Notre Dame Journal of Formal Logic Volume XV, Number 1, January 1974 NDJFAM

MODELS OF $Th(\langle \omega^{\omega}, \langle \rangle)$

JOHN W. ROSENTHAL

In this paper* we characterize the models of $\operatorname{Th}(\langle \omega^{\omega}, \langle \rangle)$. Our main tool will be the game-theoretic characterization of elementary equivalence given by Ehrenfeucht in [2] (*cf.* also Fraissé [3]). In particular our work may be viewed as a generalization of Theorem 13 in [2] which gives a characterization of the standard, i.e., well-ordered, models of $\operatorname{Th}(\langle \omega^{\omega}, \langle \rangle)$.

The main result, Theorem 3 of section 2, is that a model of $\operatorname{Th}(\langle \omega^{\omega}, \langle \rangle \rangle)$ consists of an ultrashort model of $\operatorname{Th}(\langle \omega^{\omega}, \langle \rangle \rangle)$ followed by at each point of an arbitrary linear order ultrashort models of $\operatorname{Th}(\langle \omega^{\omega}, \langle \rangle \rangle)$ or of $\operatorname{Th}(\langle \ldots + \omega^n + \omega^{n-1} + \ldots + \omega + 1 + \omega^{\omega}, \langle \rangle)$, where by an ultrashort model is meant one such that for any two points x, y there is an upper bound on n such that if z is between x and y, z may be a \lim_{n} . In Theorems 1 and 2 of section 2 we characterize ultrashort models of these two theories in terms of models of $\operatorname{Th}(\langle \omega^n, \langle \rangle)$. In section 1 we characterize models of $\operatorname{Th}(\langle \omega^n, \langle \rangle)$. In section 3 we discuss short models, namely models having no elements which are $\lim_{n} \log z$ for every n. In section 4 we briefly discuss how the techniques of section 2 can be used to classify the completions of the theory of well-ordering and the element types of $\operatorname{Th}(\langle \omega^{\omega}, \langle \rangle)$.

We will assume the reader is familiar with the results and techniques in Ehrenfeucht [2]. In particular we will freely use these without further reference or mention. Several lemmas, in particular Lemmas 6, 7, 8 essentially appear in [4]. We include them for completeness and selfcontainment.

Our notation in general will follow that suggested in Addison, Henkin and Tarski [1]. The games G_n are as denoted in Ehrenfeucht [2]. We now briefly indicate our notation for linearly ordered sets:

Ordinals will be denoted as usual.

Usually if it is clear specific mention of the linear order of a linearly ordered set will be omitted.

122

^{*}This research was partially supported by NSF GP 19569.

If A, B are linearly ordered by \leq_A , \leq_B respectively, then A + B denotes $A \cup B$ linearly ordered by \leq_{A+B} where $x \leq_{A+B} y \leftrightarrow (x \in A \land y \in B) \lor (x, y \in A \land y \in B)$ $x <_A y$) v (x, y $\epsilon B \land x <_B y$). (We assume A, B are disjoint. Otherwise, they should first be made disjoint. Henceforth we will assume as needed that sets are disjoint).

More generally if A is linearly ordered by \leq_A , and if for each $a \in A$, A_a is

linearly ordered by \leq_a , then $\sum_{a \in A} A_a$ denotes $\bigcup_{a \in A} A_a$ linearly ordered by $\leq_{\Sigma A_a}$ where $x \leq_{\Sigma A_a} y \iff (x \in A_a \land y \in A_b \land a \leq_A b) \lor (x, y \in A_a \land x \leq_a y)$. If A, B are linearly ordered by \leq_A, \leq_B respectively, then $A \times B$ denotes

 $\sum_{x \in B} A$.

If A is linearly ordered by \leq_A , then A^* denotes A linearly ordered by \leq_{A^*} where $x \leq_{A^*} y$ if $y \leq_A x$.

$$\sum_{a \in A}^{*} A_{a} = \sum_{a \in A} A_{a}.$$
$$\omega^{\omega^{*}} = \sum_{n \in \omega}^{*} \omega^{n}.$$
$$\omega^{\omega^{*+\omega}} = \omega^{\omega^{*}} + \omega^{\omega}$$

If A is a linearly ordered set, a, $b \in A$, then

$$[a, b) = b - a = \{x \in A \mid a \le x < b\}$$

$$[0, b) = b = \{x \in A \mid x < b\}$$

$$[a, \infty) = A - a = \{x \in A \mid a \le x\}.$$

(a, b), etc. are denoted similarly.

If a, $b \in A$, B, then we write $[a, b)^A$, $[a, b)^B$, etc. to distinguish these intervals in A and B.

n = class of all discrete linear ordered sets with first and last elements. We identify order isomorphic elements.

$$\mathbf{n}_0 = \mathbf{n} \cup \{ \emptyset \}.$$

 \mathfrak{n}_0 is partially ordered by \leq given by $A \leq B$ iff $(\exists f)$ (f: A 1-1 order isomorphically onto an initial segment of B). So ω is an initial segment of n_0 .

If φ is any sentence in the first order language for < and $\psi(x_0)$ is a formula (perhaps with parameters) then $\varphi^{\psi(x_0)}$ is φ relativized to $\psi(x_0)$.

Definition: $\lim_{x \to 0} (x) =_{df} (x = x)$ $\lim_{m \to 1} (x) =_{df} (\forall y) (y < x \to (\exists z) (y < z < x \land \lim_{m} (z)))$ $x = 0 =_{df} \neg (\exists y)(y < x)$ $\mathbf{t} =_{df} \{ \lim_{n \to \infty} (x_0) \mid n \in \omega \}$ $\mathbf{\tilde{t}} =_{df} \mathbf{t} \cup \{x_0 \neq 0\}$

1 Models of Th($\langle \omega^n, \langle \rangle$). As is well-known:

Proposition 1. $\langle \eta, \langle \rangle \models \text{Th}(\langle \omega, \langle \rangle) \text{ iff } \exists \langle r, \langle \rangle \text{ a linearly ordered set (possibly } A)$ empty) such that $\eta = \omega + (*\omega + \omega) \cdot r$.

