) \= Th ({ωn, <)) such that η = Σ/W£ω ηn

Theorem 2. (77, <> is an ultrashort model of Ίh((ωω*+ω, <)) iff
3 1) for each neω a μnen0 such that infinitely many μw Φ 0,

2) for each y e μn a model (ηn,y9 <) h Th((ωw, O ) ,
3) a η' an ultrashort model of T h ( ( ω ω , <)) such that η = Σj*€ωΣjy(μnηnty +ηr.

Theorem 3. (η, <) is a model of Th«coω, <)) iff
3 1) linearly ordered set μ (possibly empty),

2) for each yeμ, an ultrashort model (ηy, <) of Th «ωω, < » or of Th «ωω*+ω,

O),
3) an ultrashort model (η', <) of Th «ωω, O ) such that η = η' + Σ/ y f μ r]y.

The proofs of these three results will be by a sequence of lemmas. We
first consider the —> directions.

Lemma 1. (ωω, <) and hence any model of Th«ωω, <)) satisfies the following
sentences:

a) (3x){Vy)(y > x)
b) (Vx)(3y)(y> XA\\mn(y)*l(3z)(x< z< y *\\mn(z)))
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c) (VΛΓ) (Vy) ((y > XA \\mn(y) A Ί (3*) (# < z < yΛ \\mn(z))) — φx£ίx°<y) for every
φelh((ωn,O)
d) {Vx)(3y){y ^XΛ\\mn(y)Λ(Vz)(y <z ̂ x - Ίlimw(^)))
e) (VΛ:)(V3?K(Λ: < J Λ \\mn(x)Λ \\mn(y) Λ -|(3*) (# < * <3>Λ limn+1(^))) —
φχ*χ0<yΛ \\π>n(χ0))for e y e r y φ e τ h ( n ) #

Lemma 2. <ωω*+ω, <) αwd hence any model of Th((ωω*+ω, <» satisfies the
following sentences:

a) (Vx)(3y)(y < x),
b)-e) of Lemma 1.

Proofs: Routine.

Lemma 3. -» of Theorem 1.

Proof: Let (77, <> be an ultrashort model of Th «ωω, <)). Let x0 = 0. By
induction define xn+1 = least limw > xn. Such exist by lb). By lc), ([xif Xi+1)9

<) \= Th«ω', <)). By the definition of ultrashort, 77 = Σieω [xi9 xi+d-

Lemma 4. —> of Theorem 2.

Proof: Let (77, <) be an ultrashort model of Th((ωω*+ω, <)). Let y0 = zoeη.
By induction define >'w+1 = greatest limw+1 ^yn. Such exist by 2d). By induc-
tion define xn+1 = least limw> zn. Such exist by 2b). By 2a) infinitely many
of yi are distinct. Let μn = {a\yn+1 ^a <C ynΛ\\π\n(ά)}. So infinitely many
μw Φ 0 and by 2e), μw€ n0. For each y e μw, let ηn>y = [y} y

r) where yr is least
limw> y. By 2c) (ηn>y, <>hTh«ωw, <)). Also [yn+1, yn) = Έy€μnηn>y. And

(0, y0) = Ί?mω [yn+l9 yn) = Σ * £ ω Σ y φ w η w , r Let ηn = [zny zn+1). By 2c), (ηn, <>!=

Th((ωw, <)). And [̂ 0, <») =Σmωnx,n. So by Theorem 1, 77' = [20> °°) is an

ultrashort model of Th((ωω, <)). Now η = (0, ;yo)+l>o, °°) = Σ)* 6 ω Σ y e μ w ?7 W ) y +7] f.

Lemma 5. —» of Theorem 3.

Proo/; Let (77, <) be a model of Th((ωω, <)). On 77 define α ~ b if (3W)(3ΛΓ)
(α < x < 6 -» Ί limn(#)) for « < b. If a> b, define a ~ b ii b ~ a. And define
a ~ a. So ~ is an equivalence relation.

