Notre Dame Journal of Formal Logic Volume XIV, Number 2, April 1973 NDJFAM

SUMS OF AT LEAST 9 ORDINALS

MARTIN M. ZUCKERMAN

1 Introduction* Ordinal addition is noncommutative. For each positive integer n, let m_n be the maximum number of distinct values that can be assumed by a sum of n nonzero ordinals in all n! permutations of the summands. Then for $n \ge 3$, $m_n \le n!$; furthermore,

$$\lim_{n \to \infty} \frac{m_n}{n!} = 0.$$

Formulas for m_n were given by Erdös, [1], and Wakulicz, [3] and [5]; from these formulas it is readily established that for $n \ge 10$, $n \ne 14$,

$$m_n = 3^{4(k-(l+1))-3(1+l)} 11^{1+l} 193^{l+1},$$

where n = 5k + l for k, l nonnegative integers with $l \le 4$, and where for nonnegative integers r and s,

$$r \div s = \begin{cases} r - s \text{ for } r \ge s, \\ 0 \text{ for } r < s. \end{cases}$$

For positive integers n and k let Σ_n be the symmetric group on n letters and let E_n be the set of all k for which there exist n (not necessarily distinct) nonzero ordinals $\alpha_1, \alpha_2, \ldots, \alpha_n$ such that

$$\sum_{i=1}^{n} \alpha_{\phi(i)}$$

takes on exactly k values as ϕ ranges over Σ_n . It is known that $E_n = \{1, 2, \ldots, m_n\}$ for n = 1, 2, 3, 4, 6, 7, and 8 ([2], [4], and [6]), but that $E_5 = \{1, 2, \ldots, m_5\} - \{30\}$ ([5]). In this paper we show that E_n is properly included in $\{1, 2, \ldots, m_n\}$ for all $n \ge 9$.

For every ordinal number $\alpha > 0$, let

(1)
$$\alpha = \omega^{\lambda_1} a_1 + \omega^{\lambda_2} a_2 + \ldots + \omega^{\lambda_r} a_r$$

Received December 17, 1970

^{*}This research was partially supported by a City University of New York Faculty Summer Research Grant, 1968.

be the (Cantor) normal form of α ; here r, a_1, a_2, \ldots, a_r are positive integers and $\lambda_1 > \lambda_2 > \ldots > \lambda_k \ge 0$ are ordinals. In (1), λ_1 is called the degree of α (written, deg α) and a_1 , the leading coefficient of α . If deg $\alpha = \lambda_1$, we call $\alpha = \lambda_1$ -ordinal. By the remainder of α we shall always mean $\omega^{\lambda_2}a_2 + \ldots + \omega^{\lambda_r}a_r$ (or zero, if r = 1).

Unless otherwise specified, variables will range over (nonnegative) integers.

2 The Main Result Let $n \ge 1$. The positive integers k_1, k_2, \ldots, k_s are said to form an S_n -system if

 $\sum_{i=1}^{s} k_i = n,$ and whenever $\sum_{i=1}^{t} l_i = n$, then $l_1 \prod_{i=2}^{t} (1 + l_i 2^{l_i - 1}) \le k_1 \prod_{i=2}^{s} (1 + k_i 2^{k_i - 1}).$

In any S_n -system for $n \ge 3$, k_1 must be 1, and for $n \ge 9$ and $2 \le j \le s$, k_j is 4, 5, or 6 ([3], pp. 256-260); thus for $n \ge 9$, $s \ge 3$.

Lemma 1. For $n \ge 9$, let 1, k_2, \ldots, k_s form an S_n -system and let $\sum_{i=1}^{t} l_i = n$, where l_1, l_2, \ldots, l_t are positive integers that do not form an S_n -system.

Then $l_1 \prod_{i=2}^{l} (1 + l_i 2^{l_i-1}) \leq \prod_{i=2}^{s} (1 + k_i 2^{k_i-1}) - 36$.

We omit the routine proof of Lemma 1, which utilizes the calculations of [3], pp. 256-260 and [5], p. 239. We now show that for $n \ge 9$, E_n is properly included in $\{1, 2, \ldots, m_n\}$. To this end we define $s_n = \max(E_n - \{m_n\})$, $n \ge 1$. It suffices to show that $s_n < m_n - 1$ for $n \ge 9$.

