Notre Dame Journal of Formal Logic
Volume XV, Number 1, January 1974
NDJFAM

MODELS OF Th $\left(\left\langle\omega^{\omega},\langle \rangle\right)\right.$

JOHN W. ROSENTHAL

In this paper* we characterize the models of $\operatorname{Th}\left(\left\langle\omega^{\omega},\langle \rangle\right)\right.$. Our main tool will be the game-theoretic characterization of elementary equivalence given by Ehrenfeucht in [2] (cf. also Fraissé [3]). In particular our work may be viewed as a generalization of Theorem 13 in [2] which gives a characterization of the standard, i.e., well-ordered, models of $\operatorname{Th}\left(\left\langle\omega^{\omega},\langle \rangle\right)\right.$.

The main result, Theorem 3 of section 2, is that a model of $\operatorname{Th}\left(\left\langle\omega^{\omega},\langle \rangle\right)\right.$ consists of an ultrashort model of $\operatorname{Th}\left(\left\langle\omega^{\omega},\langle \rangle\right)\right.$ followed by at each point of an arbitrary linear order ultrashort models of $\operatorname{Th}\left(\left\langle\omega^{\omega},\langle \rangle\right)\right.$ or of $\operatorname{Th}\left(\left\langle\ldots+\omega^{n}+\right.\right.$ $\left.\omega^{n-1}+\ldots+\omega+1+\omega^{\omega},\langle \rangle\right)$, where by an ultrashort model is meant one such that for any two points x, y there is an upper bound on n such that if z is between x and y, z may be a $\lim _{n}$. In Theorems 1 and 2 of section 2 we characterize ultrashort models of these two theories in terms of models of $\mathrm{Th}\left(\left\langle\omega^{n},\langle \rangle\right)\right.$. In section 1 we characterize models of $\mathrm{Th}\left(\left\langle\omega^{n},\langle \rangle\right)\right.$. In section 3 we discuss short models, namely models having no elements which are $\lim _{n}$ for every n. In section 4 we briefly discuss how the techniques of section 2 can be used to classify the completions of the theory of well-ordering and the element types of $\operatorname{Th}\left(\left\langle\omega^{\omega},\langle \rangle\right)\right.$.

We will assume the reader is familiar with the results and techniques in Ehrenfeucht [2]. In particular we will freely use these without further reference or mention. Several lemmas, in particular Lemmas 6, 7, 8 essentially appear in [4]. We include them for completeness and selfcontainment.

Our notation in general will follow that suggested in Addison, Henkin and Tarski [1]. The games G_{n} are as denoted in Ehrenfeucht [2]. We now briefly indicate our notation for linearly ordered sets:

Ordinals will be denoted as usual.
Usually if it is clear specific mention of the linear order of a linearly ordered set will be omitted.

[^0]If A, B are linearly ordered by $<_{A},<_{B}$ respectively, then $A+B$ denotes $A \cup B$ linearly ordered by $<_{A+B}$ where $x<_{A+B} y \leftrightarrow(x \in A \wedge y \in B) \vee(x, y \in A \wedge$ $\left.x<_{A} y\right) \vee\left(x, y \in B \wedge x<_{B} y\right.$). (We assume A, B are disjoint. Otherwise, they should first be made disjoint. Henceforth we will assume as needed that sets are disjoint).
More generally if A is linearly ordered by ${<_{A}}_{A}$, and if for each $a \in A, A_{a}$ is
linearly ordered by $<_{a}$, then $\sum_{a \in A} A_{a}$ denotes $\bigcup_{a \in A} A_{a}$ linearly ordered by $<_{\Sigma A_{a}}$ where $x<_{\Sigma A_{a}} y \leftrightarrow\left(x \in A_{a} \wedge y \in A_{b} \wedge a<_{A} b\right) \vee\left(x, y \in A_{a} \wedge x<_{a} y\right)$.
If A, B are linearly ordered by $<_{A},<_{B}$ respectively, then $A \times B$ denotes $\sum_{x \in B} A$.
If A is linearly ordered by $<_{A}$, then A^{*} denotes A linearly ordered by $<_{A^{*}}$ where $x<_{A^{*}} y$ if $y<_{A} x$.

$$
\begin{aligned}
& \sum_{a \in A}^{*} A_{a}=\sum_{a \epsilon A^{*}} A_{a} . \\
& \omega^{\omega^{*}}=\sum_{n \in \omega}^{*} \omega^{n} . \\
& \omega^{\omega^{*}+\omega}=\omega^{\omega^{*}}+\omega^{\omega}
\end{aligned}
$$

If A is a linearly ordered set, $a, b \in A$, then

$$
\begin{aligned}
& {[a, b)=b-a=\{x \in A \mid a \leqslant x<b\}} \\
& {[0, b)=b=\{x \in A \mid x<b\}} \\
& {[a, \infty)=A-a=\{x \in A \mid a \leqslant x\} .}
\end{aligned}
$$

(a, b), etc. are denoted similarly.
If $a, b \in A, B$, then we write $[a, b)^{A},[a, b)^{B}$, etc. to distinguish these intervals in A and B.
$n=$ class of all discrete linear ordered sets with first and last elements. We identify order isomorphic elements.

$$
\mathfrak{n}_{0}=\mathfrak{n} \cup\{\emptyset\} .
$$

n_{0} is partially ordered by $<$ given by $A<B$ iff $(\exists f)(f: A 1-1$ order isomorphically onto an initial segment of B). So ω is an initial segment of n_{0}.

If φ is any sentence in the first order language for $<$ and $\psi\left(x_{0}\right)$ is a formula (perhaps with parameters) then $\varphi^{\psi\left(x_{0}\right)}$ is φ relativized to $\psi\left(x_{0}\right)$.
Definition: $\lim _{0}(x)=d f(x=x)$

$$
\begin{aligned}
& \lim _{m+1}(x)={ }_{d f}(\forall y)\left(y<x \rightarrow(\exists z)\left(y<z<x \wedge \lim _{m}(z)\right)\right) \\
& x=0=d f \neg(\exists y)(y<x) \\
& \mathbf{t}=d f\left\{\lim _{n}\left(x_{0}\right) \mid n \epsilon \omega\right\} \\
& \mathbf{t}={ }_{d f} \mathbf{t} \cup\left\{x_{0} \neq 0\right\}
\end{aligned}
$$

1 Models of $\operatorname{Th}\left(\left\langle\omega^{n},\langle \rangle\right)\right.$. As is well-known:
Proposition 1. $\langle\eta,\langle \rangle \vDash \operatorname{Th}(\langle\omega,\langle \rangle)$ iff $\exists\langle r,\langle \rangle$ a linearly ordered set (possibly empty) such that $\eta=\omega+(* \omega+\omega) \cdot r$.

