Notre Dame Journal of Formal Logic
Volume XIV, Number 2, April 1973
NDJFAM

SUMS OF AT LEAST 9 ORDINALS

MARTIN M. ZUCKERMAN

1 Introduction* Ordinal addition is noncommutative. For each positive integer n, let m_{n} be the maximum number of distinct values that can be assumed by a sum of n nonzero ordinals in all n ! permutations of the summands. Then for $n \geq 3, m_{n}<n!$; furthermore,

$$
\lim _{n \rightarrow \infty} \frac{m_{n}}{n!}=0
$$

Formulas for m_{n} were given by Erdös, [1], and Wakulicz, [3] and [5]; from these formulas it is readily established that for $n \geq 10, n \neq 14$,

$$
m_{n}=3^{4(k-(l-1))-3(1-l)} 11^{1 \div l} 193^{l-1}
$$

where $n=5 k+l$ for k, l nonnegative integers with $l \leq 4$, and where for nonnegative integers r and s,

$$
r \div s=\left\{\begin{array}{l}
r-s \text { for } r \geq s, \\
0 \text { for } r<s .
\end{array}\right.
$$

For positive integers n and k let Σ_{n} be the symmetric group on n letters and let E_{n} be the set of all k for which there exist n (not necessarily distinct) nonzero ordinals $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ such that

$$
\sum_{i=1}^{n} \alpha_{\phi(i)}
$$

takes on exactly k values as ϕ ranges over Σ_{n}. It is known that $E_{n}=$ $\left\{1,2, \ldots, m_{n}\right\}$ for $n=1,2,3,4,6,7$, and 8 ([2], [4], and [6]), but that $E_{5}=\left\{1,2, \ldots, m_{5}\right\}-\{30\}([5])$. In this paper we show that E_{n} is properly included in $\left\{1,2, \ldots, m_{n}\right\}$ for all $n \geq 9$.

For every ordinal number $\alpha>0$, let

$$
\begin{equation*}
\alpha=\omega^{\lambda_{1}} a_{1}+\omega^{\lambda_{2}} a_{2}+\ldots+\omega^{\lambda_{r}} a_{r} \tag{1}
\end{equation*}
$$

[^0]be the (Cantor) normal form of α; here $r, a_{1}, a_{2}, \ldots, a_{r}$ are positive integers and $\lambda_{1}>\lambda_{2}>\ldots>\lambda_{k} \geq 0$ are ordinals. In (1), λ_{1} is called the degree of α (written, $\operatorname{deg} \alpha$) and a_{1}, the leading coefficient of α. If $\operatorname{deg} \alpha=$ λ_{1}, we call α a λ_{1}-ordinal. By the remainder of α we shall always mean $\omega^{\lambda_{2}} a_{2}+\ldots+\omega^{\lambda_{r}} a_{r}$ (or zero, if $r=1$).

Unless otherwise specified, variables will range over (nonnegative) integers.

2 The Main Result Let $n \geq 1$. The positive integers $k_{1}, k_{2}, \ldots, k_{s}$ are said to form an S_{n}-system if

$$
\sum_{i=1}^{s} k_{i}=n,
$$

and whenever $\sum_{i=1}^{t} l_{i}=n$, then $l_{1} \prod_{i=2}^{t}\left(1+l_{i} 2^{l_{i}-1}\right) \leq k_{1} \prod_{i=2}^{s}\left(1+k_{i} 2^{k_{i}-1}\right)$.
In any S_{n}-system for $n \geq 3, k_{1}$ must be 1 , and for $n \geq 9$ and $2 \leq j \leq s, k_{j}$ is 4 , 5 , or 6 ([3], pp. 256-260); thus for $n \geq 9, s \geq 3$.

Lemma 1. For $n \geq 9$, let $1, k_{2}, \ldots, k_{s}$ form an S_{n}-system and let $\sum_{i=1}^{t} l_{i}=n$, where $l_{1}, l_{2}, \ldots, l_{t}$ are positive integers that do not form an S_{n}-system.

$$
\text { Then } l_{1} \prod_{i=2}^{t}\left(1+l_{i} 2^{l_{i}-1}\right) \leq \prod_{i=2}^{s}\left(1+k_{i} 2^{k_{i}-1}\right)-36 .
$$

We omit the routine proof of Lemma 1 , which utilizes the calculations of [3], pp. 256-260 and [5], p. 239. We now show that for $n \geq 9, E_{n}$ is properly included in $\left\{1,2, \ldots, m_{n}\right\}$. To this end we define $s_{n}=\max \left(E_{n}-\right.$ $\left.\left\{m_{n}\right\}\right), n \geq 1$. It suffices to show that $s_{n}<m_{n}-1$ for $n \geq 9$.

