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RESOLUTION AND THE CONSISTENCY OF ANALYSIS

PETER B. ANDREWS

§1. Intvoduction.* 1In [2] we formulated a system &, called a Resolution
system, for refuting finite sets of sentences of type theory, and proved that
R is complete in the (weak) sense that every set of sentences which can be
refuted in the system G of type theory due to Church [5] can also be refuted
in £. The statement that X is in this sense complete is a purely syntactic
one concerning finite sequences of wffs. However, it is clear that there can
be no purely syntactic proof of the completeness of £, since the complete-
ness of K is closely related to Takeuti’s conjecture [9] (since proved by
Takahashi [8] and Pravitz [7]) concerning cut-elimination in type theory.
As Takeuti pointed out in [9] and [10], cut-elimination in type theory
implies the consistency of analysis. Indeed, Takeuti’s conjecture implies
the consistency of a formulation of type theory with an axiom of infinity; in
such a system classical analysis and much more can be formalized. Hence,
to avoid a conflict with Gdodel’s theorem, any proof of the completeness of
resolution in type theory must involve arguments which cannot be formal-
ized in type theory with an axiom of infinity. Indeed, the proof in [2] does
involve a semantic argument. Nevertheless, it must be admitted that
anyone who does not find the line of reasoning sketched above completely
clear will have difficulty finding a unified and coherent exposition of the
entire argument in the published literature. We propose to remedy this
situation here.

We presuppose familiarity with §2 (The System$) and Definitions 4.1
and 5.1 (The Resolution System X) of [2], and follow the notation used
there. In particular, O stands for the contradictory sentence Vp,p,. To
distinguish between formulations of © with different sets of parameters, we
henceforth assume G has no parameters, and denote by G(A', .. ., A”) a
formulation of the system with parameters A', ... A”. If ¥ is a set of
sentences, A ¢ B shall mean that B is derivable from some finite subset of
N in system &. The deduction theorem is proved in §5 of [5]. We shall
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incorporate into our argument Gandy’s results in §3 of [6] with some minor
modifications. We also wish to thank Professor Gandy for the basic idea
(attributed by him to Turing) used below in showing the relative consistency
of the axiom of descriptions. (This idea is mentioned briefly at the top of
page 48 of [6].) We shall have occasion to refer to the following wffs:

The set & of axioms of extensionality:

Eo: vpovqo 'po = qo D-po =G
E: V fagV 8ap vxﬁ[faﬁxﬁ = ganB] 2. fa/s = 8-

The axiom of descviptions for type a:

D% Y foa * T1¥aSfoaXa 2 .fi)a[ La(oa) foa] .
An axiom of infinitv for type a:

J% Y oaV X2V VoV Zg * SWFoqaXally A

~ YoaaXaXa A+ ~ VoaaXaVa V ~ YoaaVala ¥V YogaXa? o

We let o denote the system obtained when one adds to T(t,,)) the
axioms £, D', and J'. (Description operators and axioms for higher types
are not needed, since Church showed [5] that they can be introduced by
definition. This matter is also discussed in [3]).

In §4 we shall show how the natural numbers can be defined, and
Peano’s Postulates can be proved, in of. The basic ideas here go back to
Russell and Whitehead [11], of course, but our simple axiom of infinity is
not that of Principia Mathematica, but is due to Bernays and Schdnfinkel
[4]. The natural numbers can be treated in a variety of ways in type theory
(e.g., as in [5]), but we believe that the treatment given here has certain
advantages of simplicity and naturalness. The simplicity of the axiom of
infinity J‘ is essential to our program in §3.

Once one has represented the natural numbers in o4, one can easily
represent the primitive recursive functions. (With minor changes in type
symbols, the details can be found in Chapter 3 of [1].) Syntactic statements
about wffs can be represented in the usual way by wffs of of via the device
of Gbdel numbering. Thus there is a wff Consis of o whose interpretation
is that of is consistent, and by Gbdel’s theorem it is not the case that -,
Consis. Nevertheless, much of mathematics can be formalized in Af.