Proof: Omitted.
Proposition 2. $\left\langle\eta,\langle \rangle \vDash \operatorname{Th}\left(\left\langle\omega^{n+1},\langle \rangle\right)\right.\right.$ iff $\exists\left\langle\mu,\langle \rangle \vDash \operatorname{Th}\left(\langle\omega,\langle \rangle), \forall \alpha \in \mu, \exists\left\langle\mu_{\alpha},\langle \rangle \vDash\right.\right.\right.$ $\operatorname{Th}\left(\left\langle\omega^{n},<\right\rangle\right)$ such that $\eta=\sum_{\alpha \epsilon \mu} \mu_{\alpha}$.

Proof: Assume $\left\langle\eta,\langle \rangle \vDash \operatorname{Th}\left(\left\langle\omega^{n+1},\langle \rangle\right)\right.\right.$.
Now 1) $\left\langle\omega^{n+1},\langle \rangle \vDash \varphi^{\lim _{n}\left(x_{0}\right)}\right.$ for each $\varphi \in \operatorname{Th}(\langle\omega,\langle \rangle)$,
2) $\left\langle\omega^{n+1},\langle \rangle \vDash \forall x \forall y\left(\left(\lim _{n}(x) \wedge \lim _{n}(y) \wedge x<y \wedge(\forall z)(x<z<y \rightarrow\urcorner \lim _{n}(z)\right)\right) \rightarrow\right.$ $\left.\varphi^{x \leqslant x_{0}<y}\right)$ for each $\varphi \in \operatorname{Th}\left(\left\langle\omega^{n},<\right\rangle\right)$,
and 3) $\left.\left\langle\omega^{n+1},<\right\rangle \vDash \forall x \exists y\left(y \leqslant x \wedge \lim _{n}(y) \wedge\right\urcorner(\exists z)\left(y<z \leqslant x \wedge \lim _{n}(z)\right)\right)$.
So $\langle\eta,\langle \rangle \vDash$ the sentences in 1), 2), 3). Let

$$
\mu=\left\{\alpha \in \eta \mid\left\langle\eta,\langle \rangle \models \lim _{n}\left(x_{0}\right)[\alpha]\right\} .\right.
$$

And for each $\alpha \in \mu$, let

$$
\mu_{\alpha}=\left\{\beta \in \eta \mid \alpha \leqslant \beta \wedge\langle\eta,\langle \rangle \vDash\urcorner(\exists z)\left(x_{0}<z \leqslant x_{1} \wedge \lim _{n}(z)\right)[\alpha, \beta]\right\} .
$$

Then by 1$),\left\langle\mu,\langle \rangle \vDash \operatorname{Th}(\langle\omega,\langle \rangle)\right.$ and by 2$),\left\langle\mu_{\alpha},\langle \rangle \vDash \operatorname{Th}\left(\left\langle\omega^{n},\langle \rangle\right)\right.\right.$ and clearly $\eta=\sum_{\alpha \epsilon \mu} \mu_{\alpha}$ by 3$)$.
Conversely, assume the conclusion. So player II has a winning strategy in $\mathbf{G}_{m}\left(\left\langle\omega,\langle \rangle,\langle\mu,\langle \rangle)\right.\right.$ and in $\mathbf{G}_{m}\left(\left\langle\omega^{m},\langle \rangle,\left\langle\mu_{\alpha},\langle \rangle\right), \forall \alpha \in \mu\right.\right.$, for every $m \geqslant 0$.

We give a winning strategy for II in $\mathbf{G}_{m}\left(\left\langle\omega^{n+1},\langle \rangle,\langle n,\langle \rangle)\right.\right.$. Given a move of I, II chooses which ' ω ' segment of model to use by winning strategy in the first game and then which point in it to use by winning strategy in the appropriate latter game.

2 Main Theorems:

Definition: A model of $\operatorname{Th}\left(\left\langle\omega^{\omega},\langle \rangle\right)\right.$ or of $\operatorname{Th}\left(\left\langle\omega^{\omega^{*}+\omega},\langle \rangle\right)\right.$ which omits $\tilde{\mathbf{t}}$ is called a short model.

If $\left\langle\eta,\langle \rangle \vDash \operatorname{Th}\left(\left\langle\omega^{\omega},\langle \rangle\right)\right.\right.$ or $\vDash \operatorname{Th}\left(\left\langle\omega^{\omega^{*}+\omega},\langle \rangle\right)\right.$, it is called ultrashort if $\forall x, y \in \eta,\left(x<y \rightarrow(\exists n)(\forall z)\left(x<z \leqslant y \rightarrow \neg \lim _{n}(z)\right)\right)$.

Clearly any ultrashort model is short.
Theorem 1. $\left\langle\eta,\langle \rangle\right.$ is an ultrashort model of $\operatorname{Th}\left(\left\langle\omega^{\omega},\langle \rangle\right)\right.$ iff \exists for each $n \in \omega$ a model $\left\langle\eta_{n},\langle \rangle \vDash \operatorname{Th}\left(\left\langle\omega^{n},\langle \rangle\right)\right.\right.$ such that $\eta=\sum_{n \in \omega} \eta_{n}$.
Theorem 2. $\left\langle\eta,\langle \rangle\right.$ is an ultrashort model of $\operatorname{Th}\left(\left\langle\omega^{\omega^{*}+\omega},\langle \rangle\right)\right.$ iff
\exists 1) for each $n \in \omega$ a $\mu_{n} \in \mathfrak{n}_{0}$ such that infinitely many $\mu_{n} \neq 0$,
2) for each $y \in \mu_{n} a$ model $\left\langle\eta_{n, y},\langle \rangle \vDash \operatorname{Th}\left(\left\langle\omega^{n},\langle \rangle\right)\right.\right.$,
3) a η^{\prime} an ultrashort model of $\operatorname{Th}\left(\left\langle\omega^{\omega},\langle \rangle\right)\right.$ such that $\eta=\sum_{n \in \omega}^{*} \sum_{y \in \mu_{n}} \eta_{n, y}+\eta^{\prime}$.

Theorem 3. $\left\langle\eta,\langle \rangle\right.$ is a model of $\operatorname{Th}\left(\left\langle\omega^{\omega},\langle \rangle\right)\right.$ iff
\exists 1) linearly ordered set μ (possibly empty),
2) for each $y \in \mu$, an ultrashort model $\left\langle\eta_{y},\langle \rangle\right.$ of $\operatorname{Th}\left(\left\langle\omega^{\omega},\langle \rangle\right)\right.$ or of $\operatorname{Th}\left(\left\langle\omega^{\omega^{*}+\omega}\right.\right.$, $<\rangle$),
3) an ultrashort model $\left\langle\eta^{\prime},\langle \rangle\right.$ of $\operatorname{Th}\left(\left\langle\omega^{\omega},\langle \rangle\right)\right.$ such that $\eta=\eta^{\prime}+\sum_{y \in \mu} \eta_{y}$.

The proofs of these three results will be by a sequence of lemmas. We first consider the \rightarrow directions.