Proof: Omitted.

 $\text{Proposition 2.} \langle \eta, < \rangle \vDash \text{Th}(\langle \omega^{n+1}, < \rangle) \text{ iff } \exists \langle \mu, < \rangle \vDash \text{Th}(\langle \omega, < \rangle), \forall \alpha \in \mu, \exists \langle \mu_{\alpha}, < \rangle \vDash$ Th ($\langle \omega^n, \langle \rangle$) such that $\eta = \sum_{\alpha \in \mu} \mu_{\alpha}$.

Proof: Assume $\langle \eta, \langle \rangle \models \text{Th}(\langle \omega^{n+1}, \langle \rangle)$. Now 1) $\langle \omega^{n+1}, \langle \rangle \models \varphi^{\lim_n x(x_0)}$ for each $\varphi \in \text{Th}(\langle \omega, \langle \rangle)$, 2) $\langle \omega^{n+1}, \langle \rangle \models \forall x \forall y ((\lim_n (x) \land \lim_n (y) \land x < y \land (\forall z) (x < z < y \rightarrow \neg \lim_n (z))) \rightarrow \varphi^{x \leq x_0 < y})$ for each $\varphi \in \text{Th}(\langle \omega^n, \langle \rangle)$, and 3) $\langle \omega^{n+1}, \langle \rangle \models \forall x \exists y (y \leq x \land \lim_n (y) \land \neg (\exists z)(y < z \leq x \land \lim_n (z))).$

So $\langle \eta, \langle \rangle \models$ the sentences in 1), 2), 3). Let

$$\mu = \{ \alpha \in \eta \mid \langle \eta, \langle \rangle \models \lim_{n \to \infty} (x_0) [\alpha] \}.$$

And for each $\alpha \epsilon \mu$, let

$$\mu_{\alpha} = \left\{\beta \in \eta \mid \alpha \leq \beta \land \langle \eta, \langle \rangle \models \neg (\exists z)(x_0 < z \leq x_1 \land \lim_n(z)) [\alpha, \beta]\right\}.$$

Then by 1), $\langle \mu, \langle \rangle \models \text{Th}(\langle \omega, \langle \rangle)$ and by 2), $\langle \mu_{\alpha}, \langle \rangle \models \text{Th}(\langle \omega^n, \langle \rangle)$ and clearly $\eta = \sum_{\alpha \in \mu} \mu_{\alpha}$ by 3).

Conversely, assume the conclusion. So player II has a winning strategy in $G_m(\langle \omega, \langle \rangle, \langle \mu, \langle \rangle)$ and in $G_m(\langle \omega^m, \langle \rangle, \langle \mu_\alpha, \langle \rangle), \forall \alpha \in \mu$, for every $m \ge 0$.

We give a winning strategy for II in $G_m(\langle \omega^{n+1}, \langle \rangle, \langle n, \langle \rangle)$. Given a move of I, II chooses which ' ω^n ' segment of model to use by winning strategy in the first game and then which point in it to use by winning strategy in the appropriate latter game.

2 Main Theorems:

Definition: A model of $Th(\langle \omega^{\omega}, \leq \rangle)$ or of $Th(\langle \omega^{\omega^{*+\omega}}, \leq \rangle)$ which omits \tilde{t} is called a *short* model.

If $\langle \eta, \langle \rangle \models \operatorname{Th}(\langle \omega^{\omega}, \langle \rangle)$ or $\models \operatorname{Th}(\langle \omega^{\omega^{*+\omega}}, \langle \rangle)$, it is called *ultrashort* if $\forall x, y \in \eta, (x < y \rightarrow (\exists n)(\forall z)(x < z \leq y \rightarrow \exists \lim_{n \to \infty} (z))).$

Clearly any ultrashort model is short.

Theorem 1. $\langle \eta, \langle \rangle$ is an ultrashort model of Th ($\langle \omega^{\omega}, \langle \rangle$) iff \exists for each $n \in \omega$ a model $\langle \eta_n, \langle \rangle \models$ Th ($\langle \omega^n, \langle \rangle$) such that $\eta = \sum_{n \in \omega} \eta_n$.

Theorem 2. $\langle \eta, \langle \rangle$ is an ultrashort model of Th ($\langle \omega^{\omega^{*+\omega}}, \langle \rangle$) iff

 \exists 1) for each $n \in \omega$ a $\mu_n \in \mathfrak{n}_0$ such that infinitely many $\mu_n \neq 0$,

2) for each $y \in \mu_n$ a model $\langle \eta_{n,y}, \langle \rangle \models \text{Th}(\langle \omega^n, \langle \rangle),$

3) a η ' an ultrashort model of Th ($\langle \omega^{\omega}, \langle \rangle$) such that $\eta = \sum_{n \in \omega}^{*} \sum_{y \in \mu_{n}} \eta_{n,y} + \eta'$.

Theorem 3. $\langle \eta, \langle \rangle$ is a model of Th($\langle \omega^{\omega}, \langle \rangle$) iff \exists 1) linearly ordered set μ (possibly empty),

2) for each $y \in \mu$, an ultrashort model $\langle \eta_y, \langle \rangle$ of $Th(\langle \omega^{\omega}, \langle \rangle)$ or of $Th(\langle \omega^{\omega^{*+\omega}}, \langle \rangle)$,

3) an ultrashort model $\langle \eta', \langle \rangle$ of Th ($\langle \omega^{\omega}, \langle \rangle$) such that $\eta = \eta' + \sum_{\gamma \in \mu} \eta_{\gamma}$.