The completeness theorem for & (Theorem 5.3 of [2]) is also a purely
syntactic statement, and hence can be represented by a wff R of 4. After
preparing the ground in §2 with some preliminary results, in §3 we shall
show that by using the completeness of £ we can prove the consistency of
~A. This argument will be purely syntactic, and could be formalized in 4,
so _[R D Consis]. Thus it is not the case that - R, so any proof of the
completeness of resolution in type theory must transcend the rather
considerable means of proof available in o/. Of course such a proof can be
formalized in transfinite type theory or in Zermelo set theory.

§2. Preliminavy Definitions and Lemmas. We first establish some pre-
liminary results which will be useful in §3. The reader may wish to
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postpone the proofs of this section and proceed rapidly to §3. In presenting
proofs of theorems of T (and extensions of G), we shall make extensive use
of proofs from hypotheses and the deduction theorem. Each line of a proof
will have a number, which will appear at the left hand margin in
parentheses. For the sake of brevity, this number will be used as an
abbreviation for the wff which is asserted in that line. At the right hand
margin we shall list the number(s) of the line(s) from which the given line
is inferred (unless it is simply inferred from the preceding line). We use
‘‘hyp’’ to indicate that the wff is inferred with the aid of one or more of the
hypotheses of the given line. Thus in

(.1) +A

(.2) B+B hyp
(.3 B+-C .1, .2
(.4) D-C .1, hyp

the hypothesis B is introduced in line .2, and C is inferred from B and the
theorem A in line .3; C is also inferred from A and a different hypothesis D
in line .4. However, if the wffs B and C are long, we may write this proof
instead as follows:

(.1) A

(.2) .2¢B hyp
(.3) 2+-C 1, .2
(4) DFr.3 .1, hyp

A generally useful derived rule of inference is that if M is a set of
hypotheses such that # +3xA and A4, A ~B, where x does not occur free in
B or any wff of A, then ¥ +B. We shall indicate applications of this rule in
the following fashion:

(.17) M +3xA
(.20) M, .20-A choose x (.17)
(.23) A, .20-B
(.24) H+B 117, .23

If the wff A is long, we might write step (.17) as follows:
(:17) M +3x.20

We shall present only abstracts of proofs, omitting many steps and
using familiar laws of quantification theory, equality, and A-conversion
quite freely. We shall usually omit type symbols on occurrences of
variables after the first.

Definition. For each wff A of G(t,,0(00))), et #A be the wif of T which is the
result of replacing the primitive constant Ly5(0,)) €verywhere by the wif

[Kfo(oc)xzz - FXo. - fo(at)xot A xotzl]'
Lemma 1. E° E® +_#D%.

Proof: First note that #D°" conv ¥ fy(o0. J1%e ¥ O fIXz,. Txo,. fraxz]
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(.1) 1+ 31% folXo: hyp
(.2) .1, .2+ foonXoiA Yito,. fu Ju=x choose x(.1)
(.3) .1, .2F%02, = o, . fo(o)X AXZ 2
(.4) E° .1, .2FVz, . X0Z = Foi . foooX¥ A X2 3, E°
(.5) E° E°, .1, .2 %0 = A2 2 %op foon X A XZ) 4, E%
(.6) E° E°, .1, .2+ fowo (A2, %o fXaxz] 2,.5
() E°, E™,.1+.6 1, .6
(.8) E°, E°~#D" K

Lemma 2. J'+J%
Proof: We assume J'.
(.1) . 1FVx VY. Vz2. 20 VouXWA~VXXA ~ VXYY ~ VY2V VXZ choose 7,
Let Koo be
[MttoAVoi. Stvod, Ao ~T8 oS, v IS UoiS, AVE . Vol D VousSit].

We shall establish in lines (.11), (.16) and (.31) that K has the
properties necessary to establish J°. To attack (.11) we consider two
cases, (.2) and (.5).

(.2) 2F~Z8X0,S hyp (case 1)
(.3)  2FKxort. t =t .2, def. of K
(.4) .2+SweKxow .3
(.5) .5 +2s,%0.8, hyp (case 2)
(.6) .5, .6+ xS, choose s (.5)
(1) .1, .5, .8, .T-7%ou St choose w, (.1)
(.8) .1,.5,.8, .TFKxo [N w, =] .8, .7, def. of K
(.9) .1,.5, .6, .7+ 3w, Kxew .8
(.10) .1, .5~.9 9,.1,.5
(.11) .1+ 3w, Kxpaw 4, .10

Next we attack (.16). The proof is by contradiction.