Lemma 1. $\left\langle\omega^{\omega},\langle \rangle\right.$ and hence any model of $\operatorname{Th}\left(\left\langle\omega^{\omega},\langle \rangle\right)\right.$ satisfies the following sentences:
a) $(\exists x)(\forall y)(y \geqslant x)$
b) $\left.(\forall x)(\exists y)\left(y>x \wedge \lim _{n}(y) \wedge\right\urcorner(\exists z)\left(x<z<y \wedge \lim _{n}(z)\right)\right)$
c) $\left.(\forall x)(\forall y)\left(\left(y>x \wedge \lim _{n}(y) \wedge\right\urcorner(\exists z)\left(x<z<y \wedge \lim _{n}(z)\right)\right) \rightarrow \varphi^{x \leqslant x_{0}<y}\right)$ for every $\varphi \in \operatorname{Th}\left(\left\langle\omega^{n},<\right\rangle\right)$
d) $(\forall x)(\exists y)\left(y \leqslant x \wedge \lim _{n}(y) \wedge(\forall z)\left(y<z \leqslant x \rightarrow \neg \lim _{n}(z)\right)\right)$
e) $(\forall x)(\forall y)\left(\left(x<y \wedge \lim _{n}(x) \wedge \lim _{n}(y) \wedge\right\urcorner(\exists z)\left(x<z \leqslant y \wedge \lim _{n+1}(z)\right)\right) \rightarrow$ $\varphi^{x \leq x_{0}<y \wedge \lim _{n}^{-}\left(x_{0}\right)}$ for every $\varphi \in \operatorname{Th}(\mathfrak{n})$.
Lemma 2. $\left\langle\omega^{\omega^{*}+\omega},\langle \rangle\right.$ and hence any model of $\operatorname{Th}\left(\left\langle\omega^{\omega^{*}+\omega},\langle \rangle\right)\right.$ satisfies the following sentences:
a) $(\forall x)(\exists y)(y<x)$,
b)-e) of Lemma 1.

Proofs: Routine.
Lemma 3. \rightarrow of Theorem 1.
Proof: Let $\left\langle\eta,\langle \rangle\right.$ be an ultrashort model of $\operatorname{Th}\left(\left\langle\omega^{\omega},\langle \rangle\right)\right.$. Let $x_{0}=0$. By induction define $x_{n+1}=$ least $\lim _{n}>x_{n}$. Such exist by 1b). By 1c $),\left\langle\left[x_{i}, x_{i+1}\right)\right.$, $<\rangle \vDash \operatorname{Th}\left(\left\langle\omega^{i},\langle \rangle\right)\right.$. By the definition of ultrashort, $\eta=\sum_{i \epsilon \omega}\left[x_{i}, x_{i+1}\right)$.

Lemma 4. \rightarrow of Theorem 2.
Proof: Let $\left\langle\eta,\langle \rangle\right.$ be an ultrashort model of $\operatorname{Th}\left(\left\langle\omega^{\omega^{*}+\omega},\langle \rangle\right)\right.$. Let $y_{0}=z_{0} \in \eta$. By induction define $y_{n+1}=$ greatest $\lim _{n+1} \leqslant y_{n}$. Such exist by 2 d). By induction define $x_{n+1}=$ least $\lim _{n}>z_{n}$. Such exist by 2b). By 2a) infinitely many of y_{i} are distinct. Let $\mu_{n}=\left\{a \mid y_{n+1} \leqslant a<y_{n} \wedge \lim _{n}(a)\right\}$. So infinitely many $\mu_{n} \neq 0$ and by 2 e$), \mu_{n} \in n_{0}$. For each $y \in \mu_{n}$, let $\eta_{n, y}=\left[y, y^{\prime}\right)$ where y^{\prime} is least $\lim _{n}>y$. By 2c) $\left\langle\eta_{n, y},\langle \rangle \vDash \operatorname{Th}\left(\left\langle\omega^{n},\langle \rangle\right)\right.\right.$. Also $\left[y_{n+1}, y_{n}\right)=\sum_{y \in \mu_{n}} \eta_{n, y}$. And $\left(0, y_{0}\right)=\sum_{n \in \omega}^{*}\left[y_{n+1}, y_{n}\right)=\sum_{n \in \omega}^{*} \sum_{y \epsilon \mu_{n}} \eta_{n, y}$. Let $\eta_{n}=\left[z_{n}, z_{n+1}\right)$. By 2c), $\left\langle\eta_{n},\langle \rangle \vDash\right.$ $\operatorname{Th}\left(\left\langle\omega^{n},<\right\rangle\right)$. And $\left[z_{0}, \infty\right)=\sum_{n \epsilon \omega} n_{x, n}$. So by Theorem 1, $\eta^{\prime}=\left[z_{0}, \infty\right)$ is an ultrashort model of $\operatorname{Th}\left(\left\langle\omega^{\omega},\langle \rangle\right)\right.$. Now $\eta=\left(0, y_{0}\right)+\left[z_{0}, \infty\right)=\sum_{n \in \omega}^{*} \Sigma_{y \in \mu_{n}} \eta_{n, y}+\eta^{\prime}$.
Lemma 5. \rightarrow of Theorem 3.
Proof: Let $\langle\eta,<\rangle$ be a model of $\operatorname{Th}\left(\left\langle\omega^{\omega},\langle \rangle\right)\right.$. On η define $a \approx b$ if $(\exists n)(\exists x)$ $\left(a<x \leqslant b \rightarrow \neg \lim _{n}(x)\right)$ for $a<b$. If $a>b$, define $a \approx b$ if $b \approx a$. And define $a \approx a$. So \approx is an equivalence relation.

By 1a), $\widetilde{\eta}$ has a least element $\widetilde{\tilde{0}}$. Let $\mu=\widetilde{\eta}-\{\tilde{0}\}$. As in Lemma 3, $\tilde{\tilde{0}}=$ $\sum_{i \epsilon \omega} \eta_{i}$ where $\left\langle\eta_{i},\langle \rangle \vDash \operatorname{Th}\left(\left\langle\omega^{i},\langle \rangle\right)\right.\right.$ and hence is an ultrashort model of Th $\left(\left\langle\omega^{\omega},\langle \rangle\right)\right.$ by Theorem 1. If $x \in \mu$ then either x realizes \mathbf{t} or not. If so arguing similarly to Lemma 3 we find $x=\sum_{i \epsilon \omega} \eta_{i, x}$ where $\left\langle\eta_{i, x},\langle \rangle \vDash\right.$ Th $\left(\left\langle\omega^{i},\langle \rangle\right)\right.$ and hence x is ultrashort model of $\operatorname{Th}\left(\left\langle\omega^{\omega},\langle \rangle\right)\right.$. On the other hand if x does not realize t, x has no least element and arguing similarly to Lemma 4 we find $x=\sum_{n \in \omega}^{*} \sum_{y \in \mu_{n, x}} \eta_{n, x, y}+\eta^{\prime}$ where $\mu_{n, x} \in \mathfrak{n}_{0}$, infinitely many are $\neq 0,\left\langle\eta_{n, x, y},\langle \rangle\right) \vDash \operatorname{Th}\left(\left\langle\omega^{n},\langle \rangle\right),\left\langle\eta^{\prime},\langle \rangle\right.\right.$ is ultrashort model of $\operatorname{Th}\left(\left\langle\omega^{\omega}\right.\right.$, $\rangle)$. And hence x is ultrashort model of $\operatorname{Th}\left(\omega^{\omega^{*}+\omega},\langle \rangle\right)$ by Theorem 2. As $\eta=\tilde{\tilde{0}}+\sum_{x \epsilon \mu} x$, we are done.

