Notre Dame Journal of Formal Logic Volume XIV, Number 2, April 1973 NDJFAM

ON THE NUMBER OF OVERLAPPING SUBSETS OF A SET

PAUL J. WELSH, JR.

In the course of some other research, cf. [2], the question arose whether or not, if we have two sets A and B, which are subsets of a given set M, and which overlap, i.e., $A \cap B \neq \phi$, $A - B \neq \phi$ and $B - A \neq \phi$, are there any more subsets of M which possess the same overlap property among themselves as well as with A and B. The theorem herein answers this affirmatively.

The following notation indicates the cardinality of the sets under investigation.

$$a = \overline{A - B}$$

$$b = \overline{B - A}$$

$$c = \overline{C(A \cup B)}, \text{ where } C(A) \text{ is the complement of } A, \text{ relative to } M,$$

$$b = \overline{A \cap B}$$

Let $D_n \subseteq A \cap B$ denote a subset of $A \cap B$ such that there exists an element $d_n \in A \cap B$ and $D_n = A \cap B - \{d_n\}$. Let D denote the set of all such sets. Let a_i denote elements of A - B, b_j elements of B - A, c_m elements of $C(A \cup B)$ and d_n elements of $A \cap B$. The following sets are used at various places in the proof:

$$\begin{split} E^{1} &= \{D_{k} \cup \{a_{i}\} \cup \{b_{j}\} \mid D_{k} \in D, \ a_{i} \in A - B, \ b_{j} \in B - A\} \\ E^{2} &= \{D_{k} \cup \{c_{m}\} \mid D_{k} \in D, \ c_{m} \in \mathsf{C}(A \cup B)\} \\ E^{3} &= \{D_{k} \cup \{a_{i}\} \cup \{c_{m}\} \mid D_{k} \in D, \ a_{i} \in A - B, \ c_{m} \in \mathsf{C}(A \cup B)\} \\ E^{4} &= \{D_{k} \cup \{b_{j}\} \cup \{c_{m}\} \mid D_{k} \in D, \ b_{j} \in B - A, \ c_{m} \in \mathsf{C}(A \cup B)\} \\ E^{5} &= \{\{a_{i}\} \cup \{b_{j}\} \cup \{c_{m}\} \mid a_{i} \in A - B, \ b_{j} \in B - A, \ c_{m} \in \mathsf{C}(A \cup B)\} \\ E^{6} &= \{\{d_{k}\} \cup \{a_{i}\} \cup \{b_{j}\} \mid d_{k} \in A \cap B, \ a_{i} \in A - B, \ b_{j} \in B - A\} \\ E^{7} &= \{\{d_{1}\} \cup \{c_{m}\} \mid d_{1} \in A \cap B, \ c_{m} \in \mathsf{C}(A \cup B)\} \\ E^{8} &= \{(A \cap B) \cup \{c_{m}\} \mid c_{m} \in \mathsf{C}(A \cup B)\} \\ E^{9} &= \{\{a_{i}\} \cup \{b_{j}\} \cup \mathsf{C}(A \cup B) \mid a_{i} \in A - B, \ b_{j} \in B - A\} \\ E^{10} &= \{\{d_{k}\} \cup \mathsf{C}(A \cup B) \mid d_{k} \in A \cap B\} \\ \end{split}$$

Define the predicate P(A, B) as follows:

$$[AB]: \mathsf{P}(A, B) := A \cap B \neq \phi. A - B \neq \phi. B - A \neq \phi.$$

Received February 11, 1971

Notice that if $A, B \subseteq M$, then $M = (A \cap B) \cup (A - B) \cup (B - A) \cup C(A \cup B)$, where $C(A \cup B)$ is the complement relative to M. Also notice that the pairwise intersection of these components of M is empty; hence, we have

$$\overline{M} = \mathbf{a} + \mathbf{b} + \mathbf{c} + \mathbf{b}$$

Lemma 1. If M is a finite set with $\overline{M} = \mathfrak{m}$, and if $A \subset M$, $B \subset M$, and P(A, B), then lhere are at least m subsets of M, A_1, \ldots, A_m such that $A, B \in \{A_i | i \leq \mathfrak{m}\}$ and $P(A_i, A_j)$ for all $i, j, \leq \mathfrak{m}, i \neq j$.