Theorem 1. For all $n \geq 9, E_{n}$ is properly included in $\left\{1,2, \ldots, m_{n}\right\}$. In fact,
(a) for $n=9,10,14,15$, and $20, s_{n}=m_{n}-4$;
(b) for $n=11,12,16,17,18$, and for all $n \geq 21, s_{n}=m_{n}-8$;
(c) for $n=13$ and $19, s_{n}=m_{n}-16$.

Proof. For any $n \geq 1$, let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be any ordinals of which
(2) $\left\{\begin{array}{l}k_{i} \text { are of degree } \lambda_{i}, i=1,2, \ldots, s, \\ \text { where } \lambda_{1}>\lambda_{2}>\ldots>\lambda_{s}, \text { and } \sum_{i=1}^{s} k_{i}=n .\end{array}\right.$

Erdös, [1] and Wakulicz, [3] showed that $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ yield at most

$$
k_{1} \prod_{i=2}^{s}\left(1+k_{i} 2^{k_{i}-1}\right)
$$

distinct sums in all n ! permutations of these summands and that, in fact, there exist ordinals $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ that yield m_{n} sums; here k_{1}, k_{2}, \ldots, k_{s}, of (2), form an S_{n}-system. Furthermore, for $n \geq 9$, it follows from Lemma 1 that for the purpose of our theorem we need only consider ordinals $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$, subject to (2), for which $k_{1}, k_{2}, \ldots, k_{s}$ form an S_{n}-system.

Let $n \geq 9$. Let
α_{1}

$$
=\omega^{\lambda_{1}} a_{1,1}+a_{1,1}+\omega^{\lambda_{2}} a_{1,2}+a_{1,2}+\ldots+\omega^{\lambda_{s}} a_{1, s}+a_{1, s}
$$

$$
\begin{array}{lll}
\alpha_{2} & = & \omega^{\lambda_{2}} a_{2,2}+a_{2,2}+\ldots+\omega^{\lambda_{s}} a_{2, s}+a_{2, s} \\
\alpha_{3} & = & \omega^{\lambda_{2}} a_{3,2}+a_{3,2}+\ldots+\omega^{\lambda_{s}} a_{3, s}+a_{3, s} \\
\vdots & & \\
\alpha_{k_{1}+k_{2}} & & \omega^{\lambda_{2}} a_{k_{1}+k_{2}, 2}+a_{k_{1}+k_{2}, 2}+\ldots+ \\
\vdots & \omega^{\lambda_{s}} a_{k_{1}+k_{2}, s}+a_{k_{1}+k_{2}, s} \\
\vdots & \\
\alpha_{k_{1}+k_{2}+\cdots+k_{s-1}+1} & = & \omega^{\lambda_{s}} a_{k_{1}+k_{2}+\cdots+k_{s-1}+1, s}+a_{k_{1}+k_{2}+\cdots+k_{s-1}+1, s} \\
\alpha_{k_{1}+k_{2}+\cdots+k_{s-1}+2} & = & \omega^{\lambda_{s}} a_{k_{1}+k_{2}+\cdots+k_{s-1}+2, s}+a_{k_{1}+k_{2}+\cdots+k_{s-1}+2, s} \\
\vdots & & \\
\vdots & & \omega^{\lambda_{s}} a_{n, s}
\end{array}
$$

where $a_{1,1}$ and $a_{i, j}$ are positive integers for

$$
\sum_{\mu=1}^{j-1} k_{\mu}<i \leq \sum_{\mu=1}^{j} k_{\mu}, 2 \leq j \leq s
$$

and $a_{i, j}$ are nonnegative integers otherwise; $a_{i, j}$ is the sum of those terms of α_{i} which are of degree d, where $\lambda_{j+1}<d<\lambda_{j}, \quad 1 \leq i \leq n$ and $i \leq j<s$, and $a_{i, s}$ is the sum of those terms of α_{i} which are of degree $<\lambda_{s}, 1 \leq i \leq n$.