Lemmas 1-5 may be viewed as giving a means of partitioning models of these theories. The theorems assert any model which can be partitioned in such a manner is a model of the theory in question.

Lemma 6. If player II has a winning strategy in $\mathbf{G}_{n}\left(\left\langle\alpha_{x},\langle \rangle,\left\langle\beta_{x},\langle \rangle\right)\right.\right.$ for every $x \in \gamma$, then II has a winning strategy in $\mathbf{G}_{n}\left(\left\langle\sum_{x \in y} \alpha_{x},\langle \rangle,\left\langle\sum_{x \in y} \beta_{x},<\right\rangle\right)\right.$.
Proof. Player II's winning strategy is: If on some move player I chooses a point in α_{x} (or $\left.\beta_{x}\right\}$, then player II uses his winning strategy in $G_{n}\left\langle\left\langle\alpha_{x},\langle \rangle\right.\right.$, $\left\langle\beta_{x},\langle \rangle\right)$ to give his move.
Corollary. If $\alpha_{x} \equiv \beta_{x}, \forall x \in \gamma$, then $\sum_{x \in \gamma} \alpha_{x} \equiv \sum_{x \in \gamma} \beta_{x}$.
Lemma 7. If player II has a winning strategy in $\boldsymbol{G}_{n}(\langle\gamma,\langle \rangle,\langle\delta,\langle \rangle)$ and if player II has a winning strategy in $\mathbf{G}_{n}\left(\left\langle\alpha_{x},\langle \rangle,\left\langle\beta_{y},\langle \rangle\right)\right.\right.$ for every $x \in \gamma, y \in \delta$, then II has a winning strategy in

$$
\left.\mathbf{G}_{n}\left(\left\langle\sum_{x \epsilon \gamma} \alpha_{x},<\right\rangle\right),\left\langle\sum_{y \epsilon \delta} \beta_{y},<\right\rangle\right)
$$

Proof. Player II's winning strategy is: If on some move player I chooses a point $y \in \alpha_{x}$, then player II uses his winning strategy in $\mathbf{G}_{n}(\langle\gamma,\langle \rangle,\langle\delta,\langle \rangle)$ assuming a move by I of x to give a point $x^{\prime} \in \delta$ and his winning strategy in $\mathbf{G}_{n}\left(\left\langle\alpha_{x},\langle \rangle,\left\langle\beta_{x^{\prime}},\langle \rangle\right)\right.\right.$ assuming a move by I of y to give a point $y^{\prime} \in \beta_{x^{\prime}}$. II then plays as his move y^{\prime}.

Similarly if player I chooses a point $y \in \beta_{x}$, then player II selects a point $x^{\prime} \in \gamma$ and then a point $y^{\prime} \in \alpha_{x^{\prime}}$. II's move then will be y^{\prime}.
Corollary. If $\gamma \equiv \delta, \alpha_{x} \equiv \beta_{y}, \forall x \in \delta \forall y \in \delta$, then $\sum_{x \in y} \alpha_{x} \equiv \sum_{y \in \delta} \beta_{y}$.
Corollary. If $\gamma \equiv \delta, \alpha \equiv \beta$, then $\alpha \mathbf{x} \gamma \equiv \beta \mathbf{x} \delta$.
Lemma 8. If player II has a winning strategy in $\mathbf{G}_{n}\left(\left\langle\alpha_{i},\langle \rangle,\left\langle\beta_{i},\langle \rangle\right)\right.\right.$ for $i=$ 1,2 , then II has a winning strategy in $\mathbf{G}_{n+1}\left(\left\langle\alpha_{1}+1+\alpha_{2},\langle \rangle,\left\langle\beta_{1}+1+\beta_{2},\langle \rangle\right)\right.\right.$ after the initial move $0 \leftrightarrow 0$. (Note $1=\{0\}$.)

Proof: Player II's winning strategy is on each segment to use his given winning strategies. I.e., if I chooses a point in an α, player II responds in other α using winning strategy in $\mathbf{G}_{n}\left(\left\langle\alpha_{1},<\right\rangle,\left\langle\alpha_{2},\langle \rangle\right)\right.$. And similiarly for β.

Lemma 9. Player II has a winning strategy in $\mathbf{G}_{n}(\langle\alpha,\langle \rangle,\langle\beta,\langle \rangle)$ if $\alpha, \beta \in \mathfrak{n}$, $\alpha, \beta \geqslant 2^{n}-1$.

Proof: By induction on $n . n=1$ is trivial. Assume the result for $n=k$. Let $\alpha, \beta \in \mathfrak{n}, \alpha, \beta \geqslant 2^{k+1}-1$. We give player II's winning strategy for $\mathbf{G}_{k+1}(\langle\alpha,<\rangle,\langle\beta,<\rangle)$. Without loss of generality player I's first move is in α. Say it is x_{0}.
Case 1: $x_{0}<2^{k}-1$. By induction, as $\alpha-x_{0}, \beta-x_{0} \geqslant 2^{k}-1$, player II has winning strategy in $\mathrm{G}_{k}\left(\left\langle\alpha-x_{0},\langle \rangle,\left\langle\beta-x_{0},\langle \rangle\right)\right.\right.$. Also II has winning strategy in $\mathbf{G}_{k}\left(\left\langle x_{0},\langle \rangle,\left\langle y_{0},<\right\rangle\right)\right.$. So by Lemma 8 if II responds with x_{0} in β, then II has winning strategy in $\mathbf{G}_{k+1}(\langle\alpha,\langle \rangle,\langle\beta,<\rangle)$.
Case 2: $\alpha-x_{0}<2^{k}-1$. Player II responds with $\beta-\left(\alpha-x_{0}\right)$, i.e., with the point $\alpha-x_{0} \leqslant$ the last element of β. This case is similar to 1 .
Case 3: Neither Case 1 nor Case 2. Player II responds with $2^{k}-1$ (or any other element $y_{0} \in \beta$ such that $\left.y_{0} \geqslant 2^{k}-1, \beta-y_{0} \geqslant 2^{k}-1\right)$. By induction player II has winning strategies in $\mathbf{G}_{k}\left(\left\langle x_{0},\langle \rangle,\left\langle y_{0},\langle \rangle\right)\right.\right.$ and $\mathbf{G}_{k}\left(\left\langle\alpha-x_{0},\langle \rangle\right.\right.$, $\left.\left\langle\beta-y_{0},<\right\rangle\right)$. So by Lemma 8 we are done.