(.12) .12 = KXo X0, hyp
(.13) 12 +-=s,. X, SAVE . xt D vo, St .12, def. of K
(.14) 12 -3s, 7SS .13 (instantiate £ with s)
(.15) .1 ’_VSL ~7YouSS 1
(.18) .1+ ~Kxo. X0, .14, .15
Finally we attack (.31).
(.17) 17+ KxoYoi A KYoiZo hyp
(.18) .17 &= 3t Vit A Tt 20,k .17, def. of K
(.19) AT +~38,%,8Sv3S,. X8 A Yqi. Youg 2 YouSq .17, def. of K

In (.20) and (.21) we consider the two possibilities set forth in (.19).

(.20) .17, ~35,%,,S - KXo,20, .18, hyp, def. of K
(.21) .17, .21 ~3S,. X5:S AV Q.. Yo q D Vou Sq hyp
(.22) .17, .21, .22+ x5S, AVYq.. Yo § 2 ¥ou Sq choose s (.21)
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(.23) .17 +43gq,.24 .17, .18, def. of K
(.24) .17, .24+ Yo, q AVt . 2ok D Vou gt choose ¢ (.23)
(.25) .17, .21, .22, .24, 2z,,t, + 70, S, q, A VqL. hyp, .22, .24
(.26) .1, .17, .21, .22, .24, Zoit F VouSits 1, .25
(.27) .1, .17, .21, .22, .24 -Vt Zoit D VouSt .26
(.28) .1, .17, .21, .22, .24 F KXo.Zo, .18, .22, .27, def. of K
(.29) .1, .17, .21+ .28 .23, .21, .28
(.30) .1, .17 +.28 .19, .20, .29
(.31) .1F ~KXo Yo v ~Ky2o, vKx2 .30
(32) .1+-J% .11, .16, .31
(.33) J'+J° .32

We next repeat Gandy’s definitions in [6] with some minor modifica-
tions.

Definition. By induction on y, we define wffs Modoyand My, for each type
symbol .

Ay Y By stands for M,,yA,By.

Modox stands for [xxx 3p, po] for k =0, L.

Mooo Stands for [Ap,Aq,. Po = ol

Mo, stands for [xxy.. x, = y,].

Modo(es) stands for [Af,s. Vx3Vys. Modosxs a Modys Vs A X u V3D, Modoo[ fopx sl a.

faﬁxﬁ M faﬁyﬁ]- M

Mo(ap) (op) Stands for [Xfyshgqs . Vx5, Modosxs D. fosXs = Lap¥sl.
Lemma 3. F; %q M xaA.xaM Vo 2. Zq M Xg =. 24 M YVa-

Proof: By induction on a.

Definition. For each wff A of G, AT is the result of replacing Ho(0ay Y
(X foq V%q. ModoaXy D foux,] €verywhere in A.

Lemma 4. If A', ..., A", and B ave sentences of G such that A,, .. .,
A" B, then (A)', . .., (A" +,B'.

Proof: This is an immediate consequence of Theorem 3.26 of [6], since
Gandy’s full translation CF of C is CT when C is a sentence. Our modifica-
tions of Gandy’s definitions do not injure the proof.

Lemma 5. +, Mod[MogeZ,).

Proof: Mod[M,,q2,) is equivalent to

V % VYo Mod %o A Mod 9, A% 2 9 D. Mod[MoaaZ2aal A -MoseZa¥e = MogaZaVal.
This is readily proved using the definition of Mod,, and Lemma 3.
Lemma 6. I~Z)-(Ey)T for each EY in €.