The proofs of these three results will be by a sequence of lemmas. We first consider the \rightarrow directions.

Lemma 1. $\langle \omega^{\omega}, \langle \rangle$ and hence any model of Th($\langle \omega^{\omega}, \langle \rangle$) satisfies the following sentences:

a) $(\exists x)(\forall y)(y \ge x)$ b) $(\forall x)(\exists y)(y > x \land \lim_{n}(y) \land \exists (\exists z)(x < z < y \land \lim_{n}(z)))$ c) $(\forall x) (\forall y) ((y > x \land \lim_{n}(y) \land \neg (\exists z) (x < z < y \land \lim_{n}(z))) \rightarrow \varphi^{x \leq x_{0} < y})$ for every $\varphi \in \operatorname{Th}(\langle \omega^{n}, < \rangle)$ d) $(\forall x)(\exists y)(y \leq x \land \lim_{n}(y) \land (\forall z)(y < z \leq x \rightarrow \neg \lim_{n}(z)))$ e) $(\forall x)(\forall y)(x < y \land \lim_{n}(x) \land \lim_{n}(y) \land \neg (\exists z) (x < z \leq y \land \lim_{n+1}(z))) \rightarrow \varphi^{x \leq x_{0} < y \land \lim_{n}(x_{0})})$ for every $\varphi \in \operatorname{Th}(n)$.

Lemma 2. $\langle \omega^{\omega^{*+\omega}}, \langle \rangle$ and hence any model of $Th(\langle \omega^{\omega^{*+\omega}}, \langle \rangle)$ satisfies the following sentences:

a) $(\forall x)(\exists y)(y < x)$, b)-e) of Lemma 1.

Proofs: Routine.

Lemma 3. \rightarrow of Theorem 1.

Proof: Let $\langle \eta, \leq \rangle$ be an ultrashort model of Th ($\langle \omega^{\omega}, \leq \rangle$). Let $x_0 = 0$. By induction define $x_{n+1} = \text{least } \lim_{n \to \infty} x_n$. Such exist by 1b). By 1c), $\langle [x_i, x_{i+1}), < \rangle \models \text{Th}(\langle \omega^i, < \rangle)$. By the definition of ultrashort, $\eta = \sum_{i \in \omega} [x_i, x_{i+1})$.

Lemma 4. \rightarrow of Theorem 2.

Proof: Let $\langle \eta, < \rangle$ be an ultrashort model of $\operatorname{Th}(\langle \omega^{\omega^{*+\omega}}, < \rangle)$. Let $y_0 = z_0 \epsilon \eta$. By induction define $y_{n+1} = \operatorname{greatest} \lim_{n \to 1} \leq y_n$. Such exist by 2d). By induction define $x_{n+1} = \operatorname{least} \lim_{n \to \infty} z_n$. Such exist by 2b). By 2a) infinitely many of y_i are distinct. Let $\mu_n = \{a \mid y_{n+1} \leq a < y_n \land \lim_n (a)\}$. So infinitely many $\mu_n \neq 0$ and by 2e), $\mu_n \epsilon n_0$. For each $y \epsilon \mu_n$, let $\eta_{n,y} = [y, y')$ where y' is least $\lim_{n \to \infty} y$. By 2c) $\langle \eta_{n,y}, < \rangle \models \operatorname{Th}(\langle \omega^n, < \rangle)$. Also $[y_{n+1}, y_n] = \sum_{y \in \mu_n} \eta_{n,y}$. And $(0, y_0) = \sum_{n \in \omega}^* [y_{n+1}, y_n] = \sum_{n \in \omega} \sum_{y \in \mu_n} \eta_{n,y}$. Let $\eta_n = [z_n, z_{n+1})$. By 2c), $\langle \eta_n, < \rangle \models$ Th $(\langle \omega^n, < \rangle)$. And $[z_0, \infty) = \sum_{n \in \omega} n_{x,n}$. So by Theorem 1, $\eta' = [z_0, \infty)$ is an ultrashort model of Th $(\langle \omega^\omega, < \rangle)$. Now $\eta = (0, y_0) + [z_0, \infty) = \sum_{n \in \omega} \sum_{y \in \mu_n} \eta_{n,y} + \eta'$.

Lemma 5. \rightarrow of Theorem 3.

Proof: Let $\langle \eta, < \rangle$ be a model of Th ($\langle \omega^{\omega}, < \rangle$). On η define $a \approx b$ if $(\exists n)(\exists x)$ $(a < x \le b \to \exists \lim_{n \to \infty} (x))$ for a < b. If a > b, define $a \approx b$ if $b \approx a$. And define $a \approx a$. So \approx is an equivalence relation.

By 1a), $\tilde{\tilde{\eta}}$ has a least element $\tilde{\tilde{0}}$. Let $\mu = \tilde{\tilde{\eta}} - \{\tilde{\tilde{0}}\}$. As in Lemma 3, $\tilde{\tilde{0}} = \sum_{i \in \omega} \eta_i$ where $\langle \eta_i, \langle \rangle \models \text{Th}(\langle \omega^i, \langle \rangle)$ and hence is an ultrashort model of Th $(\langle \omega^{\omega}, \langle \rangle)$ by Theorem 1. If $x \in \mu$ then either x realizes t or not. If so arguing similarly to Lemma 3 we find $x = \sum_{i \in \omega} \eta_{i,x}$ where $\langle \eta_{i,x}, \langle \rangle \models$ Th $(\langle \omega^i, \langle \rangle)$ and hence x is ultrashort model of Th $(\langle \omega^{\omega}, \langle \rangle)$. On the other hand if x does not realize t, x has no least element and arguing similarly to Lemma 4 we find $x = \sum_{n \in \omega}^* \sum_{y \in \mu_{n,x}} \eta_{n,x,y} + \eta'$ where $\mu_{n,x} \in \mathfrak{n}_0$, infinitely many are $\neq 0$, $\langle \eta_{n,x,y}, \langle \rangle \models$ Th $(\langle \omega^n, \langle \rangle)$, $\langle \eta', \langle \rangle$ is ultrashort model of Th $(\langle \omega^{\omega}, \langle \rangle)$. And hence x is ultrashort model of Th $(\omega^{\omega^{*+\omega}}, \langle \rangle)$ by Theorem 2. As $\eta = \tilde{0} + \sum_{x \in \mu} x$, we are done.