Notation: If $\alpha, \beta \in \mathfrak{n}_{0}$, we write $\alpha_{\overline{\bar{n}}} \beta$ to denote $\alpha=\beta$ or $\alpha, \beta \geqslant 2^{n}-1$.
Lemma 10: Player II has a winning strategy in

$$
\mathbf{G}_{n}\left(\left\langle\sum_{x \in \alpha} \alpha_{x},<\right\rangle,\left\langle\sum_{x \in \beta} \beta_{x},<\right\rangle\right)
$$

where
i) $\alpha, \beta \in \mathfrak{n}, \alpha_{\bar{n}} \beta$,
ii) $\left\langle\alpha_{x},\langle \rangle,\left\langle\beta_{y},\langle \rangle \vDash \operatorname{Th}\left(\left\langle\omega^{m},\langle \rangle\right), \forall x \in \alpha, y \in \beta\right.\right.\right.$.

Proof: By Lemmas 7 and 9.
Remark: By combining the techniques of Lemma 8 and Theorem 12 in [2], one can, in fact, obtain:

Lemma 11. Player II has a winning strategy in

$$
\mathbf{G}_{n}\left(\left\langle\sum_{x \in \alpha} \alpha_{x},\langle \rangle,\left\langle\sum_{x \in \beta} \beta_{x},\langle \rangle\right)\right.\right.
$$

where
i) $m<n$,
ii) $\alpha, \beta \in \mathfrak{n}, \alpha_{n=m} \beta$,
iii) $\left\langle\alpha_{x},\langle \rangle,\left\langle\beta_{y},\langle \rangle \vDash \operatorname{Th}\left(\left\langle\omega^{m},\langle \rangle\right), \forall x \in \alpha, y \in \beta\right.\right.\right.$.

Lemma 12. Player II has a winning strategy in

$$
\mathbf{G}_{n}\left(\sum_{0 \leqslant i \leqslant k}^{*} \omega^{i} . n_{i}, \Sigma_{0 \leqslant i \leqslant k}^{*} \sum_{x \in \mu_{i}} \eta_{x, i}\right)
$$

where
i) $k<n$,
ii) $\mu_{i} \in \mathfrak{n}_{0}, n_{i} \in \omega$,
iii) $\left\langle\eta_{x, i},\langle \rangle \vDash \operatorname{Th}\left(\left\langle\omega^{i},\langle \rangle\right)\right.\right.$,
iv) $n_{i} \overline{\bar{n}} \mu_{i}\left(n_{i} \stackrel{\bar{n}-i}{ } \mu_{i}\right.$ with Lemma 11).

Proof: By Lemmas 6 and 10.
Lemma 13. Player II has a winning strategy in

$$
\mathrm{G}_{n}\left(\sum_{0 \leqslant i \leqslant k}^{*} \omega^{i} . n_{i}, \sum_{0 \leqslant i \leqslant k^{\prime}}^{*} \Sigma_{x \in \mu_{i}} \eta_{x, i}\right)
$$

where
i) $k, k^{\prime} \in \omega, k, k^{\prime} \geqslant n$.
ii) $n_{i} \in \omega, \mu_{i} \in \mathfrak{n}_{0}, n_{k} \neq 0, \mu_{k^{\prime}} \neq 0$,
iii) $\left\langle\eta_{x, i},\langle \rangle \vDash \operatorname{Th}\left(\left\langle\omega^{i},\langle \rangle\right)\right.\right.$,
iv) $\forall i<n, n_{i} \overline{\bar{n}} \mu_{i}$.

Proof: By induction on n.
Case 1: $n=1$ trivial.
Case 2: Let $n \geqslant 2$. Assume the result for $n-1$. Let k, k^{\prime}, etc. be as above. Let

$$
\alpha=\sum_{0 \leqslant i \leqslant k \omega^{i} . n_{i}}^{*}, \beta=\sum_{0 \leqslant i \leqslant k}^{*} \sum_{x \in \mu_{i}} \eta_{x, i}
$$

Case a: On move 1 player I chooses an element $a \in \alpha$.

Case ai: $a<\omega^{n}$. Say

$$
a=\sum_{0 \leqslant i \leqslant l}^{*} \omega^{i} . k_{i} \text { where } l<n, k_{i}<\omega, k_{l} \neq 0
$$

$\operatorname{As}\left\langle\eta_{0, k^{\prime}},\langle \rangle \vDash \operatorname{Th}\left(\left\langle\omega^{k^{\prime}},\langle \rangle\right)\right.\right.$,

$$
\exists b \in \eta_{0, k^{\prime}} \text { such that }\langle a,\langle \rangle \equiv\langle b,\langle \rangle
$$

$$
\text { Also }\left\langle\omega^{k}-(a+1),\langle \rangle \equiv\left\langle\omega ^ { k } , \langle \rangle \text { and } \left\langle\eta_{0, k^{\prime}}-(b+1),\langle \rangle \equiv\left\langle\omega^{k^{\prime}},\langle \rangle\right.\right.\right.\right.
$$

Let b be II's move. Then $\langle\alpha-(a+1),\langle \rangle$ and $\langle\beta-(b+1),\langle \rangle$ meet the conditions of the lemma for $n-1$. So by Lemma 8 , II has winning strategy in $\mathbf{G}_{n}(\langle\alpha,<\rangle,\langle\beta,<\rangle)$.
Case aii: $\alpha-a<\omega^{n}$. Say

$$
\alpha-a=\sum_{0 \leqslant i \leqslant l}^{*} \omega^{i} . k_{i} \text { where } l<n, k_{i}<\omega .
$$

By the definition of $\alpha, k_{l} \leqslant n_{l}, k_{i}=n_{i}$ if $i<l$. Let

$$
a^{\prime}=a-\left(\sum_{l<i \leqslant k}^{*} \omega^{i} . n_{i}+\omega^{l} .\left(n_{l}-k_{l}\right)\right)
$$

So $a^{\prime}<\omega^{l}$. Say

$$
a^{\prime}=\sum_{0 \leqslant i<l}^{*} \omega^{i} . j_{i} .
$$

Let

$$
k_{l}^{\prime} \epsilon \mu_{l} \text { be defined by } k_{l}^{\prime}=\left\{\begin{array}{l}
n_{l}-k_{l} \text { if } n_{l}-k_{l}<2^{n}-1, \\
\mu_{l}-k_{l} \text { if } k_{l}<2^{n}-1, \\
2^{n}-1 \text { otherwise }
\end{array}\right.
$$

