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SENTENTIAL CALCULUS FOR LOGICAL FALSEHOODS

CHARLES G. MORGAN

Several axiomatic systems for sentential calculus have been developed.
Such systems are generally motivated by a consideration of logically true
sentences of the formal language. In this paper I present a finitely
axiomatized system of sentential calculus for logically false sentences.

1. Introduction. Consider a formal language L with the following symbols:

Sentential variables: Pl9 P2,
Sentential connectives: &—"and," v—"or," Ί — " n o t "
Punctuation: ), and (

I will assume the standard definition for "sentence of L." The meta-
symbols R, Rλ, R2, . . . will be used to refer to sentences of L. In addition,
I will presuppose the standard theory of two-valued truth tables. I will say
that a sentence of L is logically true (LT) if and only if the final column of
its truth table has only T's. I will say that a sentence of I is logically false
(LF) if and only if the final column of its truth table has only F's. I will
say that two sentences Rλ and R2 of L are logically equivalent (Rγ LE R2) if
and only if the sentence (Rγ & R2) v (Ί RX & iR2) is LT.

2. The System SCT. In [1], Hubert and Ackermann present an axiomatic
system of sentential calculus for logical truths. With some small notational
differences, their system uses the symbols mentioned above and in addition
the symbol "—•". As they note, however, this symbol is to be considered
an abbreviation; if βj and R2 are any two sentences of the language, then
R1-*R2 is to be considered an abbreviation for the sentence iRivR2

([l], pp. 27-28). In discussing their system, I will eliminate this abbrevia-
tion. Since their system is primarily concerned with LT sentences, I will
refer to their system as SCT (sentential calculus for truths). With slight
notational differences and the removal of the symbol "—>", the Hubert and
Ackermann system may be presented as follows:

Axioms:

(ta) - l ίΛvPjvΛ
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(tb) ΊP1V(P1VP2)

(tc) liP^PjviPzvPj

(td) -.(πPxvPaM-iίPsvPjvίPaviϋ)

Rules of Proof:

1. Rule of substitution: We may substitute in a given sentence of L for a
sentential variable any sentence of L, providing that the substitution is
made wherever that sentential variable occurs.
2. Rule of Γ-implication: From two sentences Rι and -\RxvR2 the sentence
R2 may be obtained.

I will assume the standard definition of "proof in SCT." If the
sentence R of L is provable in SCT, I will write ^ τ R. Let λ be a set of
sentences of I . If R is provable in SCT from the axioms augmented by the
members of λ, I will write λ ^ R. Using these notions, the following
theorems may be proved about SCT ([1], chapter 1):

Theorem A: If R is any sentence of L and ^ R, then R is LT.
Theorem B: SCT is consistent in the sense that there is no sentence R of L
such that both hj, R and )~TΊR.
Theorem C: The axioms ta-td are independent. That is, it is not possible
to prove any one of the axioms from all of the others.
Theorem D: The system SCT is complete in the sense that if R is any
sentence of L that is LT, then ^R.
Theorem E: The system SCT is complete in the sense that if a sentence of
L that is not provable from the axioms is added to the system as an axiom,
the new system is inconsistent.

3 The System SCF. I will now present a system of sentential calculus for
LF sentences of Z; I will refer to this system as SCF. I will prove
theorems about SCF that are analagous to the theorems presented above
about SCT.

Axioms:

(fa) l ί P x & P j & P x
(fb) Ί P 1 & ( P 1 & P 2 )

(fc) i(Pι&P2) & (Pa&Pj
(fd) i (π Pi & P2) & ( i (P3 & P j & (P3 & P2))

Rules of Proof:

1. Rule of substitution: same as that for SCT.
2. Rule of F-implication: From the two sentences Rx and τ R i & β 2 the
sentence R2 may be obtained.

I will again assume the standard definition of "proof in SCF." If the
sentence R of L is provable in SCF, I will write ^ R. As for SCT, if λ is a
set of sentences of I , I will write λ ^ R when R is provable in SCF from
the axioms augmented by the members of λ. Theorems analogous to those
presented above for SCT could be proven in a straightforward manner for
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SCF without reference to SCT. However, I will construct proofs for such
theorems (except Theorem Af) by relating them to the theorems for SCT.

In the following material, I will make use of the one-to-one function F
from the set of sentences of L onto the set of sentences of L, defined in the
following way:

(a) F(Pi) = Pi, for any sentential variable P,
(b) F(ΊR) = ΊF(R), for any sentence R of L
(c) F(Rλv R2) = F(βχ) & F(R2), for any sentences # x and R2 of L
(d) F(Rλ & R2) = FiRj vF(R2), for any sentences R x and R2 of L

Theorem 1: Let R be a sentence of L. Then F(F(R)) = R.