Lemmas 1-5 may be viewed as giving a means of partitioning models of these theories. The theorems assert any model which can be partitioned in such a manner is a model of the theory in question.

Lemma 6. If player II has a winning strategy in $G_n(\langle \alpha_x, < \rangle, \langle \beta_x, < \rangle)$ for every $x \in \gamma$, then II has a winning strategy in $G_n(\langle \sum_{x \in \gamma} \alpha_x, < \rangle, \langle \sum_{x \in \gamma} \beta_x, < \rangle)$.

Proof. Player II's winning strategy is: If on some move player I chooses a point in α_x (or β_x), then player II uses his winning strategy in $G_n(\langle \alpha_x, < \rangle, \langle \beta_x, < \rangle)$ to give his move.

Corollary. If $\alpha_x \equiv \beta_x$, $\forall x \in \gamma$, then $\sum_{x \in \gamma} \alpha_x \equiv \sum_{x \in \gamma} \beta_x$.

Lemma 7. If player II has a winning strategy in $G_n(\langle \gamma, \langle \rangle, \langle \delta, \langle \rangle)$ and if player II has a winning strategy in $G_n(\langle \alpha_x, \langle \rangle, \langle \beta_y, \langle \rangle)$ for every $x \in \gamma$, $y \in \delta$, then II has a winning strategy in

$$\mathbf{G}_n(\langle \sum_{x \in \gamma} \alpha_x, < \rangle), \langle \sum_{y \in \delta} \beta_y, < \rangle).$$

Proof. Player II's winning strategy is: If on some move player I chooses a point $y \in a_x$, then player II uses his winning strategy in $G_n(\langle \gamma, < \rangle, \langle \delta, < \rangle)$ assuming a move by I of x to give a point $x' \in \delta$ and his winning strategy in $G_n(\langle \alpha_x, < \rangle, \langle \beta_{x'}, < \rangle)$ assuming a move by I of y to give a point $y' \in \beta_{x'}$. II then plays as his move y'.

Similarly if player I chooses a point $y \in \beta_x$, then player II selects a point $x' \in \gamma$ and then a point $y' \in \alpha_{x'}$. It's move then will be y'.

Corollary. If $\gamma \equiv \delta$, $\alpha_x \equiv \beta_y$, $\forall x \in \delta \forall y \in \delta$, then $\sum_{x \in \gamma} \alpha_x \equiv \sum_{y \in \delta} \beta_y$.

Corollary. If $\gamma \equiv \delta$, $\alpha \equiv \beta$, then $\alpha \times \gamma \equiv \beta \times \delta$.

Lemma 8. If player II has a winning strategy in $G_n(\langle \alpha_i, \langle \rangle, \langle \beta_i, \langle \rangle)$ for i = 1, 2, then II has a winning strategy in G_{n+1} ($\langle \alpha_1 + 1 + \alpha_2, \langle \rangle, \langle \beta_1 + 1 + \beta_2, \langle \rangle$) after the initial move $0 \leftrightarrow 0$. (Note $1 = \{0\}$.)

Proof: Player II's winning strategy is on each segment to use his given winning strategies. I.e., if I chooses a point in an α , player II responds in other α using winning strategy in $G_n(\langle \alpha_1, \langle \rangle, \langle \alpha_2, \langle \rangle)$. And similarly for β .

Lemma 9. Player II has a winning strategy in $G_n(\langle \alpha, \leq \rangle, \langle \beta, \leq \rangle)$ if $\alpha, \beta \in n$, $\alpha, \beta \geq 2^n - 1$.

Proof: By induction on n. n = 1 is trivial. Assume the result for n = k. Let α , $\beta \in n$, α , $\beta \ge 2^{k+1} - 1$. We give player II's winning strategy for $G_{k+1}(\langle \alpha, < \rangle, \langle \beta, < \rangle)$. Without loss of generality player I's first move is in α . Say it is x_0 .

Case 1: $x_0 < 2^k - 1$. By induction, as $\alpha - x_0$, $\beta - x_0 \ge 2^k - 1$, player II has winning strategy in $\mathbf{G}_k (\langle \alpha - x_0, < \rangle, \langle \beta - x_0, < \rangle)$. Also II has winning strategy in $\mathbf{G}_k (\langle x_0, < \rangle, \langle y_0, < \rangle)$. So by Lemma 8 if II responds with x_0 in β , then II has winning strategy in $\mathbf{G}_{k+1} (\langle \alpha, < \rangle, \langle \beta, < \rangle)$.

Case 2: $\alpha - x_0 < 2^k - 1$. Player II responds with $\beta - (\alpha - x_0)$, i.e., with the point $\alpha - x_0 \leq$ the last element of β . This case is similar to 1.

