ON THE NUMBER OF OVERLAPPING SUBSETS OF A SET

PAUL J. WELSH, JR.

In the course of some other research, cf. [2], the question arose whether or not, if we have two sets A and B, which are subsets of a given set M, and which overlap, i.e., $A \cap B \neq \phi, A-B \neq \phi$ and $B-A \neq \phi$, are there any more subsets of M which possess the same overlap property among themselves as well as with A and B. The theorem herein answers this affirmatively.

The following notation indicates the cardinality of the sets under investigation.

$$
\begin{aligned}
& \mathfrak{a}=\overline{\overline{A-B}} \\
& \mathfrak{b}=\overline{\overline{\overline{B-A}}} \\
& \mathfrak{c}=\overline{\overline{C(A \cup B)}}, \text { where } C(A) \text { is the complement of } A, \text { relative to } M \\
& \mathfrak{b}=\overline{\overline{A \cap B}}
\end{aligned}
$$

Let $D_{n} \subset A \cap B$ denote a subset of $A \cap B$ such that there exists an element $d_{n} \in A \cap B$ and $D_{n}=A \cap B-\left\{d_{n}\right\}$. Let D denote the set of all such sets. Let a_{i} denote elements of $A-B, b_{j}$ elements of $B-A, c_{m}$ elements of $C(A \cup B)$ and d_{n} elements of $A \cap B$. The following sets are used at various places in the proof:

```
E
E}\mp@subsup{}{}{2}={\mp@subsup{D}{k}{}\cup{\mp@subsup{c}{m}{}}|\mp@subsup{D}{k}{}\inD,\mp@subsup{c}{m}{}\in\textrm{C}(A\cupB)
E}\mp@subsup{E}{}{3}={\mp@subsup{D}{k}{}\cup{\mp@subsup{a}{i}{}}\cup{\mp@subsup{c}{m}{}}|\mp@subsup{D}{k}{}\inD,\mp@subsup{a}{i}{}\inA-B,\mp@subsup{c}{m}{}\in\textrm{C}(A\cupB)
E
E ^ { 5 } = \{ \{ a _ { i } \} \cup \{ b _ { j } ^ { \prime } \} \cup \{ c _ { m } \} \| a _ { i } \in A - B , b _ { j } \in B - A , c _ { m } \in \mathrm { C } ( A \cup B ) \}
E
E
E
E9}={{\mp@subsup{a}{i}{}}\cup{\mp@subsup{b}{j}{\prime}}\cupC(A\cupB)|\mp@subsup{a}{i}{}\inA-B,\mp@subsup{b}{j}{}\inB-A
E }\mp@subsup{}{}{10}={{\mp@subsup{d}{k}{}}\cupC(A\cupB)|\mp@subsup{d}{k}{}\inA\capB
```

Define the predicate $\mathrm{P}(A, B)$ as follows:

$$
[A B]: \mathrm{P}(A, B) . \equiv . A \cap B \neq \phi . A-B \neq \phi . B-A \neq \phi
$$

Notice that if $A, B \subset M$, then $M=(A \cap B) \cup(A-B) \cup(B-A) \cup C(A \cup B)$, where $\mathrm{C}(A \cup B)$ is the complement relative to M. Also notice that the pairwise intersection of these components of M is empty; hence, we have

$$
\overline{\bar{M}}=\mathfrak{a}+\mathfrak{b}+\mathfrak{c}+\mathfrak{b}
$$

Lemma 1. If M is a finite set with $\overline{\bar{M}}=\mathfrak{m}$, and if $A \subset M, B \subset M$, and $\mathrm{P}(A, B)$, then lhere are at least m subsets of M, A_{1}, \ldots, A_{m} such that $A, B \in\left\{A_{i} \mid i \leqq m\right\}$ and $\mathrm{P}\left(A_{i}, A_{j}\right)$ for all $i, j, \leqq m, i \neq j$.