By la), "η has a least element 0. Let μ = η - {θ}. As in Lemma 3, 0 =
Σieωηi where (ηi9 <) h Th((ω', <)) and hence is an ultrashort model of
Th ((ωω, <)) by Theorem 1. If xeμ then either x realizes t or not. If so
arguing similarly to Lemma 3 we find x = Yjuω ηi,x where (r\itX, <)h
Th((col#, <)) and hence x is ultrashort model of Th((ωω, <)). On the other
hand if x does not realize t, x has no least element and arguing similarly
to Lemma 4 we find x = ΈtneωTjyψntXηn,χ,y +ηr where μW i Xen0, infinitely
many are Φ 0, (ηn>Xty, <)) h Th«α>w, <)), <τ?', <) is ultrashort model of Th«ωω,
<»._ And hence i ' i s ultrashort model of Th(ωω*+ω, <)) by Theorem 2. As
77 = 0 +Έ/Xψ x, we are done.

Lemmas 1-5 may be viewed as giving a means of partitioning models of
these theories. The theorems assert any model which can be partitioned in
such a manner is a model of the theory in question.
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Lemma 6. If player II has a winning strategy in Gn((ax, <), (βx, <)) for

every x e γ, then II has a winning strategy in Cn{(T/X€γ Oχ, < ) , (Σ/X €y βx, < ) ) .

Proof. Player IPs winning strategy is: If on some move player I chooses a
point in αx (or &*), then, flayer II uses his winning strategy i n G w « α x , <},
(βχ9 <)) to give his move.

Corollary. If ax = βx, V#€ y, thenΣX€γax = Έ/X€γ βx.

Lemma 7. If player II has a winning strategy in Gn((γ, <), (δ, <)) and if
player II has a winning strategy in Cn «α*, <), (βy, <)) /or every xeγ, yeδ,
then II has a winning strategy in

G»((Έxeγax, < ) ) , (Σy€8βy, < » .

Proof. Player I Γ S winning strategy is: If on some move player I chooses a
point yeax, then player II uses his winning strategy in Cn((γ9 <), (δ, <))
assuming a move by I of x to give a point xr e δ and his winning strategy in
Gn((ax, <), (βx>, <)) assuming a move by I of y to give a point y}eβx>.
II then plays as his move yf.

Similarly if player I chooses a point yeβx, then player II selects a
point x' eγ and then a point y € ax>. IΓs move then will be y .

Corol lary. Ifγ = δ,ax^ βy, VxeδVyeδ, thenΣ/xeγax ^ Σ y ( s β y .

Corol lary. Ifγ = δ,a = β, then a x y = β x δ.

Lemma 8. If player II ̂ «s α winning strategy in Qn ((«/, <>, </3, , <)) /or z =
1, 2, ί/2βw II /z<2S « winning strategy in Gw + 1 ({«! + 1 + ot2, <), {/3X + 1 + β2, <))
after the initial move 0 * ^ 0 . (Note 1 = {θ}.)

Proof: Player IΓs winning strategy is on each segment to use his given
winning strategies. I.e., if I chooses a point in an of, player II responds in
other a using winning strategy in Cn ((al9 <>, (a2, <)). And similiarly for β.

Lemma 9. Player II has a winning strategy in Cn ((#, <), (β, <)) if oι, βen,

a, β>2n- 1.

Proof: By induction on n. n = 1 is trivial. Assume the result for n = k.
Let a, βen, a, β ^2k+ί - I. We give player IΓs winning strategy for
Gk+ι((<x, <)> (βj ̂ )) Without loss of generality player Γs first move is in a.
Say it is x0.

Case 1: x0 < 2k - 1. By induction, as a - x0, β - x0 ^ 2k - 1, player II has
winning strategy in G& ((a - ^O ί <), (β - xQx <)). Also II has winning strategy
in Gk ((x0, <), (y0, <)). So by Lemma 8 if Π responds with x0 in β, then II
has winning strategy in Gk^ι((ot, <), (β, <}).
Case 2: a - x0 < 2k - 1. Player II responds with β - (a - x0), i.e., with the
point a - x0 <the last element of β. This case is similar to 1.
Case 3: Neither Case 1 nor Case 2. Player II responds with 2 ^ - 1 (or any
other element yoe β such that y0 s* 2k - 1, β - y0 > 2fe - 1). By induction
player II has winning strategies in Gk ((x0, <), (v0, ^)) a n d Gk ((a - xθ9 <),
(β " 3>o, <))• So by Lemma 8 we are done.
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Notation: If a, βen0, we write a = β to denote a = β or a, β ^ 2n - 1.