Proof: (E°) is equivalent to

V po[Mod po 2 ¥ 5. Mod g6 2. [P = Gl D Voo Mod foo D. S 2 footol,

which is easily proved using the definition of Mod foo. E*) is equivalent to
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V faslMod f DV gos. Mod g D. Vx5[Mod X D Vhoe. Mod kD, A fx] D h.gx]
D Vhoap. Mod & D. kf D kgl,

which we prove as follows:

(.1) .1+ Mod fqusAMod gap hyp
(.2)  .2FVxs[Mod x D Vi, Mod k2 D .[fx] D h.gx] hyp
(.3) .3+ Mod ko) hyp
(4) + Mod(oa) - Moga » fapXs Lemma 5

(.5) .2, Mod %+ [Moaa. fasa) [ fap®s] O [Mogq - fus¥ 5] -Gups
.2, .4 (instantiate 7, with M[ fx])

(:8)  FMogel fanxa] [fasxs] Lemma 3
(.7) .2, Mod x5+ frpxp ¥ gopxs .5, .6
(.8) 2+ fur? gus 7, det. of Mo(eg)(@s)
(.9) .1, .2, .3+ ko@pfap= Ro(ap)&as .3, def. of Mod ko), -1, .8
(.10) H(E®)T .9

Lemma 7. F4; Mod %ou.

Proof: Mod 2, is equivalent to

Vx, Vy.[Modx, AMod y, A%, = 9, D. Mod[ 26, X ] A. 2o, = 209, ]
S0+Vz, Mod z,,. Mod 7,,, is equivalent to

Vx, Vy,[Mod x, A Mod ¥,A%, = 3, D. Mod[¥o, X JA Yto,. Mod w, O.
VouX W, = Vou Y W),

which is easily proved.

Lemma 8. J‘f—G(J‘)T.

Proof: (JY is equivalent to

F%ou[Mod 7o AVX, . Mod x, D Vy,. Mod ¥, O VYz,. Mod 2, D.
Jw, [Mod W, A% X W, [ A ~Vou XXt Ae ~Vou XV Vo~ Vou VB v ¥ou X 20 ).

This is easily derived from J‘ with the aid of Lemma 7.

1..x"”

X
Definition: Let 6 be the substitution .SAI__,An, i.e., the simultaneous

substitution of A’ for all free occurrences of x' for 1<is n, where
x', ..., x" are distinct variables and A’ has the same type as x’ for
1 <i<n. If Bis any wff, we let 0 xB denote n[[xx* .. .xx"B]A*...A"]. If
6 is the null substitution (i.e., # = 0), then 6 xB denotes nB.

Note that if x, and yg are distinct variables, [[Ax,1yzB]A.Cg] conv
[[xysrx,B]CgA.], so the definition above is unambiguous. Clearly, if there
are no conflicts of bound variables, 6 *B is simply n 6 B, the n-normal form
of the result of applying the substitution § to B. From the definition it is
evident that if B convC, then 6xB = 6*C.

§3. The Consistency of A.

Theorem. A is consistent.
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Proof: The proof is by contradiction, so we suppose o is inconsistent.
Thus

(1) J, &,D I_ﬁ(lz(ot))D'

(2) Jm’ (‘:, D0l — U(‘m(o(ot))) D

Proof: Replace the type symbol ¢ by the type symbol (ot) everywhere in
the sequence of wffs which constitutes a proof of O whose existence is
asserted in step 1. By checking the axioms and rules of inference of T one
easily sees that a proof of O satisfying the requirements of step 2 is
obtained.

(3) J%, &, #D% 0.

Proof: The replacement of A by #A everywhere in the proof whose
existence is asserted in step 2 yields a proof satisfying step 3, possibly
after the insertion of a few applications of the rule of alphabetic change of
bound variables.

(4) J° €50 by Lemma 1.
(6) JY &40 by Lemma 2.
©® (@), {E) B £} 50

Proof: By Lemma 4, since l—EDT o0

m @) Fz U by Lemma 6.
(8 J'+z0 by Lemma 8.

We next introduce parameters %,, and g,,. Let:
J = {VxFouxlBux), Yo, ~Fo X%, VX VY2~ Ty X VY ~Tou ViZ Y You X 20 1
9 Iroe,, a0
Pyoof: J' kg4 O by (8), and J Fo6p J.
(100 J+,0

Proof: This follows from (9) by the completeness of resolution in type
theory, i.e., Theorem 5.3 of (2]. The proof of this theorem is the one
non-syntactic step in our present proof of the consistency of 4.

