
575
Notre Dame Journal of Formal Logic
Volume XIV, Number 4, October 1973
NDJFAM

THE GEOMETRY OF SOLIDS IN HILBERT SPACES

THEODORE F. SULLIVAN

In [6] A. Tarski presents a definition of concentric solids in Les*niew-
ski's deductive system of Mereology [1, 2, 5]. If solid is interpreted as
sphere in Euclidean geometry, Tarski showed that the set of equivalence
classes of spheres determined by the definition of concentric corresponds
to the set of points of the Euclidean space. Thus Mereology could be used
as a foundation for Euclidean geometry. In this paper* we shall show that
the above correspondence still holds in the case where the space is taken to
be a real separable Hubert space of dimension ^ 2 .

The definition of concentric presented below is based on the primitive
relation of Mereology, 'Ά is part of £ , " where A and B are restricted to
be instances of the name solid. In a Hubert space φ this relation will be
interpreted as the sphere A is a subset of the sphere B where a sphere is a
set of the form {x/ | | x - α 11 < r} with α e φ , r > 0, and || || denoting the
norm of φ.

We begin with the development of Tarski's definition of concentric. We
note that the definitions below will be formulated using only the primitive
relation of Mereology and definitions already given.

Definition 1 A is disjoint from B iff A and B are solids and whenever Λr is
part of A then λr is not part of B. (We note that for open balls in a Banach
space this definition is equivalent to the statement that A and B are disjoint
sets.)

Definition 2 A is extenially tωigent to B iff (i) A is disjoint from B and
(ii) if A is part of X and is part of Y with B disjoint from X and disjoint
from Y then X is part of Y or Y is part of X.

*This paper is a part of the author's doctoral dissertation, Contributions to the
Geometry of Solids, written under the direction of Professor Robert Clay and
accepted by the University of Notre Dame in partial fulfillment of the requirements
for the degree of Ph.D. m Mathematics, June, 1969. I would like to express my
gratitude to Professor Clay for his encouragement and advice.
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Definition 3 A is internally tangent to B iff (i) A is part of B and (ii) if A
is part of X and A is part of Y and X is part of B and Y is part of B then X
is part of Y or Y is part of X.

Definition 4 A αizr/ 5 are exteryuilly diametrical to C iff (i) A and i? are
externally tangent to C and (ii) if A and B are part of X and Y respectively
and X is disjoint from C and Y is disjoint from C then X is disjoint from Y.

Definition 5 A and B are internally diametrical to C iff (i) A and B are
internally tangent to C and (ii) if X and Y are disjoint from C and A is
externally tangent to X and B is externally tangent to Y then X is disjoint
from Y.

Definition 6 A and B are concentric iff (i) A is identical to B or (ii) A is
part of B and whenever X and Y are such that both are externally diametri-
cal to A and each is internally tangent to B then X and Y are internally dia-
metrical to B or (iii) interchange A and B in (ii).

Theorem If φ is a real separable Hilbert space of dimension — 2 then the
set of points of φ can be mapped bijectiυely to the set of equivalence
classes of concentric spheres determined by Definition 6.

The proof of this theorem is contained in the following lemmas in
which we shall characterize the definitions above in terms of statements
about points in φ. We note that the norm of $ is denoted by | | | | and the
inner product is denoted by ( , ). Further we shall use the following
convention: A, B, C, X, Y will denote spheres with centers α, b, c, x, and y
and with radii ru r2, r3, r, and s respectively.

Lemma 1 Let u, v, and p be points of φ. Then | | v - u | | = | | u - p | | +
11 p - v 11 iff there exists 0 < t < 1 such that p = u + t(v - u).

Proof: This lemma is a consequence of the Cauchy-Schwarz inequality for
Hilbert Spaces [3].

Lemma 2 If A and B are externally tcuigent then there is a unique pe $ ivith
11 p - α 11 = rγ and II p - b | I = r 2 (p is the unique point of tangency between A
and B).