Lemma 10: Player II /zαs α winning strategy in

G««Σxίααx,<>,<Σxί iβ|3x,<»

i) α, βen, α == β,

ii) <<*x, <), <βy, <) μ Th((ωm, <», V*e α, y e j3.

Proof: By Lemmas 7 and 9.

Remark: By combining the techniques of Lemma 8 and Theorem 12 in [2],
one can, in fact, obtain:

Lemma 11. Player II has a winning strategy in

Gn((Σxeaax, < ) , (ΣX€β βXf < »

where

i) m < n,
ii) a, βen, a =mβ,

iii) <αx, <), (βy, <) μ Th «ωw, <)), Vxea, yeβ.

Lemma 12. Player II has a winning strategy in

On ( Σ ^ ί ^ ω ' . ΐli, Σyo<f ̂ ΣyX f μ f. τfof )

i) ^ < w,

ii) μ.i en 0, m e ω ,

ϋi) <r?xfί, OhThKωS <)),

iv) n t = μf («, =̂. μf with Lemma 11).

Proof: By Lemmas 6 and 10.

Lemma 13. Player II has a winning strategy in

Gβl^o^jfeω'. w, , Ljo^uk,Ljxψir\Xti)

where

i) fe, fe'eω, k9 k
f >n%

ii) «feω, μz en 0 , ^ ^ 0, M*' Φ 0,
iii) <7jXfί, <>NTh«ω f

f O ) ,
iv) "ii < n, m = μ,-.

Proof: By induction on w.

Case 1: w = 1 trivial.
Case 2: Let n ^ 2 . Assume the result for n - 1. Let &, ̂ f , etc. be as

above. Let

ot = A^.^u) 1 ' . w, , β = Σjo^^kΣ/xψi ηx>i

Case a: On move 1 player I chooses an element ae a.



128 JOHN W. ROSENTHAL

Case ai: a < ωn. Say

a = ΔjQ^^ω*. ki where I < n, k( < ω, ki Φ 0.

AsW,<)Hτh({^;<»,

3b € ηOtk, such that (a, <> = {by <>.

Also (ωk - (a + 1), <) = (ωk, <) and (η0>k, - (b + 1), <) = <ω*', <).

Let δ be IΓS move. Then (a - (a + 1), <) and (β - (b + 1), <) meet the condi-

tions of the lemma for n - 1. So by Lemma 8, II has winning strategy in

G , « β , O , (β,O).

Case aii: a - a < ω". Say

oί - a = 2-Ό^i^ιωt' ki where I < n, ki < ω.

By the definition of a, kt ^nh ki = m if i < L Let

α ' = a - ( Σ y / < f e Λ ω f . «,- + ω 7. (»/ - ki)) .

So α f < ω'. Say

Let

in/ - fe/ if nι-kι <2n - 1,

fe/ € μ/ be defined by &/ = < μ/ - fe/ if fe/ < 2W - 1,

( 2W - 1 otherwise .

Let
yΛ* y^ yΛ y^^ y>

° =Ljι<uk>ί-JxeμirιXιi +£jχ<k,ηx>ι +L/Oiίi<ιΔjχ<i. μitX

where <μίfX, <) (= Th«ωf', <)) and Σy0</</ Σ/x</i. μ;>x is an initial segment of ηk,h

Then (a, <), (ό, <) satisfy the conditions of the lemma for n - 1, and

(a - (a + 1), O , (β - (b + 1), <> satisfy the conditions of Lemma 12 for

n - 1. So by Lemma 8, II has winning strategy in Gw ((α, <), (β, <)).

Case aiii: Neither case ai nor aii. Say

a = Σ/0^f ̂ ω f ' . ^ where kt Φ 0.

So / ^ ^ . Let

where δ is initial segment of β, <μ, , x , <) h Th((aj% <)) for i < w. Then

(a, <), (δ, <) satisfy the conditions of the lemma for n - 1, and (α - (# + 1),

<), (β - (δ + 1), <) satisfy the conditions of the lemma for n - 1. So by

Lemma 8, II has winning strategy in On {{a, <), (β, <)).

Case b: On move 1 player I chooses an element be β.