Case 3: Neither Case 1 nor Case 2. Player II responds with $2^k - 1$ (or any other element $y_0 \in \beta$ such that $y_0 \ge 2^k - 1$, $\beta - y_0 \ge 2^k - 1$). By induction player II has winning strategies in $G_k(\langle x_0, < \rangle, \langle y_0, < \rangle)$ and $G_k(\langle \alpha - x_0, < \rangle, \langle \beta - y_0, < \rangle)$. So by Lemma 8 we are done.

Notation: If α , $\beta \in \mathfrak{n}_0$, we write $\alpha = \beta$ to denote $\alpha = \beta$ or α , $\beta \ge 2^n - 1$.

Lemma 10: Player II has a winning strategy in

$$\mathsf{G}_n \left(\langle \sum_{x \in \alpha} \alpha_x, < \rangle, \langle \sum_{x \in \beta} \beta_x, < \rangle \right)$$

where

i) $\alpha, \beta \in \mathfrak{n}, \alpha \cong \beta$, ii) $\langle \alpha_x, \langle \rangle, \langle \beta_y, \langle \rangle \models \operatorname{Th}(\langle \omega^m, \langle \rangle), \forall x \in \alpha, y \in \beta$.

Proof: By Lemmas 7 and 9.

Remark: By combining the techniques of Lemma 8 and Theorem 12 in [2], one can, in fact, obtain:

Lemma 11. Player II has a winning strategy in

$$\mathsf{G}_n(\langle \sum_{x \in \alpha} \alpha_{x}, < \rangle, \langle \sum_{x \in \beta} \beta_{x}, < \rangle)$$

where

i) m < n,

- ii) α , $\beta \in \mathfrak{n}$, $\alpha = \beta$,
- iii) $\langle \alpha_x, < \rangle, \langle \beta_y, < \rangle \models \text{Th}(\langle \omega^m, < \rangle), \forall x \in \alpha, y \in \beta.$

Lemma 12. Player II has a winning strategy in

 $\mathbf{G}_n\left(\sum_{0\leq i\leq k}^{*}\omega^i, n_i, \sum_{0\leq i\leq k}^{*}\sum_{x\in\mu_i}\eta_{x,i}\right)$

where

i) k < n, ii) $\mu_i \in \mathfrak{n}_0, n_i \in \omega$, iii) $\langle \eta_{x,i}, < \rangle \models \operatorname{Th}(\langle \omega^i, < \rangle)$, iv) $n_i = \frac{1}{n} \mu_i (n_i = \mu_i \text{ with Lemma 11}).$

Proof: By Lemmas 6 and 10.

Lemma 13. Player II has a winning strategy in

$$\mathsf{G}_n\left(\sum_{0\leqslant i\leqslant k}^*\omega^i\,\,n_i,\,\sum_{0\leqslant i\leqslant k}^*\sum_{x\in\mu_i}\eta_{x,i}\right)$$

where

i) $k, k' \in \omega, k, k' \ge n$, ii) $n_i \in \omega, \mu_i \in \mathbf{n}_0, n_k \ne 0, \mu_{k'} \ne 0$, iii) $\langle \eta_{x,i}, \langle \rangle \models \mathsf{Th}(\langle \omega^i, \langle \rangle),$ iv) $\forall i < n, n_i = \mu_i$.

Proof: By induction on *n*.

Case 1: n = 1 trivial.

Case 2: Let $n \ge 2$. Assume the result for n - 1. Let k, k', etc. be as above. Let

$$\alpha = \sum_{0 \le i \le k}^{*} \omega^{i}. \ n_{i}, \ \beta = \sum_{0 \le i \le k}^{*} \sum_{x \in \mu_{i}} \eta_{x,i}$$

Case a: On move 1 player I chooses an element $a \in \alpha$.

Case ai: $a < \omega^n$. Say

$$\omega = \sum_{0 \leqslant i \leqslant l}^{*} \omega^{i}$$
. k_{i} where $l < n$, $k_{i} < \omega$, $k_{l} \neq 0$.

As $\langle \eta_{0,k'}, < \rangle \models \operatorname{Th}(\langle \omega^{k'}, < \rangle),$

 $\exists b \in \eta_{0,k'} \text{ such that } \langle a, < \rangle \equiv \langle b, < \rangle.$

Also
$$\langle \omega^k - (a + 1), \langle \rangle \equiv \langle \omega^k, \langle \rangle$$
 and $\langle \eta_{0,k'} - (b + 1), \langle \rangle \equiv \langle \omega^{k'}, \langle \rangle$.

Let b be II's move. Then $\langle \alpha - (\alpha + 1), \langle \rangle$ and $\langle \beta - (b + 1), \langle \rangle$ meet the conditions of the lemma for n - 1. So by Lemma 8, II has winning strategy in $G_n(\langle \alpha, \langle \rangle, \langle \beta, \langle \rangle)$.

Case aii: $\alpha - a < \omega^n$. Say

$$\alpha - a = \sum_{0 \le i \le l}^{*} \omega^i$$
. k_i where $l < n, k_i < \omega$.

By the definition of α , $k_l \leq n_l$, $k_i = n_i$ if i < l. Let

$$a' = a - \left(\sum_{l < i \leq k}^{*} \omega^i \cdot n_i + \omega^l \cdot (n_l - k_l)\right).$$

So $a' \leq \omega^l$. Say

$$a' = \sum_{0 \leq i < l}^* \omega^i . \ j_i.$$

Let

$$k'_{l} \epsilon \mu_{l}$$
 be defined by $k'_{l} = \begin{cases} n_{l} - k_{l} \text{ if } n_{l} - k_{l} < 2^{n} - 1, \\ \mu_{l} - k_{l} \text{ if } k_{l} < 2^{n} - 1, \\ 2^{n} - 1 \text{ otherwise.} \end{cases}$

Let

$$b = \sum_{l < i \leq k'}^* \sum_{x \in \mu_i} \eta_{x,i} + \sum_{x < k'_i} \eta_{x,l} + \sum_{0 \leq i < l}^* \sum_{x < j_i} \mu_{i,x}$$

where $\langle \mu_{i,x}, \langle \rangle \models \text{Th}(\langle \omega^i, \langle \rangle) \text{ and } \sum_{0 \leq i < l}^* \sum_{x < j_i} \mu_{i,x} \text{ is an initial segment of } \eta_{k_{l,l}^i}$.