Proof: By induction on the number, n, of connectives in R; n will be called
the length of R. Suppose n = 0. Then R is a sentential variable, say P, .
Then by (a), F(F(Pi)) = F{Pi) = P;. Suppose the theorem is true for all n
less than some number p, p greater than 0. We must show that the theorem
holds for p. Let R be an arbitrary sentence of length p. Then R must be of
the form -\Rl9 RxvR2, or Rx & R2. Suppose for some Rί9 R = ifl^ Then by
(b), F(F(R)) = FiFdRj) = FdFiRj) = l i ^ W ) . But R, has length p - 1,
and thus by assumption the theorem holds for Rlt Thus F(F(Rλ)) = R^ Thus
F(F(R)) = -lfli = R. Similarly it is easy to show that if R has the form
RλvR2 or # ! & R2 then the theorem holds. Thus the theorem holds for
n = p, and hence for all n. The following lemmas will be needed for the
proof of the next theorem.

Lemma 1: // Rι is the result of substituting R2 in R3 for the sentential
variable Pj, then F(Rj is the result of substituting F(R2) in F(R3) for P, .

Proof: By induction on the length, n, of R3. Suppose n = 0. Then R3 must
be a sentential variable. Suppose R3 is P t . Then Rλ = R2, and F(Rλ) = F(R2).
But F(R3) = Pi. Thus the result Of substituting F(R2) for P{ in F(R3) is just
F(R2). Hence FiRj is the result of substituting F(R2) in F(R3) for Pim

Suppose R3 is Pj, where Pj Φ Pi. Then R± = R3, and thus β x is Pj. But then
both F(fli) and F(R3) are just Pj. Hence, .F(fli) is the result of substituting
F(R2) in F(R3) for Pim Thus the lemma holds for n = 0. Now, suppose the
lemma is true for all n less than some number p, where p is greater than
0. Let R3 be an arbitrary sentence of L of length p.

Case 1: R3 = iR4, for some R4. Then Rλ = iR5, for some β5, where R5

is the* result of substituting R2 in # 4 for the sentential variable P;. But fl4

is of length /> - 1. Hence by induction hypothesis, ^(#5) is the result of
substituting F(R2) in F(ft4) for the sentential variable Pi. But F(#3) is just
F(ΊR^) which is iF(R4); further, F(Rj) is just F(ΊR5) which is πF(β5). Thus
F(Ri) is the result of substituting F(R2) in F(β3) for Pi.

Case 2: β3 = R4vR5, for some fl4 and R5. Then iRi = β6 v R7, where R6

is the result of substituting R2 in β4 for P t and β7 is the result of sub-
stituting R2 in iR5 for P;. Since the length of R4 is less than p and the length
of R5 is less than /?, we have F(R6) is the result of substituting i 7 ^ ) in
F(β4) for Pi and P(β7) is the result of substituting F(R2) in F(R5) for P z .
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But F(Rχ) is just F(R6vR7) which is F(Rβ) & F(R7); further, F(R3) is just
F(R4vR5) which is F(R4) & F(R5). Thus F(RJ is the result of substituting
F(R2) in F(R3) for P, .

Case 3: R3 = β 4 & β 5 , for some R4 and R5. This case is exactly the
same as Case 2, interchanging " & " and ' V \

Thus the lemma is true for n = p, and hence it is true for all n.

Lemma 2: // F(Rj) is the result of substituting F(R2) in F(R3) for the
sentential variable P{, then Rλ is the result of substituting R2 in R3 for P, .

Proof: Suppose the hypothesis of the lemma is true. Then by Lemma 1,
F(F(Rj) is the result of substituting F(F(R2)) in F(F(R3)) for Pi. But then
by Theorem 1, β x is the result of substituting R2 in R3 for P, .

The next theorem will be of fundamental importance in the work to
follow. It simply tells us that if we have a proof in either SCF or SCT, then
we can transform it into a proof in the other system by means of the
function F.

Theorem of Proof Correspondence: Let Rlf R2, . . . , Rn be a series of
sentences of L, and let F(R^j, F(R2), . . . , F(Rn) be a series of sentences of
L obtained from the first by taking the F-transformation of each sentence in
that series. Then Rl9 R2, . . . , Rn constitutes a proof of Rn in SCT if and
only ifF(Rj, F(R2), . . . , F(Rn) constitutes a proof of F{Rn) in SCF.

Proof: By induction on the number, n, of steps in the proof; n will be called
the length of the proof. The theorem may be broken into two parts.