Let

$$
b=\sum_{l<i \leqslant k^{\prime}}^{*} \sum_{x \in \mu_{i}} \eta_{x, i}+\sum_{x<k_{l}^{\prime}} \eta_{x, l}+\sum_{0 \leqslant i<l}^{*} \sum_{x<j_{i}} \mu_{i, x}
$$

where $\left\langle\mu_{i, x},<\right\rangle \vDash \operatorname{Th}\left(\left\langle\omega^{i},\langle \rangle\right)\right.$ and $\Sigma_{0 \leqslant i<l}^{*} \sum_{x<j_{i}} \mu_{i, x}$ is an initial segment of $\eta_{k_{l}^{\prime}, l}$.
Then $\langle a,<\rangle,\langle b,<\rangle$ satisfy the conditions of the lemma for $n-1$, and $\langle\alpha-(a+1),<\rangle,\langle\beta-(b+1),<\rangle$ satisfy the conditions of Lemma 12 for $n-1$. So by Lemma 8, II has winning strategy in $\mathbf{G}_{n}(\langle\alpha,\langle \rangle,\langle\beta,\langle \rangle)$.
Case aiii: Neither case ai nor aii. Say

$$
a=\sum_{0 \leqslant i \leqslant l}^{*} \omega^{i} . k_{i} \text { where } k_{l} \neq 0 .
$$

So $l \geqslant n$. Let

$$
b=\sum_{x<2^{n-1}-1} \mu_{n-1, x}+\sum_{i<n-1}^{*} \sum_{x<k_{i}} \mu_{i, x}
$$

where b is initial segment of $\beta,\left\langle\mu_{i, x},\langle \rangle \vDash \operatorname{Th}\left(\left\langle\omega^{i},\langle \rangle\right)\right.\right.$ for $i<n$. Then $\langle a,\langle \rangle,\langle b,<\rangle$ satisfy the conditions of the lemma for $n-1$, and $\langle\alpha-(a+1)$, $<\rangle,\langle\beta-(b+1),<\rangle$ satisfy the conditions of the lemma for $n-1$. So by Lemma 8 , II has winning strategy in $\mathbf{G}_{n}(\langle\alpha,\langle \rangle,\langle\beta,\langle \rangle)$.
Case b: On move 1 player I chooses an element $b \in \beta$.
Case bi: There is no $\lim _{n} \leqslant b$. Say

$$
b=\sum_{0 \leqslant i \leqslant l}^{*} \sum_{x \in \mu_{i}} \eta_{x, i} \text { where }\left\langle\eta_{x, i},\langle \rangle \vDash \operatorname{Th}\left(\left\langle\omega^{i},\langle \rangle\right), l<n .\right.\right.
$$

Let

$$
n_{i}=\left\{\begin{array}{l}
\mu_{i} \text { if } \mu_{i}<2^{n}-1 \\
2^{n}-1 \text { otherwise }
\end{array}\right.
$$

Let $a=\sum_{0 \leqslant i \leqslant l}^{*} \omega^{i} . n_{i}$. Then if a is II's move, II has winning strategy in $\mathbf{G}_{n}(\langle\alpha,\langle \rangle,\langle\beta,\langle \rangle)$ by induction (as $\langle a,\langle \rangle,\langle b,\langle \rangle$ satisfy conditions of Lemma 12 for $n-1$ and $\langle\alpha-(a+1),\langle \rangle,\langle\beta-(b+1),\langle \rangle$ satisfy conditions of lemma for $n-1$).
Case bii: There is no $\lim _{n} \geqslant b$. Say

$$
\beta-b=\sum_{0 \leqslant i \leqslant l}^{*} \sum_{x \in \mu^{\prime}} \eta_{x, i} \text { where } l<n
$$

By definition of $\beta, \mu_{i}^{\prime}=\mu_{i}$ if $i<l, \mu_{l}^{\prime} \leqslant \mu_{l}$. Let

$$
b^{\prime}=b-\left(\sum_{l<i \leqslant k^{\prime}}^{*} \sum_{x \in \mu_{i}} \eta_{x, i}+\sum_{x \in \mu_{l}-\mu_{l}^{\prime}} \eta_{x, l}\right)
$$

So b^{\prime} has no $\lim _{l}$. Say

$$
b^{\prime}=\sum_{0 \leqslant i<l}^{*} \sum_{x \in \tilde{\mu}_{i}} \tilde{\eta}_{x, i} \text { where } \tilde{\mu}_{i} \in \mathfrak{n}_{0},\left\langle\tilde{\eta}_{x, i},\langle \rangle \vDash \operatorname{Th}\left(\left\langle\omega^{i},\langle \rangle\right) .\right.\right.
$$

Let

$$
k_{l} \leqslant n_{l} \text { be defined by } k_{l}=\left\{\begin{array}{l}
\mu_{l}-\mu_{l}^{\prime} \text { if } \mu_{l}-\mu_{l}^{\prime}<2^{n}-1, \\
n_{l}-\mu_{l}^{\prime} \text { if } \mu_{l}^{\prime}<2^{n}-1, \\
2^{n}-1 \text { otherwise }
\end{array}\right.
$$

Let

$$
\begin{gathered}
a=\sum_{l<i \leqslant k}^{*} \omega^{i} . n_{i}+\omega^{l} . k_{l}+\sum_{0 \leqslant i<l}^{*} \omega^{i} . j_{i} \\
\text { where } j_{i}=\left\{\begin{array}{l}
\tilde{\mu}_{i} \text { if } \tilde{\mu}_{i}<2^{n}-1, \\
2^{n}-1 \text { otherwise. }
\end{array}\right.
\end{gathered}
$$

Then $\langle a,\langle \rangle,\langle b,\langle \rangle$ satisfy the conditions of the lemma for $n-1$, and $\langle\alpha-(a+1),<\rangle,\langle\beta-(b+1),<\rangle$ satisfy the conditions of Lemma 12 for $n-1$. So by Lemma 8 , II has winning strategy in $\mathbf{G}_{n}(\langle\alpha,\langle \rangle,\langle\beta,\langle \rangle)$.
Case biii: Neither case bi nor bii. Say

$$
b=\sum_{0 \leqslant i \leqslant l}^{*} \sum_{x \in \tilde{\mu}_{i}} \tilde{\eta}_{i, x} \text { where } \tilde{\mu}_{i} \in \mathfrak{n}_{0}, \mu_{l} \neq 0,\left\langle\tilde{\eta}_{i, x},\langle \rangle \vDash \operatorname{Th}\left(\left\langle\omega^{i},\langle \rangle\right) .\right.\right.
$$

So $l \geqslant n$. Let

$$
k_{i}=\left\{\begin{array}{l}
\tilde{\mu}_{i} \text { if } \tilde{\mu}_{i}<2^{n}-1 \\
2^{n}-1 \text { otherwise }
\end{array} \text { for } i<n-1\right.
$$

Let

$$
a=\omega^{n-1} \cdot\left(2^{n-1}-1\right)+\sum_{0 \leqslant i<n-1}^{*} \omega^{i} \cdot k_{i} .
$$

Then $\langle a,\langle \rangle,\langle b,\langle \rangle$ satisfy the conditions of the lemma for $n-1$ and $\langle\alpha-(a+1),<\rangle,\langle\beta-(b+1),<\rangle$ satisfy them for $n-1$. So as usual, II has winning strategy in $\mathbf{G}_{n}(\langle\alpha,\langle \rangle,\langle\beta,\langle \rangle)$.