Theorem 1. For all $n \ge 9$, E_n is properly included in $\{1, 2, \ldots, m_n\}$. In fact,

(a) for n = 9, 10, 14, 15, and 20, $s_n = m_n - 4$;

(b) for n = 11, 12, 16, 17, 18, and for all $n \ge 21$, $s_n = m_n - 8$;

(c) for n = 13 and 19, $s_n = m_n - 16$.

Proof. For any $n \ge 1$, let $\alpha_1, \alpha_2, \ldots, \alpha_n$ be any ordinals of which

(2) $\begin{cases} k_i \text{ are of degree } \lambda_i, \ i = 1, 2, \ldots, s, \\ \text{where } \lambda_1 > \lambda_2 > \ldots > \lambda_s, \text{ and } \sum_{i=1}^s k_i = n. \end{cases}$

Erdös, [1] and Wakulicz, [3] showed that $\alpha_1, \alpha_2, \ldots, \alpha_n$ yield at most $k_1 \prod_{i=2}^{s} (1 + k_i \ 2^{k_i - 1})$

distinct sums in all n! permutations of these summands and that, in fact, there exist ordinals $\alpha_1, \alpha_2, \ldots, \alpha_n$ that yield m_n sums; here k_1, k_2, \ldots, k_s , of (2), form an S_n -system. Furthermore, for $n \ge 9$, it follows from Lemma 1 that for the purpose of our theorem we need only consider ordinals $\alpha_1, \alpha_2, \ldots, \alpha_n$, subject to (2), for which k_1, k_2, \ldots, k_s form an S_n -system.

Let $n \ge 9$. Let

 α_1

$$= \omega^{\lambda_1} \mathcal{Q}_{1,1} + a_{1,1} + \omega^{\lambda_2} \mathcal{Q}_{1,2} + a_{1,2} + \ldots + \omega^{\lambda_s} \mathcal{Q}_{1,s} + a_{1,s}$$

where $\mathcal{A}_{1,1}$ and $\mathcal{A}_{i,j}$ are positive integers for

$$\sum_{\mu=1}^{j-1} k_{\mu} < i \leq \sum_{\mu=1}^{j} k_{\mu}, \ 2 \leq j \leq s,$$

and $\mathcal{Q}_{i,j}$ are nonnegative integers otherwise; $a_{i,j}$ is the sum of those terms of α_i which are of degree d, where $\lambda_{j+1} \le d \le \lambda_j$, $1 \le i \le n$ and $i \le j \le s$, and $a_{i,s}$ is the sum of those terms of α_i which are of degree $<\lambda_s$, $1 \le i \le n$.

Consider all ordinals of the form

$$\begin{split} \beta_{1} &= \alpha_{1} \\ \beta_{2} &= \omega^{\lambda_{2}} \mathcal{Q}_{(2)} + a_{i_{2},2} + \omega^{\lambda_{3}} \mathcal{Q}_{i_{2},3} + a_{i_{2},3} + \omega^{\lambda_{4}} \mathcal{Q}_{i_{2},4} + a_{i_{2},4} + \ldots + \omega^{\lambda_{5}} \mathcal{Q}_{i_{2},5} + a_{i_{2},5} \\ \beta_{3} &= \omega^{\lambda_{3}} \mathcal{Q}_{(3)} + a_{i_{3},3} + \omega^{\lambda_{4}} \mathcal{Q}_{i_{3},4} + a_{i_{3},4} + \ldots + \omega^{\lambda_{5}} \mathcal{Q}_{i_{3},5} + a_{i_{3},5} \\ \vdots \\ \beta_{5} &= \omega^{\lambda_{5}} \mathcal{Q}_{(5)} + a_{i_{5},5}, \end{split}$$

where for each j, $2 \le j \le s$, we have

(3)
$$\sum_{\mu=1}^{j} k_{\mu} < i_{j} \leq \sum_{\mu=1}^{j} k_{\mu}$$

and

(4)
$$\begin{cases} \mathcal{A}_{(j)} = \mathcal{A}_{ij,j} + \sum \mathcal{A}_{i,j} (i \in J_j), \text{ where } J_j; \text{ is some subset (possible empty)} \\ \text{of} \\ \left\{ 1 + \sum_{\mu=1}^{j-1} k_{\mu}, 2 + \sum_{\mu=1}^{j-1} k_{\mu}, \ldots, \sum_{\mu=1}^{j} k_{\mu} \right\} - \{i_j\}. \end{cases}$$