First suppose Rl9 R2, . . . , Rn is a proof in SCT of Rn. We want to
show that F(RX), F(R2), . . . , F(Rn) is a proof of F{Rn) in SCF. Suppose
n = 1. Then Rλ is an axiom of SCT. But fa = F(ta), . . . , and fd = F(td).
Hence F(βJ is a proof of F(RJ in SCF, and thus this half of the theorem
holds for n = 1. Now, suppose this first half of the theorem holds for all n
less than some number p, where p is greater than 1. We must show that
this half of the theorem holds for p. Suppose Rlf R2, . . . , Rp is a proof in
SCT of Rp. We want to show that F(RX), F{R2), . . . , F(Rp) is a proof in SCF
of F(Rp). The only question that may arise concerns step p, for by the
induction hypothesis, the steps through p - 1 constitute a proof. Consider
the justification for step p.

Case 1: Rp is an axiom. This case is the same as for n = 1.
Case 2: Rp follows by substitution of the sentence R in Rj for the

sentential variable P, . Then by Lemma 1, F(RP) follows by substitution of
the sentence F(R) in F(Rj) for the sentential variable P f .

Case 3: Rp follows by Γ-implication from two previous sentences Rί
and Rj, where Rj = iRi vRp. But then F(Rj) is just F(iRi vRp) which is
iF(Ri) &F(Rp). Hence F(Rp) follows from F(Ri) and F(Rj) by F-implica-
tion.

Thus the first half of the theorem holds for n = p, and hence for all n.
The proof of the second half of the theorem relies on the fact that F{F{R)) =
R (Theorem 1) and is exactly similar to the above proof, using Lemma 2 in
place of Lemma 1.
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Corollary 1: Hχ R if and only if ±-pF(R).
Corollary 2: Let λ be a set of sentences, and let F(\) be the set of
sentences whose members are the F-transforms of the members of χ.
Then \v-τRif and only if F(λ) \-F F(R).

Proof: Note that a step R{ in the SCT proof is a member of λ if and only if
F(R{) is a member of F(λ). The proof is then the same as the proof for the
Theorem of Proof Correspondence.

I will now proceed to prove theorems analogous to the first three
presented for SCT, above.

Theorem Af: If R is any sentence of L and \-p R, then R is LF.

Proof: The proof is exactly parallel to the proof for Theorem A. Note that
all of the axioms for SCF are LF, and that the rules of proof preserve the
property of being LF. The theorem then follows immediately.

Theorem B': SCF is consistent in the sense that there is no sentence R of
L such that i-p R and Vp-\R.

Proof: Suppose there were a sentence R such that 177 R and v-p i β , Then by
Theorem 1, \-pF(F(R)) and v-PiF(F(R)). Then by definition of F, t-FF(iF(R)).
Then by Corollary 1, ̂ F(fl) and \~τ iF(R). But this contradicts Theorem B.
Hence there is no sentence R of L such that \-p R and \~P iR.

Theorem C': The axioms fa-fd are independent. That is, it is not possible
to prove any one of the axioms from all of the others.

Proof: Suppose the theorem were false, and that there is a proof of one of
the axioms from the others. Note that ta = F(fa), . . . , and td = F(fd).
Then by the Theorem of Proof Correspondence, one could transform the
SCF proof into an SCT proof in which one of the SCT axioms is proven from
the others. But this contradicts Theorem C. Hence the axioms fa-fd are
independent.

I will prove a few intermediate theorems before proving the remaining
analogous theorems.

Theorem 2: For any sentence R of L, if R is LT, then F(R) is LF.

Proof: Suppose R is LT. Then by Theorem D, ^R. Then by Corollary 1,
t-pF(R). Then by Theorem A', F(R) is LF.

Theorem 3: If F(R) is LF, then R is LT, for R an arbitrary sentence of L.

Proof: Suppose F(R) is LF. Then iF(R) is LT. ThusF(iβ) is LT. Then
by Theorem 2, F(F(ΊR)) is LF. By Theorem 1, iR is LF. Hence R is LT.

Theorem 4: Let R, Rx, and R2 be sentences of L. The following are
equivalent:

(a) R is L T if and only if F(R) is L F,
(6) R is L F if and only if F(R) is LT,
(c) RιLER2ifandonlyifF{Rι)LEF{R2).
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Proof: (a) implies (b): Suppose (a) is true. Let R be an arbitrary sentence
of L that is LF. Then πβ is LT. By (a), F(ΊR) is then LF, and hence
iF(R) is LF. Thus F(R) is LT. Let R be an arbitrary sentence of L such
that F(R) is LT. Then by (a), F(F(R)) is LF. By Theorem 1, R is LF.