Then $\langle a, \langle \rangle, \langle b, \langle \rangle$ satisfy the conditions of the lemma for n - 1, and $\langle \alpha - (a + 1), \langle \rangle, \langle \beta - (b + 1), \langle \rangle$ satisfy the conditions of Lemma 12 for n - 1. So by Lemma 8, II has winning strategy in $\mathbf{G}_n(\langle \alpha, \langle \rangle, \langle \beta, \langle \rangle)$. Case aiii: Neither case ai nor aii. Say

$$a = \sum_{0 \le i \le l}^{*} \omega^{i} \cdot k_{i}$$
 where $k_{l} \ne 0$.

So $l \ge n$. Let

$$b = \sum_{x < 2^{n-1}-1} \mu_{n-1,x} + \sum_{i < n-1}^{*} \sum_{x < k_i} \mu_{i,x}$$

where b is initial segment of β , $\langle \mu_{i,x}, < \rangle \models \text{Th}(\langle \omega^i, < \rangle)$ for i < n. Then $\langle a, < \rangle, \langle b, < \rangle$ satisfy the conditions of the lemma for n - 1, and $\langle a - (a + 1), < \rangle$, $\langle \beta - (b + 1), < \rangle$ satisfy the conditions of the lemma for n - 1. So by Lemma 8, II has winning strategy in $\mathbf{G}_n \langle \langle \alpha, < \rangle, \langle \beta, < \rangle$. Case b: On move 1 player I chooses an element $b \in \beta$.

Case bi: There is no $\lim_{n \le b}$. Say

$$b = \sum_{0 \leqslant i \leqslant l}^* \sum_{x \in \mu_i} \eta_{x,i} \text{ where } \langle \eta_{x,i}, \langle \rangle \vDash \mathsf{Th} (\langle \omega^i, \langle \rangle), \ l < n.$$

$$n_i = \begin{cases} \mu_i \text{ if } \mu_i < 2^n - 1, \\ 2^n - 1 \text{ otherwise.} \end{cases}$$

Let $a = \sum_{0 \le i \le l}^{*} \omega^{i}$. n_{i} . Then if *a* is II's move, II has winning strategy in $\mathbf{G}_{n}(\langle \alpha, \langle \rangle, \langle \beta, \langle \rangle)$ by induction (as $\langle a, \langle \rangle, \langle b, \langle \rangle$ satisfy conditions of Lemma 12 for n - 1 and $\langle \alpha - (a + 1), \langle \rangle, \langle \beta - (b + 1), \langle \rangle$ satisfy conditions of lemma for n - 1).

Case bii: There is no $\lim_n \ge b$. Say

$$\beta$$
 - $b = \sum_{0 \le i \le l}^* \sum_{x \in \mu_i} \eta_{x,i}$ where $l < n$.

By definition of β , $\mu'_i = \mu_i$ if i < l, $\mu'_l \le \mu_l$. Let

$$b' = b - \left(\sum_{l < i \leq k'}^{*} \sum_{x \in \mu_i} \eta_{x,i} + \sum_{x \in \mu_l - \mu_l'} \eta_{x,l} \right).$$

So b' has no \lim_{l} . Say

$$b' = \sum_{0 \leqslant i < l}^* \sum_{x \in \tilde{\mu}_i} \tilde{\eta}_{x,i} \text{ where } \tilde{\mu}_i \in \mathfrak{n}_0, \, \langle \tilde{\eta}_{x,i}, < \rangle \vDash \mathsf{Th}(\langle \omega^i, < \rangle)$$

Let

$$k_{l} \leq n_{l} \text{ be defined by } k_{l} = \begin{cases} \mu_{l} - \mu_{l}' \text{ if } \mu_{l} - \mu_{l}' \leq 2^{n} - 1, \\ n_{l} - \mu_{l}' \text{ if } \mu_{l}' \leq 2^{n} - 1, \\ 2^{n} - 1 \text{ otherwise.} \end{cases}$$

Let

$$a = \sum_{l < i \leq k}^{*} \omega^{i} \cdot n_{i} + \omega^{l} \cdot k_{l} + \sum_{0 \leq i < l}^{*} \omega^{i} \cdot j_{i}$$

where $j_{i} = \begin{cases} \tilde{\mu}_{i} & \text{if } \tilde{\mu}_{i} < 2^{n} - 1, \\ 2^{n} - 1 & \text{otherwise.} \end{cases}$

Then $\langle a, \langle \rangle, \langle b, \langle \rangle$ satisfy the conditions of the lemma for n - 1, and $\langle \alpha - (a + 1), \langle \rangle, \langle \beta - (b + 1), \langle \rangle$ satisfy the conditions of Lemma 12 for n - 1. So by Lemma 8, II has winning strategy in $\mathbf{G}_n(\langle \alpha, \langle \rangle, \langle \beta, \langle \rangle)$. Case biii: Neither case bi nor bii. Say

$$b = \sum_{0 \le i \le l}^* \sum_{x \in \tilde{\mu}_i} \tilde{\eta}_{i,x} \text{ where } \tilde{\mu}_i \in \mathfrak{n}_0, \ \mu_l \neq 0, \ \langle \tilde{\eta}_{i,x}, < \rangle \models \mathsf{Th}(\langle \omega^i, < \rangle).$$