Proof of Theorem 1: \leftarrow Clearly η is an ultrashort model. We will, thus, be done when we show by induction on n :

Lemma 14. Player II has a winning strategy in

$$
\mathbf{G}_{n}\left(\left\langle\omega^{\omega},<\right\rangle,\left\langle\sum_{n \epsilon \omega} \eta_{n},<\right\rangle\right) .
$$

Proof:
Case 1: $n=1$ is trivial.
Case 2: Let $n \geqslant 2$. Assume the result for $n-1$. Let

$$
\alpha=\omega^{\omega}, \beta=\sum_{n \epsilon \omega} \eta_{n} .
$$

Case a: On move 1 player I chooses an element $a \in \alpha$. Say

$$
a=\sum_{0 \leqslant i \leqslant l}^{*} \omega^{i} . k_{i} \text { where } k_{i}<\omega, k_{l} \neq 0 .
$$

Let
$b=\eta_{l}+\sum_{y<k_{l}-1} \eta_{l, y}+\sum_{0 \leqslant i<l}^{*} \sum_{y<k_{i}} \eta_{i, y}$ where $\left\langle\eta_{i, y},\langle \rangle \vDash \operatorname{Th}\left(\left\langle\omega^{i},\langle \rangle\right)\right.\right.$,
$\sum_{y<k^{-1}} \eta_{l, y}+\sum_{0 \leqslant i<l}^{*} \sum_{y<k_{i}} \eta_{i, y}$ is initial segment of η_{l+1}.
Let b be II's move. Then by Lemma 12 or 13, player II has winning strategy in $\mathbf{G}_{n-1}(\langle a,\langle \rangle,\langle b,\langle \rangle) .\langle\alpha-(a+1),\langle \rangle,\langle\beta-(b+1),\langle \rangle$ satisfy the induction hypotheses for $n-1$. So by the lemma, we are done in this case.
Case b): On move 1 player I chooses an element $b \in \beta$. Say

$$
b=\eta_{l}+\sum_{0 \leqslant i \leqslant l}^{*} \sum_{y<\mu_{i}} \eta_{i, y} \text { where } \mu_{i} \in n_{0},\left\langle\eta_{i, y},\langle \rangle \vDash \operatorname{Th}\left(\left\langle\omega^{i},\langle \rangle\right) .\right.\right.
$$

Let

$$
\begin{aligned}
& k_{l}=\left\{\begin{array}{l}
2^{n}-1 \text { if } \mu_{i}>2^{n}-2, \\
\mu_{i}+1 \text { otherwise } ;
\end{array}\right. \\
& k_{i}=\left\{\begin{array}{l}
2^{n}-1 \text { if } \mu_{i}>2^{n}-1 \\
\mu_{i} \text { otherwise }
\end{array} \text { for } i<n .\right.
\end{aligned}
$$

Let

$$
a=\sum_{0 \leqslant i \leqslant l}^{*} \omega^{i} . k_{i}
$$

Then by Lemma 12 or 13 , player II has winning strategy in $\mathbf{G}_{n-1}(\langle a,<\rangle$, $\langle b,\langle \rangle) .\langle\alpha-(a+1),\langle \rangle,\langle\beta-(b+1),\langle \rangle$ satisfy the induction hypothesis for $n-1$. So as usual this case is done.

Lemma 15: Player II has a winning strategy in

$$
\mathrm{G}_{n}\left(\left\langle\sum_{i \epsilon \omega}^{*} \omega^{i} . n_{i},\langle \rangle,\left\langle\sum_{i \epsilon \omega}^{*} \sum_{x \epsilon \mu_{i}} \eta_{x, i},\langle \rangle\right)\right.\right.
$$

where
i) $n_{i} \in \omega$,
ii) $\exists m$ such that $\forall i \geqslant m, n_{i}=1$,
iii) $\forall i<n, \mu_{i} \overline{\bar{n}} n_{i}$,
iv) $\mu_{i} \in \mathfrak{n}_{0}$,
v) infinitely many $\mu_{i} \neq 0$,
vi) $\left\langle\eta_{x, i},\langle \rangle \vDash \operatorname{Th}\left(\left\langle\omega^{i},\langle \rangle\right)\right.\right.$.

Proof: Similar to Lemma 13.

Lemma 16. Player II has winning strategy in

$$
\mathbf{G}_{n}\left(\left\langle\omega^{\omega^{+}+\omega},<\right\rangle,\left\langle\sum_{i \epsilon \omega}^{*} \sum_{x \epsilon \mu_{i}} \eta_{x, i}+\sum_{i \epsilon \omega} \eta_{i},<\right\rangle\right)
$$

where
i) $\mu_{i} \in \boldsymbol{n}_{0}$,
ii) infinitely many $\mu_{i} \neq 0$,
iii) $\left\langle\eta_{x, i},<\right\rangle \vDash \operatorname{Th}\left(\left\langle\omega^{i},<\right\rangle\right)$,
iv) $\left\langle\eta_{i},<\right\rangle \vDash \operatorname{Th}\left(\left\langle\omega^{i},\langle \rangle\right)\right.$.

Proof: Similar to Lemma 14. It uses primarily Lemmas 14 and 15 and Theorem 1.

The proof of Theorem 2 now follows immediately from Lemma 16 as $\sum_{i \epsilon \omega}^{*} \sum_{x \epsilon \mu_{i}} \eta_{x, i}+\sum_{i \epsilon \omega} \eta_{i}$ is clearly ultrashort.
Lemma 17. $\left\langle\eta^{\prime}+\sum_{x \mu} \eta_{x},\langle \rangle \equiv\left\langle\omega^{\omega}+\sum_{x \epsilon \mu} \mu_{x},<\right\rangle\right.$ where
i) $\left\langle\eta^{\prime},\langle \rangle\right.$ is ultrashort model of $\operatorname{Th}\left(\left\langle\omega^{\omega},\langle \rangle\right)\right.$,
ii) $\left\langle\eta_{x},<\right\rangle$ is ultrashort model of $\operatorname{Th}\left(\left(\left\langle\omega^{\omega},<\right\rangle\right)\right.$ or $\operatorname{Th}\left(\left\langle\omega^{\omega^{+}+\omega},\langle \rangle\right)\right.$,
iii) $\mu_{x}=\left\{\begin{array}{l}\omega^{\omega} \text { if }\left\langle\eta_{x},<\right\rangle \vDash \operatorname{Th}\left(\left\langle\omega^{\omega},\langle \rangle\right),\right. \\ \omega^{\omega^{*}+\omega} i f\left(\eta_{x},\langle \rangle \vDash \operatorname{Th}\left(\left\langle\omega^{+\omega^{+}+\omega},\langle \rangle\right) .\right.\right.\end{array}\right.$