Proof: A external ly tangent to B implies A and B a r e disjoint which implies
II b - al l > rγ. So let t = rj\\ b - al l and p = α +t(b - α) . It is c l e a r that
0 < t< 1. If II p - b | | < r2 then we choose V such that /' 11 α - b | | < r 2 -
| | p - b 11 and 0 < V < t. Then if we let q = α + (t - t')(b - α) we have q e A
and qe B which is a contradict ion. On the other hand if 11 p - b 11 > r 2 we let
V = (11 p - b 11 - r 2 )/2 11 α - b 11. Then we may set q = b + tr (α - b), X =
| x | II x - q l l < r2 + r | | α - b | | j , a n d Y = { y | 11 y - b 1 1 < r2 + t'\ I α - b 11}. I t
follows that X and Y a r e both disjoint from A and both contain B. F u r t h e r ,
if we let tγ = (11 p - b 11 + r 2 )/2 11 α - b 11 and set u = b + tγ (α - b) and v = α +
t2 (b - α) then we have u e X, ve Y, uίY, and vtfX. Thus X £ Y and Y f- X.
Therefore, | | p - b | l = r 2 . Now a s s u m e q Φ p sat isf ies the conclusion of this
l e m m a . Then by Lemma 1 we have | | b - α | | < | | α - q | | + l | q - b | | . But
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| | b - al l = | | a - p | | + | | p - b | | which produces a contradict ion s ince
I l α - p l l = r 1 = | | α - q | | and II p - b | | = r 2 = | | b - q | | . Therefore p = q.

Lemma 3 Let A and B be two disjoint spheres. If a point p satisfies
p = α + t (b - α), 0 < t < 1, 11 p - α 11 = rl9 and 11 p - b 11 = r2 then A is exter-
nally tangent to B.

Proof: Let X be such that B is part of X and A is disjoint from Λr. We
show that | | p - x II = v and that there exists 0 < V < 1 such that p = α +
t' (x - α). To establish | | p - x | | ^ r we note that since | | p - α | | = rι there
is for each ε > 0 a point q e A such that 11 p - q 11 < ε and q satisfies p = α +
t" (q - α) for some 0 < t" < 1. Applying the hypothesis X is disjoint from A
we have r < 11 q - x 11 - 11 q - p 11 + 11 p - x 11 < 11 p - x 11 + ε. Thus r < 11 p -
x| | . To establish | | p - x | | ^ r we note first that since | | p - b | | = r2 we
have for each ε > 0 a point qe B (and therefore in X) such that 11 p - q 11 < ε.
Therefore | | x - p 11 < r + ε by the triangle inequality and the assumption B
is part of Λ". Thus |! p - x 11 < r. Finally assume there does not exist

0 < V < 1 such that p = α + t' (x - α). Then by Lemma 1 | | α - x | | < | | α -
pll + I j p - x 11 = r1 + r. This implies A and X are not disjoint, which is a
contradiction. To finish the proof of the lemma we let Y satisfy A is
disjoint from Y and B is part of Y. Then we have II p - yll = s and there
exists 0 < tn < 1 with p = α + t" (y - α) by the argument above. Finally it
follows that if s ^ r then Y - Λr and \ί r ^ s then λ' c Y.

Lemmas 2 and 3 characterize the relation A is externally tangent to B.
Proofs similar to these establish:

Lemma 4 A is internally tangent to B iff A is part of B and there is a point
p such that p = α + t (b - α), 0 < t < 1, 11 p - α 11 = rγ and \\ p - b | | = r2.

We now characterize the relation externally diametrical. We shall use
some elementary properties of Hubert spaces which can be found in
[3], pp. 44-46. These properties are listed in our next lemma.

Lemma 5 Given a point p Φ 0 of § there is an orthonormal basis {bz }, 2 —
1 ^ n ^ Ss

0 such that p = (p, b j b ^ (p, b j > 0, and for each qe B we have q =
n n

Σ ( q , b , ) b , a n d Π q l Γ = Σ ( q , b , ) 2 .
I ~- 1 i'-\

Lemma 6 Let A and B be externally diametrical to C. Then pι - c =
-(p2 - c) where pL = α + ̂ ( c - α) and p2 = b + t2 (c - b) satisfy the conclusion
of Lemma 2.