(b) implies (c): Suppose (b) is true. Let Rx and R2 be arbitrary
sentences of L such that Rx LE tf2. Then (Rx & R2) v (ΊRX & ΊR2) is LT.
Thus F ( F ( ( R 1 & R 2 ) V ( Ί J R 1 & iR2))) is LT, by Theorem 1. By (b^FU^fe
RjviiRj^&iRj) is LF, and thus iF((R1 & R2) v (ΊR1 & -|β2)) is LT. But
then (F(flx) 8ιF(R2))v(iF(R1) & ii^(β2)) is LT. Hence, F(RX) LEF(R2). To
prove Rt LER2 if FίflJ LE F(R2), it is only necessary to reverse the steps
in the above argument.

(c) implies (a): Suppose (c) is true. Assume R is LT. Then R L E ή v
iPj . Thus by (c), F(R) LE F(Pλ v i P ^ . But ̂ v i P j is just P x & τP 1 ?

which is LF. Thus F(R) is LF. Now, assume F(R) is LF. ThenF(tf) LEPX &
iPi . By (c),F(F(R)) LE F(PX & i P j . But F(F(R)) = R by Theorem 1, and
F(P 2 & Ί P J = Pxv Ί P I . Thus β LE Pxv i P ^ Hence R is LT.

Theorem 5: fl is LF if and only if F(R) is LT, for any sentence R of L.

Proof: The theorem follows directly from Theorems 2, 3, and 4.

Theorem 6: Rx LE R2 if and only if F(RX) LE F(R2), for any sentences Rx

and R2 of L.

Proof: The theorem follows directly from Theorems 2 , 3 , and 4.

I will now prove the remaining two analogue theorems.

Theorem D': SCF is complete in the sense that if a sentence R of L is LF,
then t-pR.

Proof: Suppose R is a sentence of I that is LF. Then by Theorem 5, F(R)
is LT. Thus by Theorem D, ^F(R). By Corollary 1, *-pF{F{R)). By
Theorem 1, \yR.

Theorem E f: SCF is complete in the sense that if a sentence of L that is
not provable from the axioms is added to the system as an axiom, the new
system will be inconsistent.

Proof: Let R be a sentence of L such that not ̂  R. Then R is not L F, by
Theorem D'. By Theorem 5, F(R) is not LT. Add F(R) to SCT as an axiom.
By Theorem E, the new system is inconsistent. That is, for some sentence
Rx of L, {F{R)}^ΓR1 and {F(R)} I~T I R X . By Corollary 2, {F(F(R))} ^FiRj
and {F{F(R))}^-p F(iRλ). But since F{iRx) = iF{Rx), {F{F(R))} \-F iF(Rλ). By
Theorem 1, {R} f-p F{Rj and {R} ̂ p iF(Rx). Thus the new system is incon-
sistent.

It seems then that the system SCF has all of the "nice" logical
properties that the system SCT possesses.

4. Further Comments. The obvious next step to take is to formulate a
system of predicate calculus for logically false sentences. This work is
currently in progress.
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Another interesting problem that arises in connection with this study is
developing an analogous finite axiomatization for logically contingent (LC)
sentences. There are many difficulties. For example, consider possible
rules of proof for such a system. Clearly the rule of substitution cannot be
used as it stands. P1v P2 is LC, but the result of substituting ΊPX for P2 in
that sentence would not be LC. This difficulty suggests a rule of substitu-
tion something like the following: We may substitute in a sentence of L for
a sentential variable any LC sentence of L that has no sentential variables
in common with the original sentence except perhaps the variable for which
substitution is being made.

Other difficulties with rules of proof arise when one considers what
possible deductions could be made from Rλ & R2 or RιvR2. If all we know
about Rί is that it is LC (has occurred in the proof), then we can conclude
nothing about R2 from either the fact that Rx & R2 is LC (has occurred in
the proof) or the fact that RxvR2 is LC (has occurred in the proof). This
does suggest a rule something like: From Rλ & R2 and RλvR2, both Rλ and
R2 may be obtained.

Some oddities also arise in the meta-characterization of such a
system. We would not want SCC to be consistent in the sense that there is
no sentence such that both it and its negation are provable in the system.
On the contrary, if a sentence is provable, then we want its negation to be
provable as well, for if R is LC, then so is ΊR. Thus if the system is
complete in the sense that for any LC sentence R of L, R is provable in
SCC, then the system must be inconsistent in the above sense. However,
we would want SCC to be consistent in the sense that not every sentence of
L is provable in the system.

There are several points that lead me to suspect that SCC is finitely
axiomatizable, in spite of these and other difficulties. First, of course, is
the fact that SCT and SCF are both finitely axiomatizable. Secondly, the
set of LC sentences of L is completely decidable by truth tables. It would
seem odd to have a completely decidable set of sentences that was not
finitely axiomatizable.
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