(11) 1t is not the case that J +, 0.

Proof: An n-wif of the form 7,,A B, will be called positive if the number
of occurrences of g, in A, is strictly less than the number of occurrences
of g, in B,, and otherwise negative. An n-wff of the form ~ %, A.B. will be
called positive iff 7,,A B, is negative, and negative iff 7,,A B, is positive.
Let 7 be the set of wffs G having one of the following six forms:

(a)  vx, 7 x[gx]

(b) VX, ~7xX

()  Vx,Vy.\Vz, [~¥xyv~7yzv7rxz] where x, y, and z, are distinct
variables.
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(d) Vy,Vz, [~7¥Ayv~¥yzv¥A,z] where y, and 2z, are distinct from one
another and from the free variables of A,.

() Vz,[~7A,B,v~7B,zv7A,z] where z, is distinct from the free vari-
ables of A, and of B,.

(f) G is a disjunction of wffs, each of the form ¥ A,B, or ~7 AB, at least
one of which is positive.

Let C be the set of wffs C such that for each substitution 6, 6 *C is in
J. We assert that if # +,C, then Ce €. Clearly J C (, so it suffices to
show that € is closed under the rules of inference of £. For each rule of
inference of A and any substitution §, we show that 6 *E ¢ 7 for any wff E
derived from wff(s) of C by that rule.

Suppose Mv A and Nv~A are in (, and Mv N is obtained from them by
cut. Then 6#*[MvA] and 6*[Nv~A] must each have form (f). (For
6*%[Nv~A]=[(6%N)v~(6*A)]; even if N is null, this cannot have any of
the forms (a)-(e), so 6 * A must have the form 7B,C,.) 6 *x[MvA]=[(6xM)v
6*A]; if 6*A is negative, 6 *M must contain a positive wff (so M cannot be
null), so #*[Mv N] does also. If §x*A is positive, then 6*[~A] is negative,
so 6*N must contain a positive wff, so 6*[MvN] does also, and hence has
form (f).

Suppose D is in (€, and [xXx,D]B, is obtained from D by substitution.

Let p be the substitution S;Z, and let 6°p be the substitution which is the

composition of 8 with p (i.e., (§°p) *C = 6x(p*C) for each wff C). Then
0*[[xx,D]Ba] = 6xn[[Ax,D]B,] = 6*(p*D) = (fop)*De F since De C, so
[[xx,D]B,]e C.

Suppose D e € and E is derived from D by universal instantiation. Thus
D has the form Mv II,50)Ace Where M may be null. By considering the null
substitution we see that nDe J, so D has the form II,,,) Ao and E has the
form A,Xx,. It is easily checked by examining forms (a)-(e) that if H is any
wif obtained from a wff of 9 by universal instantiation, then (6 *H) e 9. But
(n A,)x, is obtained from nD by universal instantiation, so 6*E =
6*[(n A,)x,.]is in 7.

The verification that ¢ is closed under the remaining rules of
inference of A is trivial, so our assertion is proved. Now O is not in (, so
it is not the case that J ~,0.

(12) The contradiction between (10) and (11) proves our theorem.

§4. The Natuval Numbers in 4. We shall define the natural numbers to be
equivalence classes of sets of individuals having the same finite car-
dinality. We let o denote the type symbol (o(ot)). o is the type of natural
numbers.

Definitions:

O, stands for [Ap,, V&, ~pox.].
Soo stands for [A7eo) ADoc. IXi. PoXi A ool Mt -t # X0 A Poit,]]-
Noo stands for [Anonoa- [poaoa/\vxo- PooXs 2 poosaaxa] 2 poano]-
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Vi, A stands for Yx,[Nyox, D Al.
Jx,A4 stands for Jx,[N,,x,rA].

Thus zero is the collection of all sets with zero members, i.e., the collec-
tion containing just the empty set [xx,0]. S represents the successor
function. If %) is a finite cardinal (say 2), then a set p,, (say {a, b, c})
is in S iff there is an individual (say c¢) which is in p,, and whose deletion
from p,, leaves a set ({a, b}) which is in n. N,, represents the set of
natural numbers, i.e., the intersection of all sets which contain O and are
closed under S.