Case bi: There is no limw ^ 6 . Say

b =Σ*^ιΣX€μi ηXfi where (ηx>i, <) t= Th«α>*', < » , I < n.
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Let

/μ f if μ / < 2 * - i,
1 \2n - 1 otherwise.

Let a = Zvo^^/coz. w, . Then if a is II's move, II has winning strategy in
Cn((a, <}, <β, <)) by induction (as (a, <}, (δ, <) satisfy conditions of Lemma
12 for n - 1 and <α? - (α + 1), <}, (β - (b + 1), <) satisfy conditions of lemma
for n - 1).
Case bii: There is no lim» ^ b. Say

β - b = Σ O 5 ^ Σ x e μ . , τ 7 x # ί where I < n.

By definition of β, μ = μ if i < I, μ\ < μ/Φ Let

br = b - (Έf<iίίklΣfxeμ. r\xi +Σ/xψrμιlηXtl) .

So δf has no lim/. Say

δ f =T/*^i<clTfX€iiifjXti where μ, € n0, (?yx>/ , <) h Th((ωz", <)).

Let

ί μ / - μ/if M/ - μ j < 2 w - 1,
kι ^ nι be defined by kι = < w/ - μj if μj < 2W - 1,

(2Λ - 1 otherwise.

Let

. /μ, if Jn<2n - 1,
where 7, = < „„ , ' ,

^̂  ( 2 - 1 otherwise.

Then {a, <), (&, <) satisfy the conditions of the lemma for n - 1, and
(a - (a + 1), O , (β - (b + 1), <> satisfy the conditions of Lemma 12 for n- I,
So by Lemma 8, II has winning strategy in Qn ((a, <), (/3, <)).
Case biii: Neither case bi nor bii. Say

b =Σo^i<:iΣfX€ίl.ήi)X where μ, en 0 , μt Φ 0, (fjix, <) 1= Th«ω', <)) .

So I ^ n. Let

/μf if μf < 2W - 1
^ = W 1 *u for z < n - 1.1 \2n - 1 otherwise

Let

^ α Γ 1 . ^ - 1 - 1) + Σ o V i ω U / .

Then {a, <), (6, <) satisfy the conditions of the lemma for n - 1 and
(of - (α + 1), <), (β - (b + 1), <) satisfy them for n - 1. So as usual, II has
winning strategy in On ((a, <), (β, <)).

Proof of Theorem 1: <- Clearly η is an ultrashort model. We will, thus, be
done when we show by induction on n:
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Lemma 14. Player II has a winning strategy in

Proof:

Case 1: n = 1 is trivial.
Case 2: Let «^2. Assume the result for n- 1. Let

0 =C0% β = Σ w « υ ? ? w .

Case a: On move 1 player I chooses an element ae a. Say

a = /-/Q^i^i ω*. fe; where &; < ω, kι Φ 0.

Let

δ = ty +Σ)y<Ari mty
 + Tjo^i<ιTjy<ki

rni>y where <η ί f y, <> h ThKω1', <»,

Σ)y<fy-i 7?/,y + Σo^f</Σy<^r?/,y is initial segment of 7j/+1.

Let 6 be II's move. Then by Lemma 12 or 13, player II has winning
strategy in On.λ «α, <), (b, <)). (a - (a + 1), <), (β - (b + 1), <) satisfy the
induction hypotheses for n - 1. So by the lemma, we are done in this case.
Case b): On move 1 player I chooses an element be β. Say

b = ηt+ Σ}*^ιΣiy<μ.ηify where μf eπ 0 , <ryίfy, <) 1= Th((ωf', <)).

Let

k = 2n - 1 if μ / > 2W - 2,
' μf + 1 otherwise;

, \ 2n - 1 if in > 2n - 1 . . .
I μi otherwise

Let

a =Σ^/ω
1'. fe;.

Then by Lemma 12 or 13, player II has winning strategy in Gw-i ((a, <),
(b, <)), (a - (a + 1), <), (β - (δ + 1), <) satisfy the induction hypothesis for
n - 1. So as usual this case is done.

Lemma 15: Player II has a winning strategy in

Gw ( < Σ * ω ω\ niy <>, ( Σ * ω Σ ) χ f / i . 7k#t , < ) )

i) m e ω,
ii) 3 m such that Vz ^ m, m = 1,

iii) Vi < rc, μ; = n t ,

iv) μt en 0 ,
v) infinitely many μ, ^ 0,

vi) <j?x>ί, OhThKωS O ) .