Proof: (see Figure 1 below) Assume c = 0. The conclusion then becomes
Pi = "P2 If Pi φ ±?2 w e derive a contradiction as follows: Let bu . . ., bn be
an orthonormal basis having the properties of Lemma 5 where p is taken to
be plm Since p x Φ ±p 2 it is easily shown that | (p2, b j | < (pu b j . Let q =
1/2 {[(Pl, bL) + (p2, bjjbx + (p2, b2)b2 + . . . + (p2, bn)bnl let / = 4 (P l, bx)/
[ ( P i , b i ) + ( p 2 , b J l , a n d l e t u = \ / t γ + \ / t 2 + [t2\\ q \ \ 2 + 3 r l ] / 2 r 2

3 . N o w l e t X
a n d Y b e t h e s p h e r e s s u c h t h a t Λ' h a s c e n t e r upγ a n d r a d i u s (u - l j l l p j l a n d

F h a s c e n t e r up2 a n d r a d i u s (u - 1)11 p 2 | | . U s i n g L e m m a 3 i t fo l lows t h a t X
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and Y are externally tangent to C. Furthermore A is part of X and B is
part of Y and tc\eX and tqeY, a contradiction. Therefore p : = ±p 2 . If
Pi = p 2 then it is easily shown that A is not disjoint from B, again a
contradiction. Thus px = -p2. If we now remove the restriction c = 0 the
result follows easily since a translation will preserve disjointness and
nondisjointness.

As a consequence of this lemma and Lemma 2 we note that c = α +
t(b - α) for some 0 < / < 1.

^ p 2 . ίq /"Pi

Figure 1.

As a converse to Lemma 6 we have:

Lemma 7 // the spheres A, B, and C satisfy: A is externally tangent to C,
B is externally tangent to C, and c = α + t (b - α) with 0 < t < 1 then A and B
are externally diametrical to C.

Proof: By Lemma 2 we have the existence of p : and p2 such that p : = c +
t1 (α - c), p2 - c + t2 (b - c), 0 < tι < 1, 0 < t2 < 1, 11 Pi - α 11 = r 1 ? 11 px - c 11 =
r3> II P2 ~ b | | = r 2, and H p 2 - c | | = r 3 . Now let λ" and Y be open balls
satisfying A is part of Λ", B is part of Y, and C is disjoint from X and Y.
From the proof of Lemma 3 we can find t[ and t2' such that 0 < t[ < 1,
0 < *2 < 1, Pi = c + fί(x - c), and p2 = c + t[ (y - c). The hypothesis c = α +
t (b - α) and the previous sentence now imply the existence of 0 < t" < 1
such that c = x + t" (y - x).

Lemma 1 then implies \\ x - y\\ = s + 2r3 + t > s + t. It now follows
that X is disjoint from Y.

Having characterized the notion of externally diametrical in Lemmas 6
and 7 we note that similar proofs establish the following characterization
for internally diametrical:

Lemma 8 If A and B are internally tangent to C then A and B are internally

diametrical to C iff there exists 0 < t < 1 such that c = α + f ( b - α ) .

Our next two lemmas show that A is concentric to B iff A and B have
the same center.

Lemma 9 Given spheres A and B if α Φ b then A and B are not concentric.
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Proof: (see Figure 2 below) Assume A and B a r e concentr ic and without

loss of general i ty we take B to be proper ly contained in A. F i r s t form

lines ίx and l2 as follows: lγ is the line determined by α and b; l2 is taken to

be any line dist inct from lγ such that be l2 ( recal l the dimension of φ is

— 2). Since φ is a Huber t space t h e r e exists a point d on l2 such that for

all points p on l2 (except d) we have | | d - α | | < | | p - α | | and 11 p - α 112 =

| p - d | | 2 + l ! d - α | | 2 [3], chap. 2, §4. We now construct on l2 the points

q, q f , e, e r , g, and g' as follows: There exists q ^ q f such that | | α - q | | =