Proof: We shall work by cases.
a) $\mathfrak{b}>2, \mathfrak{a}, \mathfrak{b}>1$. There are d distinct sets in D and if $D_{k} \in D$ then $\overline{\bar{D}}_{k}=$ b-1. Clearly for $D_{1}, D_{2} \in D, D_{1} \neq D_{2}$ we have $\mathrm{P}\left(D_{1}, D_{2}\right)$. Let $E_{1}, E_{2} \in E^{1}$, $F_{1}, F_{2} \in E^{2}$, then by the disjointness of the components of M we have $\mathrm{P}\left(E_{1}, E_{2}\right)$ for $E_{1} \neq E_{2}, \mathrm{P}\left(F_{1}, F_{2}\right)$ for $F_{1} \neq F_{2}, \mathrm{P}\left(E_{1}, A\right), \mathrm{P}\left(E_{1}, B\right)$, for $E_{1} \in E^{1}$, $\mathrm{P}\left(F_{1}, A\right), \mathrm{P}\left(F_{1}, B\right)$, for $F_{1} \in E^{2}, \mathrm{P}\left(E_{1}, F_{1}\right)$, for $E_{1} \in E^{1}, F_{1} \in E^{2}$, and finally $\mathrm{P}(A, B)$ by assumption. $\overline{\overline{E^{1}}}=\mathfrak{b a b}, \overline{\overline{E^{2}}}=\mathfrak{b c}$ hence with A and B there are $\mathfrak{b a b}+\mathfrak{b c}$ sets satisfying P, but since $\mathfrak{b}>2$ and $\mathfrak{a}, \mathfrak{b}>1$ we have $\mathfrak{b a b}+\mathfrak{b c}=$ $\mathfrak{b}(\mathfrak{a b}+\mathfrak{c}) \geqq \mathfrak{b}(\mathfrak{a}+\mathfrak{b}+\mathfrak{c}) \geqq \mathfrak{a}+\mathfrak{b}+\mathfrak{c}+\mathfrak{b}=\mathfrak{m}$.
b) $\mathfrak{b}>2, \mathfrak{a}=1, \mathfrak{b}>1, \mathfrak{c} \neq 0$. Let $E_{1}, E_{2} \in E^{4}$ then if $E_{1} \neq E_{2}, \mathrm{P}\left(E_{1}, E_{2}\right)$. Also we have $\mathrm{P}\left(E_{1}, A\right), \mathrm{P}\left(E_{1}, B\right)$, for $E_{1} \in E^{4}$, and $\mathrm{P}(A, B)$. Therefore we have, including A and B, $\mathfrak{b b c}+2$ sets satisfying P , also $\mathfrak{b b c}+2 \geqq(\mathfrak{b}+\mathfrak{b}) \mathfrak{c}+2 \geqq$ $\mathfrak{b}+\mathfrak{b}+\boldsymbol{c}+1=\mathfrak{a}+\mathfrak{b}+\mathfrak{c}+\mathfrak{b}=\mathfrak{m}$.
c) $\mathfrak{b}>2, \mathfrak{a}=1, \mathfrak{b}>1, \mathfrak{c}=0$. Let $E_{1}, E_{2} \in E^{1}$ then from above in a), we have $\mathfrak{b} \mathfrak{b}+2$ sets satisfying P. But $\mathfrak{b b}+2 \geqq \mathfrak{b}+\mathfrak{b}+2 \geqq \mathfrak{a}+\mathfrak{b}+\mathfrak{c}+\mathfrak{b}=\mathfrak{m}$. Similarly using E^{3}, we can show b) and c) are true when $\mathfrak{b}>2, \mathfrak{a}>1, \mathfrak{b}=1$.
d) $\mathfrak{b}>2, \mathfrak{a}=\mathfrak{b}=1, \mathfrak{c} \neq 0$. Let $E_{1}, E_{2} \in E^{4}, F_{1}, F_{2} \in E^{5}$ then we have for $E_{1} \neq$ $E_{2} \mathrm{P}\left(E_{1}, E_{2}\right), \mathrm{P}\left(E_{1}, A\right), \mathrm{P}\left(E_{1}, B\right)$, and $\mathrm{P}(A, B)$ as before in b). Since $F_{1} \neq F_{2}$, there are $c_{m_{1}}$ and $c_{m_{2}}$ such that $c_{m_{1}} \in F_{1}$, and $c_{m_{2}} \in F_{2}$ and $c_{m_{1}} \neq c_{m_{2}}$. Hence, we also have $\mathrm{P}\left(F_{1}, F_{2}\right)$ for $F_{1} \neq F_{2}$. Clearly, $\mathrm{P}\left(F_{1}, A\right)$ and $\mathrm{P}\left(F_{1}, B\right)$ for $F_{1} \in E^{5}$ and finally we have $\mathrm{P}\left(E_{1}, F_{1}\right)$ since they have at least $\left\{b_{j}\right\}$ in common and $a_{i} \neq D_{k}$. Hence there are at least $2+\mathfrak{b c}+\boldsymbol{c}$ sets satisfying P and $2+\mathfrak{b c}+$ $\mathfrak{c} \geqq \mathfrak{a}+\mathfrak{b}+\boldsymbol{c}+\mathfrak{b}=\mathrm{m}$.
e) $\mathfrak{b}>2, \mathfrak{a}=\mathfrak{b}=1, \mathfrak{c}=0$. Using E^{1} again we have $2+\mathfrak{b}=\mathfrak{a}+\mathfrak{b}+\mathfrak{c}+\mathfrak{b}=\mathfrak{m}$ sets satisfying P.
f) $\mathfrak{d}=2, \mathfrak{a}, \mathfrak{b}>1$. Let $A \cap B=\left\{d_{1}, d_{2}\right\}$. Let $E_{1}, E_{2} \in E_{1}^{6}$ where $E_{1}^{6}=\left\{E \in E^{6}\right\}$ $\left.d_{k}=d_{1}\right\}$ and $F_{1}, F_{2} \in E^{7}$. We have $\mathrm{P}\left(E_{1}, E_{2}\right)$ for $E_{1} \neq E_{2}$ and $\mathrm{P}\left(E_{1}, A\right), \mathrm{P}\left(E_{1}, B\right)$, $\mathrm{P}\left(F_{1}, A\right)$ and $\mathrm{P}\left(F_{1}, B\right)$ as usual. For $F_{1} \neq F_{2}, \mathrm{P}\left(F_{1}, F_{2}\right)$ and finally $\mathrm{P}\left(E_{1}, F_{1}\right)$. Hence the set satisfying P has at least $2+a \mathfrak{b}+\boldsymbol{c}$ elements but $2+\boldsymbol{a b}+\boldsymbol{c} \geqq$ $\mathfrak{a}+\mathfrak{b}+\mathfrak{c}+\mathfrak{b}=\mathrm{m}$.
g) $\mathfrak{b}=2, \mathfrak{a}=1, \mathfrak{b}>1$. If we consider sets in E^{6} and E^{8} we see that they, along with A and B, satisfy P. So we have $2 \mathfrak{b}+\mathfrak{c}+2$ such sets and $2 \mathfrak{b}+\mathfrak{c}+$ $2>a+b+c+b=m$.
h) $\mathfrak{b}=2, \mathfrak{a}>1, \mathfrak{b}=1$. By symmetry in E^{6} we proceed as in g).
i) $\mathfrak{b}=2, \mathfrak{a}=\mathfrak{b}=1$. With this we have $\overline{\overline{E^{6}}}=2$ and $\overline{\overline{E^{8}}}=\mathfrak{c}$ and the sets in E^{6} and E^{8}, along with A and B, satisfy P as above. Hence, we have at least $2+\mathfrak{c}+2$ sets satisfying P and $2+\mathfrak{c}+2=\mathfrak{a}+\mathfrak{b}+\mathfrak{c}+\mathfrak{b}=\mathfrak{m}$.
j) $\mathfrak{b}=1, \mathfrak{a}, \mathfrak{b}>1$. Consider again E_{1}^{6} and E^{8} and we have $\mathfrak{a b}+\mathfrak{c}+2$ sets satisfying P and $\mathfrak{a b}+\mathfrak{c}+2 \geqq \mathfrak{a}+\mathfrak{b}+\mathfrak{c}+2>\mathfrak{a}+\mathfrak{b}+\mathfrak{c}+\mathfrak{b}=\mathfrak{m}$.
k) $\mathfrak{b}=1, \mathfrak{a}=1, \mathfrak{b}>1$. If we consider sets in E^{8} and E^{9}, we find they satisfy P , along with A and B, and there are $c+a b+2$ such sets, while $a b+c+2=$ $\mathfrak{b}+\mathfrak{c}+2=\mathfrak{a}+\mathfrak{b}+\mathfrak{c}+\mathfrak{b}=m$.