Then for any $\phi \in \Sigma_n$,

 $\sum_{i=1}^{n} \alpha_{\phi(i)}$ is of the form $\sum_{i=1}^{s} \beta_{\psi(i)}$,

where $\psi \in \Sigma_s$. It follows that either

 $\sum_{i=1}^{n} \alpha_{\phi(i)} = \beta_1 \text{ or else } \sum_{i=1}^{n} \alpha_{\phi(i)} \text{ is of the form}$

$$\beta_1 + \sum_{\mu=1}^{t} \beta_{j_{\mu}}$$

where $2 \le j_2 < j_3 < \ldots < j_t \le s$. Let $f(\mu) = k_{j_{\mu}}$, $\mu = 2, 3, \ldots, t$; then there are at most

$$\prod_{\mu=2}^{t} f(\mu) 2^{f(\mu)-1}$$

possibilities corresponding to the index set

(6)
$$\{j_1, j_2, \ldots, j_t\} = \{1, j_2, \ldots, j_t\}, t \ge 2$$

(and exactly one possibility for the former case).

Suppose there were less than $k_j 2^{k_j-1}$ possibilities for some β_j , $2 \le j \le s$. Then corresponding to each index set (6) containing j, at least $k_j 2^{k_j-1}$ sums (5) would be eliminated. We shall show that $s_n > m_n - k_j 2^{k_j-1} \ge m_n - 32$ for each $j = 2, 3, \ldots, s$; thus we need only consider ordinals α_1 , $\alpha_2, \ldots, \alpha_n$ for which

(7) {there are precisely $k_j 2^{k_j - 1}$ distinct sums for each of the corresponding β_j , $2 \le j \le s$.

(7) implies that there are precisely $1 + k_j 2^{k_j-1}$ distinct sums of the form $\beta_1 + \beta_j$ for each $j, 2 \le j \le s$. Hence we need only be concerned with index sets (6) in which $t \ge 3$. We note further that considerations along the lines of [3], pp. 261-263, show that (7) implies that for each such j, if $u, v(\ne u)$ satisfy

$$\sum_{\mu=1}^{j-1} k_{\mu} < u \le \sum_{\mu=1}^{j} k_{\mu}, \ \sum_{\mu=1}^{j-1} k_{\mu} < v \le \sum_{\mu=1}^{j} k_{\mu}$$

then α_u and α_v have distinct leading coefficients and distinct remainders. Consider a sum of the form (5) in which $t \ge 3$, and let $\Gamma = \{j_2, j_3, \ldots, j_t\}$ where $\{1\} \cup \Gamma$ is the corresponding index set (6). For $\gamma(=j_k) \in \Gamma$, let $\gamma' = j_{k-1}$ and let $\gamma^+ = j_{k+1}$ in case k < t. In the notation of (3) and (4) any sum of the form (5) can be written as

$$(8) \quad \omega^{\lambda_1} \mathcal{A}_{1,1} + e_{1,1} + \Sigma(\omega^{\lambda_{\gamma}} (\mathcal{A}_{i_{\gamma'},\gamma} + \Sigma \mathcal{A}_{i,\gamma} (i \in J_{\gamma}) + \mathcal{A}_{i_{\gamma},\gamma}) + e_{i_{\gamma},\gamma}) \ (\gamma \in \Gamma),$$

in which $i_1 = 1$ and for each $\gamma \in \Gamma$, $e_{i_{\gamma},\gamma}$ consists of all terms of $\alpha_{i_{\gamma}}$ that are of degree less than λ_{γ} and (in case $\gamma = j_k$ with k < t) greater than $\lambda_{\gamma+}$. There is one possibility for $\langle \mathcal{Q}_{1,1}, e_{1,1}, \mathcal{Q}_{1,j_2} \rangle$, and by (7), there are $k_{\gamma} 2^{k_{\gamma}-1}$ possibilities for

(9)
$$\langle \Sigma \mathcal{Q}_{i,\gamma} (i \in J_{\gamma}) + \mathcal{Q}_{i\gamma,\gamma}, e_{i\gamma,\gamma}, \mathcal{Q}_{i\gamma,\gamma+\gamma} \rangle$$

for each $\gamma \in \Gamma$ - $\{j_t\}$ as well as for

$$(10) \qquad \qquad \langle \Sigma \mathscr{A}_{i,\gamma} (i \in J_{\gamma}) + \mathscr{A}_{i\gamma,\gamma}, e_{i\gamma,\gamma} \rangle$$