Proof: By Lemma 6 .
Lemma 18. Player II has a winning strategy in

$$
\mathbf{G}_{n}\left(\left\langle\omega^{n}+\sum_{l<n}^{*} \omega^{l} . m_{l},\langle \rangle,\left\langle\omega^{\omega}+\sum_{x \in \mu} \mu_{x}+\sum_{l \leqslant n}^{*} \omega^{l} . r_{l}+\sum_{l<n}^{*} \omega^{l} . n_{l},\langle \rangle\right)\right.\right.
$$

where
i) $m_{l \overline{\bar{n}}} n_{l}$, if $l<n, m_{l}, n_{l} \in \omega$,
ii) $\mu_{x}=\omega^{\omega}$ or $\omega^{\omega^{*}+\omega}, \forall x \in \mu$,
iii) μ is arbitrary linear order (possibly empty),
iv) $r_{l} \in \omega, l \geqslant n$,
v) $\exists m$ such that $\forall i \geqslant m, r_{l}=0$ or $\forall i \geqslant m, r_{l}=1$.

Proof: Similar to Lemma 13.
Lemma 19. Player II has a winning strategy in

$$
\mathbf{G}_{n}\left(\left\langle\omega^{\omega},\langle \rangle,\left\langle\omega^{\omega}+\Sigma_{x \epsilon \mu} \mu_{x},<\right\rangle\right)\right.
$$

where
i) $\mu_{x}=\omega^{\omega} \operatorname{or} \omega^{\omega^{*}+\omega}$,
ii) μ is arbitrary linear order (possibly empty).

Proof: Similar to Lemma 14. It uses primarily Lemma 18.
The proof of Theorem 3 now follows immediately from Lemmas 17 and 19.
3 Short models. By techniques similar to those in section 2 one can prove:
Theorem 4. $\left\langle\eta,\langle \rangle\right.$ is a short model of $\operatorname{Th}\left(\left\langle\omega^{\omega},\langle \rangle\right)\right.$ iff
$\exists 1)$ an ultrashort model $\left\langle\eta^{\prime},\langle \rangle\right.$ of $\operatorname{Th}\left(\left\langle\omega^{\omega},\langle \rangle\right)\right.$,
2) a linear order μ possibly empty,
3) for each $x \in \mu$, an ultrashort model $\left\langle\eta_{x},\langle \rangle\right.$ of $\operatorname{Th}\left(\left\langle\omega^{\omega^{*}+\omega},\langle \rangle\right)\right.$ such that $\eta=\eta^{\prime}+\sum_{x \in \mu} \eta_{x}$.
Theorem 5. $\left\langle\eta,\langle \rangle\right.$ is a short model of $\operatorname{Th}\left(\left\langle\omega^{\left(\omega^{*}+\omega\right.},\langle \rangle\right)\right.$ iff
ヨ1) a linear order μ,
2) for each $x \in \mu$, an ultrashort model η_{x} of $\operatorname{Th}\left(\left\langle\omega^{\omega^{*}+\omega},\langle \rangle\right)\right.$ such that $\eta=$ $\sum_{x \epsilon \mu} \eta_{x}$.
Theorem 6. $\left(\eta,\langle \rangle \vDash \operatorname{Th}\left(\left\langle\omega^{\omega},<\right\rangle\right)\right.$ iff
$\exists 1)$ a short model $\left\langle\eta^{\prime},\langle \rangle\right.$ of $\operatorname{Th}\left(\left\langle\omega^{\omega},\langle \rangle\right)\right.$,
2) a linear order μ possibly empty,
3) for each $x \in \mu$, a short model $\left\langle\eta_{x},\langle \rangle\right.$ of $\operatorname{Th}\left(\left\langle\omega^{\omega},\langle \rangle\right)\right.$ or of $\operatorname{Th}\left(\left\langle\omega^{\omega^{*}+\omega},\langle \rangle\right)\right.$ (the latter occurring only if x does not have an immediate predecessor) such that $\eta=\eta^{\prime}+\sum_{x \in \mu} \eta_{x}$.

4 Other Results. Using the lemmas of section 2 and similar results one can obtain Ehrenfeucht's classification of the completions of the theory of well-ordered sets. Using the result and the fact that $\left\langle\alpha, a_{1} \ldots a_{n}<\right\rangle \equiv\left\langle\beta, b_{1}\right.$ $\ldots b_{n}\langle \rangle$ iff $\left\langle a_{i+1}-a_{i},\langle \rangle \equiv\left\langle b_{i+1}-b_{i},\langle \rangle, \forall i \leqslant n+1\right.\right.$ if $a_{1}<\ldots\left\langle a_{n}, b_{1}<\ldots\right.$ $<b_{n}$ and $a_{0}=b_{0}=0, a_{n+1}=\alpha, b_{n+1}=\beta$ one can then classify the element types of $\operatorname{Th}\left(\left\langle\omega^{\omega},<\right\rangle\right)$, or any other completion of the theory of well-ordering.

In particular the following are the distinct completions of the theory of well-ordering:

$$
\begin{gathered}
\left\{\operatorname{Th}\left(\left\langle\omega^{n} \cdot m+\sum_{i<n}^{*} \omega^{i} . n_{i},<\right\rangle\right) \mid n \in \omega, m \in \omega, m \neq 0, n_{i} \epsilon \omega \cup\left\{\omega+\omega^{*}+\omega\right\}\right\} \\
\bigcup\left\{\operatorname{Th}\left(\left\langle\omega^{\omega}+\sum_{i<n}^{*} \omega^{i}, n_{i},<\right\rangle\right) \mid n_{i} \in \omega \cup\left\{\omega+\omega^{*}+\omega\right\}\right\} .
\end{gathered}
$$

REFERENCES

[1] Addison, Henkin, and Tarski, Eds., The Theory of Models, North Holland (1965).
[2] Ehrenfeucht, A., "An application of games to the completeness problem for formalized theories,' Fundamenta Mathematicae, vol. XLIX (1961), pp. 129-141.
[3] Fraissé, R., "Sur les rapports entre la theorie des relations et la semantique au sens de A. Tarski,' Colloque de logique mathematique, Paris (1952).
[4] Läuchli, H., and J. Leonard, "On the elementary theory of linear order," Fundamenta Mathematicae, vol. LIX (1966), pp. 109-116.

State University of New York at Stony Brook
Stony Brook, New York
and
Ithaca College
Ithaca, New York

[^0]: *This research was partially supported by NSF GP 19569.