We now prove Peano’s Postulates (Theorems 1, 2, 3, 4, and 7 below.)
In this section ~B means B is a theorem of f.

1 FN,O4 by the def. of N
2 F V%5 NyoXo 2 Ngge SpoXo

Proof:

(.1) Nxy, .1 PO AVX,. px D p. Sx hyp
(.2) Nxg, .1+ pox, .1, hyp, def. of N
(.3) Nxg, .1+ pos- Sxo .1, .2
(.4) Nxo+N. Sxg, .3, def. of N

3 The Induction Theorem:
)_Vpoa. [pOOOUA e’xa‘ pooxa D poa' SUOxU] D \%xapoaxo
Proof: Let Py, be [At,. Nt pyot].

(.1) 1+-p,,OAVE.Nx D, px D p. Sx hyp
(.2) Ny, -[PO AVx,. PxD P.Sx]D Py, hyp, def. of N
(.3) .1+PO def. of P, .1, Theorem 1
(4) .1+FVx, Px 2 P.Sx def. of P, .1, Theorem 2
(.5) .1,Ny, - Py, 2,.3, 4
(.6) .1+ Vy,py, .5, def.of ¥, P

4 !—‘é’no. Sootts # O

Proof by contradiction:

(.1) 1+-Sn,=0 hyp
(.2) O rx0] def. of O
(.3) .1+Sn.irx0] 1,2
(4) .1+3x0 .3, def. of S
(.5) FSny,20O 4
(6) +Vn,.Sn#0O .5, def. of V¥

Our first step in proving Theorem 7 is to show that if we remove any
element from a set of cardinality Su we obtain a set of cardinality x.

5 '_\:/novpou ~Po, Asaana[xtw t = chpoctt] 2 NyDo.

The proof is by induction on #. First we treat the case n = O.
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(.1) 1+ ~pow, ASO[XE .t =w vpt] hyp
(.2) .1+3%,.3 .1, def. of S
(.3) .1, .3F[x =w, vpox]rO[Nt. t#xa.t=wvpt] choose % (.2)
(4) .1, 3F~w, #X A.W= WV PoW, .3, def. of O
(.5) .1, 3rw, =x, 4
(.6) .1, 3FVEH. pot=.t#x a.t=w vpt 1, .5
(1) 1, .8Fpo=[Mt.t#x A t=w vpt] .6, E%, E*
(.8) .1, .3+0 po, 3, .7
(.9) Yo, ~Dow. rSO[NE,. t=wvpt] DOPp .2, .8
Next we treat the induction step
(.10) .10 =N#g AVpo,. ~pw, ASu[XE. t= wvpt] D np (inductive) hyp
(.11) AL+ ~poaw, a[SSn,)[NE,. t = wv pt] hyp
(.12) .11 +3x,.13 .11, def. of S
(.13) .11, 13+ [x, = w, v o X)r.Sng[NE. t# XAt = wv pt] choose x (.12)

From (.11) we must prove [Sn]p. We consider two cases in (.14) and
(.17).

(.14) 14+x = w, hyp (case 1)
(.15) .11, .13, .14 - py = [N L. t# x A t = w, v Dt] 11, .14
(.16) .11, .13, .14 +[Sngl po, .13, .15
In case 2 we shall use the inductive hypothesis.
((17) AT +x, +w, hyp (case 2)
(\18) AT H[Mb. t# Xat = w v pol]=[NE. t= w, v.t# X ADoit] 17
(.19) .11, .13, 1T +-Sno[At. t= w, v. t # X, A Dot .13, .18
(.20) .10, .11, .13, .17 = ng[Xt.. £ # X A pPoit] .10, .11, .19
(.21) .11, .13, .17+ po.x, .13, .17
(.22) .10, .11, .13, .17 +[Sn,] po. def. of S, .20, .21
(.23) .10, .11 +{Sng) po. .16, .22, .12
(.24) .10 =Vpy,. ~pw, a[SSns) (At .t = wv pt] D [Sn,)p .23

This completes the induction step. The theorem now follows from .9 and
.24 by the Induction Theorem.