for $\gamma = j_i$. Consider all ordered (t - 1)-tuples whose *i*th coordinate is an ordered triple of the form (9) corresponding to $\gamma = j_{i+1}, i = 1, 2, \ldots, t - 2$, and whose (t - 1)st coordinate is an ordered pair of the form (10). Two such distinct ordered (t - 1)-tuples can yield the same sum (8) if and only if for some $\gamma \in \Gamma - \{j_i\}$, for $u, v(\neq u)$ such that

$$\sum_{\mu=1}^{\gamma-1} k_{\mu} < u \le \sum_{\mu=1}^{\gamma} k_{\mu} , \sum_{\mu=1}^{\gamma-1} k_{\mu} < v \le \sum_{\mu=1}^{\gamma} k_{\mu} , \sum_{\mu=1}^{\gamma^{+}-1} k_{\mu} < z \le \sum_{\mu=1}^{\gamma^{+}} k_{\mu}$$

and for distinct subsets J and K of

$$\left\{1 + \sum_{\mu=1}^{\gamma^+-1} k_{\mu}, 2 + \sum_{\mu=1}^{\gamma^+-1} k_{\mu}, \ldots, \sum_{\mu=1}^{\gamma^+} k_{\mu}\right\} - \{z\},\$$

(11)
$$e_{u,\gamma} = e_{v,\gamma}, \mathcal{A}_{u,\gamma^+} \neq \mathcal{A}_{v,\gamma^+}, \text{ as well as}$$

(12)
$$\mathcal{A}_{u,\gamma^+} + \Sigma \mathcal{A}_{i,\gamma^+} (i \in J) = \mathcal{A}_{v,\gamma^+} + \Sigma \mathcal{A}_{i,\gamma^+} (i \in K).$$

If these conditions are met, then corresponding to each subset L of

$$1 + \sum_{\mu=1}^{\gamma-1} k_{\mu}, 2 + \sum_{\mu=1}^{\gamma-1} k_{\mu}, \ldots, \sum_{\mu=1}^{\gamma} k_{\mu} \bigg\} - \{u, v\},$$

as well as to each r such that

(13)
$$\begin{cases} r = 1 \text{ if } \gamma' = 1, \\ \sum_{\mu=1}^{\gamma'-1} k_{\mu} < r \leq \sum_{\mu=1}^{\gamma'} k_{\mu} \text{ if } \gamma' > 1, \end{cases}$$

we have

$$\begin{split} \omega^{\lambda\gamma}(\mathscr{Q}_{r,\gamma} + \Sigma \mathscr{Q}_{i,\gamma}(i \in L \cup \{v\}) + \mathscr{Q}_{u,\gamma}) + e_{u,\gamma} \\ &+ \omega^{\lambda\gamma^{+}}(\mathscr{Q}_{u,\gamma^{+}} + \Sigma \mathscr{Q}_{i,\gamma^{+}}(i \in J) + \mathscr{Q}_{z,\gamma^{+}}) + e_{z,\gamma^{+}} \\ &= \omega^{\lambda\gamma}(\mathscr{Q}_{r,\gamma} + \Sigma \mathscr{Q}_{i,\gamma}(i \in L \cup \{u\}) + \mathscr{Q}_{v,\gamma}) + e_{v,\gamma} \\ &+ \omega^{\lambda\gamma^{+}}(\mathscr{Q}_{v,\gamma^{+}} + \Sigma \mathscr{Q}_{i,\gamma^{+}}(i \in K) + \mathscr{Q}_{z,\gamma^{+}}) + e_{z,\gamma^{+}}. \end{split}$$

Consequently, at least $k_{\gamma'} 2^{k_{\gamma}-2}$ of the sums (8) are repeated.

Moreover, if δ , ε , ζ are such that $1 \le \delta < \varepsilon < \zeta \le s$, then for any index set (6) containing $\delta = j_i$, $\varepsilon = j_{i+1}$, and $\zeta = j_{i+2}$, $1 \le i \le l - 2$, the above argument applies with δ , ε , ζ replacing γ' , γ , γ^+ , respectively. Thus for δ , ε , ζ as indicated, as many as

 $k_{\delta} 2^{\max\{0,\delta-2\}+k_{\ell}-2+s-\zeta}$

of the sums (8) might be eliminated.