Proof: We shall work by cases.

a) b > 2, a, b > 1. There are *d* distinct sets in *D* and if $D_k \epsilon D$ then $\overline{D}_k = b - 1$. Clearly for D_1 , $D_2 \epsilon D$, $D_1 \neq D_2$ we have $P(D_1, D_2)$. Let E_1 , $E_2 \epsilon E^1$, F_1 , $F_2 \epsilon E^2$, then by the disjointness of the components of *M* we have $P(E_1, E_2)$ for $E_1 \neq E_2$, $P(F_1, F_2)$ for $F_1 \neq F_2$, $P(E_1, A)$, $P(E_1, B)$, for $E_1 \epsilon E^1$, $P(F_1, A)$, $P(F_1, B)$, for $F_1 \epsilon E^2$, $P(E_1, F_1)$, for $E_1 \epsilon E^1$, $F_1 \epsilon E^2$, and finally P(A, B) by assumption. $\overline{E^1} = bab$, $\overline{E^2} = bc$ hence with *A* and *B* there are bab + bc sets satisfying P, but since b > 2 and a, b > 1 we have $bab + bc = b(ab + c) \ge b(a + b + c) \ge a + b + c + b = m$.

b) $\delta > 2$, a = 1, b > 1, $c \neq 0$. Let E_1 , $E_2 \in E^4$ then if $E_1 \neq E_2$, $P(E_1, E_2)$. Also we have $P(E_1, A)$, $P(E_1, B)$, for $E_1 \in E^4$, and P(A, B). Therefore we have, including A and B, $\delta b c + 2$ sets satisfying P, also $\delta b c + 2 \ge (\delta + b) c + 2 \ge \delta + b + c + 1 = a + b + c + b = m$.

c) b > 2, a = 1, b > 1, c = 0. Let E_1 , $E_2 \in E^1$ then from above in a), we have bb + 2 sets satisfying P. But $bb + 2 \ge b + b + 2 \ge a + b + c + b = m$. Similarly using E^3 , we can show b) and c) are true when b > 2, a > 1, b = 1.

d) $\mathfrak{b} > 2$, $\mathfrak{a} = \mathfrak{b} = 1$, $\mathfrak{c} \neq 0$. Let E_1 , $E_2 \epsilon E^4$, F_1 , $F_2 \epsilon E^5$ then we have for $E_1 \neq E_2 \ \mathsf{P}(E_1, E_2)$, $\mathsf{P}(E_1, A)$, $\mathsf{P}(E_1, B)$, and $\mathsf{P}(A, B)$ as before in b). Since $F_1 \neq F_2$, there are c_{m_1} and c_{m_2} such that $c_{m_1} \epsilon F_1$, and $c_{m_2} \epsilon F_2$ and $c_{m_1} \neq c_{m_2}$. Hence, we also have $\mathsf{P}(F_1, F_2)$ for $F_1 \neq F_2$. Clearly, $\mathsf{P}(F_1, A)$ and $\mathsf{P}(F_1, B)$ for $F_1 \epsilon E^5$ and finally we have $\mathsf{P}(E_1, F_1)$ since they have at least $\{b_j\}$ in common and $a_i \neq D_k$. Hence there are at least $2 + \mathfrak{b}\mathfrak{c} + \mathfrak{c}$ sets satisfying P and $2 + \mathfrak{b}\mathfrak{c} + \mathfrak{c} = \mathfrak{m}$.

e) b > 2, a = b = 1, c = 0. Using E^1 again we have 2 + b = a + b + c + b = m sets satisfying P.

f) $\mathbf{b} = 2$, \mathbf{a} , $\mathbf{b} > 1$. Let $A \cap B = \{d_1, d_2\}$. Let E_1 , $E_2 \epsilon E_1^6$ where $E_1^6 = \{E \epsilon E^6 \mid d_k = d_1\}$ and F_1 , $F_2 \epsilon E^7$. We have $P(E_1, E_2)$ for $E_1 \neq E_2$ and $P(E_1, A)$, $P(E_1, B)$, $P(F_1, A)$ and $P(F_1, B)$ as usual. For $F_1 \neq F_2$, $P(F_1, F_2)$ and finally $P(E_1, F_1)$. Hence the set satisfying P has at least $2 + \mathfrak{ab} + \mathfrak{c}$ elements but $2 + \mathfrak{ab} + \mathfrak{c} \ge \mathfrak{a} + \mathfrak{b} + \mathfrak{c} + \mathfrak{b} = \mathfrak{m}$.