It will be observed that so far in this section we have not used the
axiom of infinity J. We shall use it in proving the next theorem, which will
also be used to prove Theorem 7.

6 l—‘v"na. NoPor 2 W, ~Po W,
(1) 1-VxVy Vz,. 3WYou XW A ~YXX A ~SVXY v ~VYZ V VXZ choose 7 (J°)
Let Py, be [\, Vp,, . np D Iz, Vw,. vo, 2w O ~pw].

We may informally interpret 7zw as meaning that z is below w. Thus Pn
means that if p is in #, then there is an element z which is below no
member of p. We shall prove Vz,P#n by induction on #.

(.2) Opo - ~pPow, def. of O
(.3) +PO .2, def. of P



RESOLUTION AND THE CONSISTENCY OF ANALYSIS 83

Next we treat the induction step.

(.4) 4+-NngaPn (inductive) hyp
(.5) .5+ Snspo. hyp
(.8) 5+-3x .T .5, def. of S
(1) .5, T+ pox anio[NE .t 2xapt] choose x (.6)
(.8) .4,.5,.7-3z .9 4, def. of P, .7
(.9 .4, .5, .7, .9 Vw. ve, 20w D. W=X v~eDo, W choose z (.8)

Thus from the inductive hypothesis we see that there is an element z which
is under nothing in p - {x}. We must show that there is an element which is
under nothing in p. We consider two cases, (.10) and (.14).

(-10) A0 F~ %00 20X, hyp (case 1)
(.11) 4, .5, .7, .9, .10 %, 2w, D w+ X, .10
(.12) .4, .5,.7,.9, .10 =Vw,. ¥ 2w D ~pow .9, .11
(.13) 4, .5,.7,.9, .10 -3z, .12 .12
Next we consider case 2, and show that ¥ is under nothing in p.

(.14) .14 +75,.2.%, hyp (case 2)
(.15) .1, .14, v, X W, - Vou 2., .14, hyp, .1
(.16) .1, .4, .5, .7, .9, .14, ¥ou X0, -, = X, v ~ Dol .9, .15
(.17) Fw, =x, D. Youw D ¥xXx

(.18) db~7o, XX .1
(.19) .1, .4, .5,.7,.9, .14 F Y, YouX0 D ~ Pow .16, .17, .18
(.20) .1, 4, .5,.7,.9, .14 -3z, Vw,. Yo 2w D ~ Po, .19
(.21) .1, .4, 5+.20 .13, .20, .8, .6
(.22) .1~N#nsaPn>D PSn .21, def. of P
(.23) .1-Vn,Pn, .3, .22, Theorem 3

Having finished the inductive proof, we proceed to prove the main
theorem.

(.24) .24+ Nn, anpo, hyp
(.25) .1, .24 =3z, Vw,. You 2w O ~ P, .23, .24, def. of P
(.26) .1+Vz, 3w 7o 2w 1
(.27) .1, .24 - 3w, ~ pouti 25, .26
(.28) .1~ Vg . mpor D IW, ~ Poutt. .27
(.29) +.28 J*

T VYRV Sgotly = SooMy 2 Mg = Mg

Proof:

(.1)  .1+-NnugaNmzaSn=Sm hyp
(.2) .2 F ngh,, hyp
(.3) .1, .2, 3w, ~pow, .1, .2, Theorem 6
(.4) 2, 4+ ~pow, choose w (.3)

(.6) 2, drng Nt t #w at=wvpot) 2,.5

.1,
(.5) .1,.2, 4rpo =[Nt .t 2w, A t=wv pt] 4, E°, E*
1,
(1) .1,.2, 4r-Sn At .t =w, vDod] .6, def. of S
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(.8) .1,.2, .4 +-Smo[NL. £=w v po.t] 1, .7
(.9) .1, .2, .4 ~mypo, .1, .4, .8, Theorem 5
(.10) .1+ ngpo, D mgp 3, .9
(.11) .1+ mgP0, D ngh proof as for .10
(.12) 1+ Vpo.. np = mgp .10, .11
(.13) AFn,=mg .12, E°, E*
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