We now show that for $\delta = 1$, $\varepsilon = 2$, and $\zeta = s$, there are, in fact, ordinals, $\alpha_1, \alpha_2, \ldots, \alpha_n$, subject to (2), for which $k_1(=1), k_2, \ldots, k_s$ form an S_n -system, and which yield precisely $m_n - 2^{k_2-2}$ sums. Let

α_1	$= \omega^{2s-2}$		
α2	$= \omega^{2s-3} + \omega^{2s-4}$		+ ω 100
α3	$= \omega^{2s-3}2 + \omega^{2s-4}$		$+ \omega (2^{k_s} + 99)$
α_4	$= \omega^{2s-3}4 + \omega^{2s-4}2$		
α ₅	$= \omega^{2s-3}8 + \omega^{2s-4}3$		
•			
:			
$\alpha_{k_1+k_2}$	$=\omega^{2s-3}2^{k_2-1}+\omega^{2s-4}(k_1)$		
$\alpha_{k_1+k_2+1}$	=	$\omega^{2s-5} + \omega^{2s-6}$	
$\alpha_{k_1+k_2+2}$	=	$\omega^{2s-5}2 + \omega^{2s-6}2$	
$\alpha_{k_1+k_2+3}$	=	$\omega^{2s-5}4 + \omega^{2s-6}3$	
•			
•		_	
$\alpha_{k_1+k_2+k_3}$	=	$\omega^{2s-5} 2^{k_3-1} + \omega^{2s-6} k_3$	
•			
·			
$\alpha_{k_1+k_2+\cdots+k_{s-2}+1}$	=	$\omega^3 + \omega^2$	
$\alpha_{k_1+k_2++k_{s-2}+2}$		$\omega^3 2 + \omega^2 2$	
$\alpha_{k_1+k_2+\cdots+k_{s-2}+3}$	=	$\omega^3 4 + \omega^2 3$	

Let $\beta_1, \beta_2, \ldots, \beta_n$ be as above. There are $k_i 2^{k_i - 1}$ distinct possibilities for each such β_i . The only index set that we need consider with respect to repetition of sums is $\{1, 2, s\}$; for any other index set, $\{1, j_2, \ldots, j_t\}$, the corresponding sum (5) has exactly

$$\prod_{\mu=2}^{t} k_{j\mu} \, 2^{k_{j\mu}-1}$$

possibilities. Let $\gamma = 2$; then $\gamma' = 1$ and $\gamma^+ = s$. Let u = 2, v = 3,

$$z = 1 + \sum_{\mu=1}^{s-1} k_{\mu} , J = \left\{ 2 + \sum_{\mu=1}^{s-1} k_{\mu} , 3 + \sum_{\mu=1}^{s-1} k_{\mu} , \ldots , n \right\}$$

 $K = \phi$. Then (11) and (12) hold for these values of u, v, z, J, K, and for no others. There are 2^{k_2-2} subsets of $\{2, 3, \ldots, 1+k_2\} - \{u, v\}$ as well as exactly one value of r satisfying (13); thus exactly 2^{k_2-2} of the sums (8) are eliminated. It follows that $s_n = m_n - 2^{k_2-2}$ for $n \ge 9$.

For an S_n -system, we reindex if necessary so that $k_2 = \min\{k_2, k_3, \ldots, k_s\}$. By [3], p. 260, we have $k_2 = 4$ for n = 9, 10, 14, 15, and 20; $k_2 = 5$ for n = 11, 12, 16, 17, 18, and for $n \ge 21$; $k_2 = 6$ for n = 13 and 19.

REFERENCES

- Erdös, P., "Some Remarks on Set Theory," Proceedings of the American Mathematical Society, vol. 1 (1950), pp. 127-141.
- [2] Sierpiński, W., "Sur les Series Infinies de Nombres Ordinaux," Fundamenta Mathematicae, vol. 36 (1949), pp. 248-253.
- [3] Wakulicz, A., "Sur la Somme d'un Nombre Fini de Nombres Ordinaux," Fundamenta Mathematicae, vol. 36 (1949), pp. 254-266.
- [4] Wakulicz, A., "Sur les Sommes de Quatre Nombres Ordinaux," Polska Akademia Umiejętności, Sprawozdania z Czynności i Posiedzeń, vol. 42 (1952), pp. 23-28.
- [5] Wakulicz, A., "Correction au Travail 'Sur les Sommes d'un Nombre Fini de Nombres Ordinaux' de A. Wakulicz," *Fundamenta Mathematicae*, vol. 38 (1951), p. 239.
- [6] Zuckerman, M. M., "Sums of at Most 8 Ordinals" (to appear in Zeitschrift für Mathematische Logik und Grundlagen der Mathematik).

City University of New York New York, New York