So $l \ge n$. Let

$$k_i = \begin{cases} \tilde{\mu}_i & \text{if } \tilde{\mu}_i \leq 2^n - 1\\ 2^n - 1 & \text{otherwise} \end{cases} \quad \text{for } i < n - 1.$$

Let

$$a = \omega^{n-1} \cdot (2^{n-1} - 1) + \sum_{0 \le i < n-1}^{*} \omega^{i} \cdot k_{i}$$

Then $\langle a, < \rangle$, $\langle b, < \rangle$ satisfy the conditions of the lemma for n - 1 and $\langle \alpha - (a + 1), < \rangle$, $\langle \beta - (b + 1), < \rangle$ satisfy them for n - 1. So as usual, II has winning strategy in $G_n(\langle \alpha, < \rangle, \langle \beta, < \rangle)$.

Proof of Theorem 1: \leftarrow Clearly η is an ultrashort model. We will, thus, be done when we show by induction on n:

Lemma 14. Player II has a winning strategy in

$$G_n(\langle \omega^{\omega}, < \rangle, \langle \sum_{n \in \omega} \eta_n, < \rangle).$$

Proof:

Case 1: n = 1 is trivial.

Case 2: Let $n \ge 2$. Assume the result for n - 1. Let

$$\alpha = \omega^{\omega}, \ \beta = \sum_{n \in \omega} \eta_n.$$

Case a: On move 1 player I chooses an element $a \in \alpha$. Say

.

$$a = \sum_{0 \le i \le l}^{*} \omega^{i}$$
. k_{i} where $k_{i} \le \omega, k_{l} \ne 0$.

Let

 $b = \eta_l + \sum_{\mathbf{y} < k_l - 1} \eta_{l,\mathbf{y}} + \sum_{\mathbf{0} \leq i < l}^* \sum_{\mathbf{y} < k_i} \eta_{i,\mathbf{y}} \text{ where } \langle \eta_{i,\mathbf{y}}, < \rangle \models \mathsf{Th}(\langle \omega^i, < \rangle),$ $\sum_{y < k_l-1} \eta_{l,y} + \sum_{0 \le i < l}^* \sum_{y < k_i} \eta_{i,y}$ is initial segment of η_{l+1} .

Let b be II's move. Then by Lemma 12 or 13, player II has winning strategy in \mathbf{G}_{n-1} ($\langle a, \langle \rangle, \langle b, \langle \rangle$). $\langle a - (a + 1), \langle \rangle, \langle \beta - (b + 1), \langle \rangle$ satisfy the induction hypotheses for n - 1. So by the lemma, we are done in this case. Case b): On move 1 player I chooses an element $b \in \beta$. Say

$$b = \eta_l + \sum_{0 \le i \le l}^* \sum_{y \le \mu_i} \eta_{i,y} \text{ where } \mu_i \in \mathfrak{n}_0, \langle \eta_{i,y}, < \rangle \models \mathsf{Th}(\langle \omega^i, < \rangle).$$

Let

$$k_{l} = \begin{cases} 2^{n} - 1 \text{ if } \mu_{i} > 2^{n} - 2, \\ \mu_{i} + 1 \text{ otherwise}; \end{cases}$$

$$k_{i} = \begin{cases} 2^{n} - 1 \text{ if } \mu_{i} > 2^{n} - 1 \\ \mu_{i} \text{ otherwise} \end{cases} \quad \text{for } i < n.$$

Let

$$a = \sum_{0 \leq i \leq l}^* \omega^i \cdot k_i.$$

Then by Lemma 12 or 13, player II has winning strategy in G_{n-1} ($\langle a, \leq \rangle$, $\langle b, \langle \rangle$). $\langle \alpha - (\alpha + 1), \langle \rangle, \langle \beta - (b + 1), \langle \rangle$ satisfy the induction hypothesis for n - 1. So as usual this case is done.

Lemma 15: Player II has a winning strategy in

$$\mathbf{G}_n\left(\left\langle \sum_{i\in\omega}^* \omega^i. n_i, <\right\rangle, \ \left\langle \sum_{i\in\omega}^* \sum_{x\in\mu_i} \eta_{x,i}, <\right\rangle\right)$$

where

i) $n_i \in \omega$, ii) $\exists m \text{ such that } \forall i \geq m, n_i = 1,$ iii) $\forall i < n, \ \mu_i \equiv n_i,$ iv) $\mu_i \in \mathfrak{n}_0$, v) infinitely many $\mu_i \neq 0$, vi) $\langle \eta_{x,i}, < \rangle \models \text{Th}(\langle \omega^i, < \rangle).$

Proof: Similar to Lemma 13.

130

Lemma 16. Player II has winning strategy in

where

- i) $\mu_i \in \mathbf{n}_0$,
- ii) infinitely many $\mu_i \neq 0$,
- iii) $\langle \eta_{x,i}, < \rangle \models \operatorname{Th}(\langle \omega^i, < \rangle),$
- iv) $\langle \eta_i, < \rangle \models \operatorname{Th}(\langle \omega^i, < \rangle).$

Proof: Similar to Lemma 14. It uses primarily Lemmas 14 and 15 and Theorem 1.

The proof of Theorem 2 now follows immediately from Lemma 16 as $\sum_{i\in\omega}^* \sum_{x\in\mu_i} \eta_{x,i} + \sum_{i\in\omega} \eta_i$ is clearly ultrashort.