V\ = II α - q f | | ; t h e r e exists e * e ' such that | | b - e | | = r 2 = II b - e ' l l ; finally

t h e r e exists g Φ g f such that | | e - g | | + II g - α II = r x = II e f - g'll + II g r -

α | | (the existence of g (and g f) follows from the fact that the r e a l function

f(t) = 111 q - d 11 + II (d - α) + t (q - d) 11 is continuous and so t h e r e exists

0 < to< 1 such that f{t0) = rγ. So let g = d + t0 (q - d)).

Figure 2.

We now let A" and Y be s p h e r e s with x = g, y = g ' , r = II b - g | | , s =

I bΓ - g ' l ! . It is easi ly establ ished using Lemma 7 and the above that Λr and

Y a r e external ly d i a m e t r i c a l to B. Using the definition of g and g f and

Lemma 4 we have that X and Y a r e each internal ly tangent to A. However

if we a s s u m e A and B a r e concentr ic then Lemma 8 implies α = g + t{g' - g)

for some 0 < / < 1. This implies α e l2, a contradict ion.

Lemma 10 Let A and B be open balls with α = b. Then A and B are

concentric.

Proof: We assume without loss of generality rγ<~r2. Assume X and Y

satisfy the hypothesis of the definition of concentric (ii). X and Y externally

diametrical to A implies by the note to Lemma 6 that there exists 0 < t < 1

such that α = x + t (y - x). Since α = b we have b = x + t (y - x) which implies

by Lemma 8 that X and Y are internally diametrical to B.

We now conclude the proof of the Theorem. We use [A] to denote the

set of open balls concentric to A.
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Lemma 11 There exisls a Injection from φ to the set of sets [A] where A
is an open ball of the separable real Hilbert space φ of dimension — 2.

Proof: Given α e φ let A be any sphere with center α. Let f(a) = [A].
Lemmas 9 and 10 easily imply t h a t / i s well defined and that it is a bijection.

We conclude this paper with a counter example to our theorem in the
case where & is an arbitrary Banach space [4] of dimension at least 2. For
our space 8 we take the space R x R whose elements will be denoted by
(x, y) with i f R and y e R and whose norm is defined by: \\(x, y)\\ =
max {|.r|, \y\}. To show that the bijection of Lemma 11 does not hold we
shall prove that the relation of concentric fails to be an equivalence
relation. Our method of proof will be to show that no sphere is externally
tangent to the sphere U whose center is (0, 0) and whose radius is 1.
Concentric then becomes just the subset relation. To this end let S be a
sphere with center (u, v) and radius r > 0 disjoint from U. We observe that
the points (xt y) of S satisfy either |x | > 1 for all x or \y\ > 1 for all y;
otherwise, there is a point (/, iv) e (S r U) with t = x (1 - s) and w = y (1 - s)
where \x\ < 1, | v I ̂  1, and s = 1/2 min {r - I x - u\, r - \ y - v |, l}. Without
loss of generality we shall assume Λ' > 1 for all x where (A:, y) e S. To show

S is not externally tangent to U let X be the sphere with center (u + (\u\r/u),
v + r) and radius 2r and let Y be the open ball with center (u + (\κ\r/κ), v - r)
and radius 2r. Then the inequalities \u + {\u\r/u) - ,v| - \u - x\ +r, \v +
r - y\ ^ I v - y I + r, and \υ - r - y\ ^ | v - y | + r establish: (1) S is part of A"
and (2) S is part of Y. Further X is disjoint from U for if (x, v) eX then
\u + (\u\r/u) - x\ < 2r which implies |x | > 1 since \u\> 1 by our hypothesis
about S. Similarly Y is disjoint from U. Finally since the norm of the
difference between the centers of X and Y is 2r it follows that the center of
X is not an element of Y and the center of Y is not an element of λr.
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