Proof: Similar to Lemma 13.
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Lemma 16. Player II has winning strategy in

On ((ωω*+ω, <>, (Σλ*ωΣ* ί μ |. ηXli +Σi€ωηi9<))

where

i) μ*en 0,
ii) infinitely many μ, Φ 0,

iii) (ηxi, <>hTh«ω'', <»,
iv) <η/, OhTh«ω', <».

Proof: Similar to Lemma 14. It uses primarily Lemmas 14 and 15 and
Theorem 1.

The proof of Theorem 2 now follows immediately from Lemma 16 as

Σ L Σ χ f W Vx,i + Σ ί ^ i is clearly ultrashort.

Lemma 17. (ηr +Σxψηx, <> Ξ <ωω +Σxψ μX9 <) where

i) V , <) is ultrashort model of Th((ωω, <)),
ii) <τfc, <> is ultrashort model of Th«ωω, <)) or Th«coω*+ω, <)),

= j ω ω z / < 7 7 , , O h T h ( « < ) ) ,
1 1 1 ; μ x )ωω*+ωz/(?7,, <) 1= Th«ωω*+ω, <».

Proof: By Lemma 6.

Lemma 18. Player II has a winning strategy in

Gn((ωn + Σ)t<n^1' mi, < ) , (ω ω + Σ x e μ μ * + Σ ) / ^ ω / . rι+Σjf<nω
ι. nu < ) )

i) w/ = w/, z/ / < w, m;, nι e ω,
ii) μx = coω or coω*+ω, VΛ eμ,

iii) μ is arbitrary linear order (possibly empty),
iv) r/e ω, Z ̂ n ,
v) Ξ m such tJiatVi ^m, rι = Q or Vi ^m, rt = 1.

Proof: Similar to Lemma 13.

Lemma 19. Player II has a whining strategy in

Gn((ωω,<),(ωω+Σx(μμx,<))

where

i) μx = ωω orωω*+ω,
ii) μ is arbitrary linear order {possibly empty).

Proof: Similar to Lemma 14. It uses primarily Lemma 18.

The proof of Theorem 3 now follows immediately from Lemmas 17
and 19.

3 Short models. By techniques similar to those in section 2 one can prove:

Theorem 4. (77, <) is a short model of Th«ωω, <)) iff
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31) an ultrashort model (ηr, <> of Th«ωω, <)),
2) a linear order μ possibly empty,

3) for each xeμ, an ultrashort model (ηx, <) of lh((ωω*+ω, <)) such that
η =ηr +Σjχψηx.

Theorem 5. (η, <) is a short model of Th«α;ω*+ω, <)) iff

31) a linear order μ,
2) for each xeμ, an ultrashort model ηx of Th((ωω*+ω, <)) such that η =

Σ/ X 6 μ η x .

Theorem 6. (77, <> h Th«ωω, <» iff

31) a short model (η\ <> of Th«ωω, <»,
2) a linear order μ possibly empty,
3) for each xeμ, a short model (ηx, <> of Th«coω, <)) or of Th«u>ω*+ω, <))

(the latter occurring only if x does not have an immediate predecessor)
such that η = 77' + Σx€μ ηx.

4 Other Results. Using the lemmas of section 2 and similar results one
can obtain Ehrenfeucht's classification of the completions of the theory of
well-ordered sets. Using the result and the fact that (a, alm . . an<) = (β, bι

. . . bn <) iff (ai+1 - ah <) = (biΛ1 - bu <), V* ^ n +1 if a, < . . . < ^ b, < . . .
< bn and a0 = 60 = 0, αn+i = en, 6W+1 = /3 one can then classify the element types
of Th«coω, <)), or any other completion of the theory of well-ordering.

In particular the following are the distinct completions of the theory of
well-ordering:

s Th((αΛ m + Σ/t <n ω
ι. nt , < )) I ne ω, meω, m Φ 0, nι e ω U {ω + co* + ω] ?

U |Th((ω ω +Σ)f<Λcof", w, , < ) ) | w , €ωU {ω + ω*,+ ω } | .
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