Lemma 17. $\langle \eta' + \sum_{x \in \mu} \eta_x, \langle \rangle \equiv \langle \omega^{\omega} + \sum_{x \in \mu} \mu_x, \langle \rangle$ where

- i) $\langle \eta', \langle \rangle$ is ultrashort model of $\mathsf{Th}(\langle \omega^{\omega}, \langle \rangle)$,
- ii) $\langle \eta_x, \langle \rangle$ is ultrashort model of $\operatorname{Th}(\langle \omega^{\omega}, \langle \rangle)$ or $\operatorname{Th}(\langle \omega^{\omega^*+\omega}, \langle \rangle)$, iii) $\mu_x = \begin{cases} \omega^{\omega} \ if \langle \eta_x, \langle \rangle \models \operatorname{Th}(\langle \omega^{\omega}, \langle \rangle), \\ \omega^{\omega^*+\omega} \ if \langle \eta_x, \langle \rangle \models \operatorname{Th}(\langle \omega^{\omega^{*+\omega}}, \langle \rangle). \end{cases}$

Proof: By Lemma 6.

Lemma 18. Player II has a winning strategy in

$$\mathbf{G}_n\left(\left\langle \omega^n + \sum_{l< n}^* \omega^l, m_l, < \right\rangle, \left\langle \omega^\omega + \sum_{x \in \mu} \mu_x + \sum_{l< n}^* \omega^l, r_l + \sum_{l< n}^* \omega^l, n_l, < \right\rangle\right)$$

where

i) $m_l = n_l$, if $l < n, m_l, n_l \in \omega$,

ii) $\mu_x = \omega^{\omega} \ or \ \omega^{\omega^* + \omega}, \ \forall x \ \epsilon \ \mu,$

- iii) μ is arbitrary linear order (possibly empty),
- iv) $r_l \in \omega, \ l \ge n$,
- v) $\exists m \text{ such that } \forall i \geq m, r_l = 0 \text{ or } \forall i \geq m, r_l = 1.$

Proof: Similar to Lemma 13.

Lemma 19. Player II has a winning strategy in

$$\mathsf{G}_{n}\left(\langle \omega^{\omega}, < \rangle, \langle \omega^{\omega} + \Sigma_{x\epsilon\mu} | \mu_{x}, < \rangle\right)$$

where

i) $\mu_x = \omega^{\omega} \ or \ \omega^{\omega^{*}+\omega}$,

ii) μ is arbitrary linear order (possibly empty).

Proof: Similar to Lemma 14. It uses primarily Lemma 18.

The proof of Theorem 3 now follows immediately from Lemmas 17 and 19.

3 Short models. By techniques similar to those in section 2 one can prove: Theorem 4. $\langle \eta, \langle \rangle$ is a short model of Th($\langle \omega^{\omega}, \langle \rangle$) iff $\exists 1$) an ultrashort model $\langle \eta', \langle \rangle$ of $\mathsf{Th}(\langle \omega^{\omega}, \langle \rangle)$,

2) a linear order μ possibly empty,

3) for each $x \in \mu$, an ultrashort model $\langle \eta_x, \langle \rangle$ of $\operatorname{Th}(\langle \omega^{\omega^{*+\omega}}, \langle \rangle)$ such that $\eta = \eta' + \sum_{x \in \mu} \eta_x$.

Theorem 5. $\langle \eta, \langle \rangle$ is a short model of $\text{Th}(\langle \omega^{\omega^{*+\omega}}, \langle \rangle)$ iff

 \exists 1) a linear order μ ,

2) for each $x \in \mu$, an ultrashort model η_x of $\text{Th}(\langle \omega^{\omega^{*+\omega}}, \langle \rangle)$ such that $\eta = \sum_{x \in \mu} \eta_x$.

Theorem 6. $(\eta, <) \models \text{Th}(\langle \omega^{\omega}, < \rangle)$ iff

 $\exists 1$) a short model $\langle \eta', \langle \rangle$ of $\operatorname{Th}(\langle \omega^{\omega}, \langle \rangle)$,

2) a linear order μ possibly empty,

3) for each $x \in \mu$, a short model $\langle \eta_x, < \rangle$ of $\text{Th}(\langle \omega^{\omega}, < \rangle)$ or of $\text{Th}(\langle \omega^{\omega^{*+\omega}}, < \rangle)$ (the latter occurring only if x does not have an immediate predecessor) such that $\eta = \eta' + \sum_{x \in \mu} \eta_x$.

4 Other Results. Using the lemmas of section 2 and similar results one can obtain Ehrenfeucht's classification of the completions of the theory of well-ordered sets. Using the result and the fact that $\langle \alpha, a_1 \ldots a_n < \rangle \equiv \langle \beta, b_1 \ldots b_n < \rangle$ iff $\langle a_{i+1} - a_i, < \rangle \equiv \langle b_{i+1} - b_i, < \rangle$, $\forall i \leq n+1$ if $a_1 < \ldots < a_n, b_1 < \ldots < b_n$ and $a_0 = b_0 = 0$, $a_{n+1} = \alpha$, $b_{n+1} = \beta$ one can then classify the element types of Th($\langle \omega^{\omega}, < \rangle$), or any other completion of the theory of well-ordering.

In particular the following are the distinct completions of the theory of well-ordering:

REFERENCES

- [1] Addison, Henkin, and Tarski, Eds., The Theory of Models, North Holland (1965).
- [2] Ehrenfeucht, A., "An application of games to the completeness problem for formalized theories," Fundamenta Mathematicae, vol. XLIX (1961), pp. 129-141.
- [3] Fraissé, R., "Sur les rapports entre la theorie des relations et la semantique au sens de A. Tarski," *Colloque de logique mathematique*, Paris (1952).
- [4] Läuchli, H., and J. Leonard, "On the elementary theory of linear order," *Fundamenta Mathematicae*, vol. LIX (1966), pp. 109-116.

State University of New York at Stony Brook Stony Brook, New York

and

Ithaca College Ithaca, New York