1) $\mathfrak{b}=1, \mathfrak{a}>1, \mathfrak{b}=1$. Similar to k) since E^{9} is symmetric in A and B.
m) $\mathfrak{b}=\mathfrak{a}=\mathfrak{b}=1, \mathfrak{c} \neq 0$. Then the sets in E^{5} and E^{10}, with A and B, satisfy P so there are $\mathfrak{c}+1+2$ such sets and $\mathfrak{c}+1+2=\mathfrak{a}+\mathfrak{b}+\mathfrak{c}+\mathfrak{b}=\mathfrak{m}$.
n) $\mathfrak{b}=\mathfrak{a}=\mathfrak{b}=1, \mathfrak{c}=0$. In this case, $\overline{\bar{M}}=3$ and the result is obvious.

Thus by a)-n) we have that for any two overlapping subsets A and B of a finite set M, whose cardinality is \mathfrak{m}, there are at least \mathfrak{m} subsets, including A and B, which overlap.
Lemma 2. If M is a set which is not finite, such that $\overline{\bar{M}}=m$, and if $A \subset M$, $B \subset M$, and $P(A, B)$, then there are at least m subsets of M, including A and B, which satisfy P pairwise.

The proof of this theorem requires the use of the axiom of choice. As before, $\overline{\bar{M}}=a+\mathfrak{b}+\boldsymbol{c}+\mathfrak{b}=\mathfrak{m}$, but since \mathfrak{m} is not finite, by theorems of Iseki and Leśniewski, cf. [1], p. 414, we have that $\mathfrak{a}=m$ or $\mathfrak{b}=m$ or $c=m$ or $\delta=\mathfrak{m}$.

Proof:
a) $\mathfrak{b}=\mathfrak{m}$. There are \mathfrak{m} sets in E^{1} which, along with A and B, satisfy P , so there are at least m subsets of M satisfying P .
b) $\mathfrak{a}=\mathfrak{m}$ or $\mathfrak{b}=\mathfrak{m}$. Here we have \mathfrak{m} subsets of M in E^{6} which, including A and B, overlap pairwise.
c) $\mathfrak{c}=m$. Using E^{8}, A, and B, we have at least m overlapping subsets of M satisfying P.

Hence if M has non-finite cardinality \mathfrak{m}, and A and B are overlapping subsets of M, there are at least m subsets of M, including A and B which satisfy P. Thus from Lemmas 1 and 2 we have:
Theorem. If $A \subset M, B \subset M, \overline{\bar{M}}=\mathrm{m}$, and $\mathrm{P}(A, B)$, then there are at least m subsets of M, including A and B, which satisfy P.

Note that the proof for M a non-finite cardinal depends upon the axiom of choice, while the proof for the finite case does not.

REFERENCES

[1] Sierpiński, Wacław, Cardinal and Ordinal Numbers, Polish Scientific Publishers, Warsaw (1958).
[2] Welsh, Paul J., Primitivity in Mereology, Ph.D. Thesis in Mathematics, University of Notre Dame (August 1971).

University of Notre Dame
Notre Dame, Indiana