g) b = 2, a = 1, b > 1. If we consider sets in E^6 and E^8 we see that they, along with A and B, satisfy P. So we have 2b + c + 2 such sets and 2b + c + 2 > a + b + c + b = m.

h) $\mathfrak{b} = 2$, $\mathfrak{a} > 1$, $\mathfrak{b} = 1$. By symmetry in E^6 we proceed as in g).

i) b = 2, a = b = 1. With this we have $\overline{E^6} = 2$ and $\overline{E^8} = c$ and the sets in E^6 and E^8 , along with A and B, satisfy P as above. Hence, we have at least 2 + c + 2 sets satisfying P and 2 + c + 2 = a + b + c + b = m.

j) b = 1, a, b > 1. Consider again E_1^6 and E^8 and we have ab + c + 2 sets satisfying P and $ab + c + 2 \ge a + b + c + 2 > a + b + c + b = m$.

k) b = 1, a = 1, b > 1. If we consider sets in E^8 and E^9 , we find they satisfy P, along with A and B, and there are c + ab + 2 such sets, while ab + c + 2 = b + c + 2 = a + b + c + b = m.

1) b = 1, a > 1, b = 1. Similar to k) since E^9 is symmetric in A and B.

m) b = a = b = 1, $c \neq 0$. Then the sets in E^5 and E^{10} , with A and B, satisfy P so there are c + 1 + 2 such sets and c + 1 + 2 = a + b + c + b = m.

n) b = a = b = 1, c = 0. In this case, $\overline{M} = 3$ and the result is obvious.

Thus by a)-n) we have that for any two overlapping subsets A and B of a finite set M, whose cardinality is m, there are at least m subsets, including A and B, which overlap.

Lemma 2. If M is a set which is not finite, such that $\overline{M} = \mathfrak{m}$, and if $A \subseteq M$, $B \subseteq M$, and P(A, B), then there are at least \mathfrak{m} subsets of M, including A and B, which satisfy P pairwise.

The proof of this theorem requires the use of the axiom of choice. As before, $\overline{\overline{M}} = \mathfrak{a} + \mathfrak{b} + \mathfrak{c} + \mathfrak{b} = \mathfrak{m}$, but since \mathfrak{m} is not finite, by theorems of Iseki and Leśniewski, *cf*. [1], p. 414, we have that $\mathfrak{a} = \mathfrak{m}$ or $\mathfrak{b} = \mathfrak{m}$ or $\mathfrak{c} = \mathfrak{m}$ or $\mathfrak{b} = \mathfrak{m}$.

Proof:

a) $\delta = \mathfrak{m}$. There are \mathfrak{m} sets in E^1 which, along with A and B, satisfy P, so there are at least \mathfrak{m} subsets of M satisfying P.

b) a = m or b = m. Here we have m subsets of M in E^6 which, including A and B, overlap pairwise.

c) $\mathfrak{c} = \mathfrak{m}$. Using E^8 , A, and B, we have at least \mathfrak{m} overlapping subsets of M satisfying P.

Hence if M has non-finite cardinality \mathfrak{m} , and A and B are overlapping subsets of M, there are at least \mathfrak{m} subsets of M, including A and B which satisfy P. Thus from Lemmas 1 and 2 we have:

Theorem. If $A \subseteq M$, $B \subseteq M$, $\overline{M} = \mathfrak{m}$, and P(A, B), then there are at least \mathfrak{m} subsets of M, including A and B, which satisfy P.

Note that the proof for M a non-finite cardinal depends upon the axiom of choice, while the proof for the finite case does not.

PAUL J. WELSH, JR.

REFERENCES

- [1] Sierpiński, Wacław, Cardinal and Ordinal Numbers, Polish Scientific Publishers, Warsaw (1958).
- [2] Welsh, Paul J., *Primitivity in Mereology*, Ph.D. Thesis in Mathematics, University of Notre Dame (August 1971).

University of Notre Dame Notre Dame, Indiana