Consider all ordinals of the form
$\beta_{1}=\alpha_{1}$
$\beta_{2}=\omega^{\lambda_{2}} a_{(2)}+a_{i_{2}, 2}+\omega^{\lambda_{3}} a_{i_{2}, 3}+a_{i_{2}, 3}+\omega^{\lambda_{4}} a_{i_{2}, 4}+a_{i_{2}, 4}+\ldots+\omega^{\lambda_{s}} a_{i_{2}, s}+a_{i_{2}, s}$
$\beta_{3}=\quad \omega^{\lambda_{3}} a_{(3)}+a_{i_{3}, 3}+\omega^{\lambda_{4}} a_{i_{3}, 4}+a_{i_{3}, 4}+\ldots+\omega^{\lambda_{s}} a_{i_{3}, s}+a_{i_{3}, s}$
\therefore
$\beta_{s}=$
$\omega^{\lambda_{s}} A_{(s)}+a_{i_{s}, s}$,
where for each $j, 2 \leq j \leq s$, we have

$$
\begin{equation*}
\sum_{\mu=1}^{j} k_{\mu}<i_{j} \leq \sum_{\mu=1}^{j} k_{\mu} \tag{3}
\end{equation*}
$$

and
(4)

$$
\left\{\begin{array}{l}
a_{(j)}=a_{i j, j}+\sum a_{i, j}\left(i \in J_{j}\right), \text { where } J_{j} ; \text { is some subset (possible empty) } \\
\text { of } \\
\left\{1+\sum_{\mu=1}^{j-1} k_{\mu}, 2+\sum_{\mu=1}^{j-1} k_{\mu}, \ldots, \sum_{\mu=1}^{j} k_{\mu}\right\}-\left\{i_{j}\right\} .
\end{array}\right.
$$

Then for any $\phi \in \Sigma_{n}$,

$$
\sum_{i=1}^{n} \alpha_{\phi(i)} \text { is of the form } \sum_{i=1}^{s} \beta_{\psi(i)},
$$

where $\psi \in \Sigma_{s}$. It follows that either
$\sum_{i=1}^{n} \alpha_{\phi(i)}=\beta_{1}$ or else $\sum_{i=1}^{n} \alpha_{\phi(i)}$ is of the form

$$
\begin{equation*}
\beta_{1}+\sum_{\mu=1}^{t} \beta_{j_{\mu}} \tag{5}
\end{equation*}
$$

where $2 \leq j_{2}<j_{3}<\ldots<j_{t} \leq s$. Let $f(\mu)=k_{j_{\mu}}, \mu=2,3, \ldots, t$; then there are at most

$$
\prod_{\mu=2}^{t} f(\mu) 2^{f(\mu)-1}
$$

possibilities corresponding to the index set

$$
\begin{equation*}
\left\{j_{1}, j_{2}, \ldots, j_{t}\right\}=\left\{1, j_{2}, \ldots, j_{t}\right\}, t \geq 2 \tag{6}
\end{equation*}
$$

(and exactly one possibility for the former case).
Suppose there were less than $k_{j} 2^{k_{j}-1}$ possibilities for some $\beta_{j}, 2 \leq j \leq$ s. Then corresponding to each index set (6) containing j, at least $k_{j} 2^{k_{j}-1}$ sums (5) would be eliminated. We shall show that $s_{n}>m_{n}-k_{j} 2^{k_{j}-1} \geq m_{n}-$ 32 for each $j=2,3, \ldots, s$; thus we need only consider ordinals α_{1}, $\alpha_{2}, \ldots, \alpha_{n}$ for which
(7) $\left\{\begin{array}{l}\text { there are precisely } k_{j} 2^{k_{j}-1} \text { distinct sums for } \\ \text { each of the corresponding } \beta_{j}, 2 \leq j \leq s .\end{array}\right.$
(7) implies that there are precisely $1+k_{j} 2^{k_{j}^{-1}}$ distinct sums of the form $\beta_{1}+\beta_{j}$ for each $j, 2 \leq j \leq s$. Hence we need only be concerned with index sets (6) in which $l \geq 3$. We note further that considerations along the lines of [3], pp. 261-263, show that (7) implies that for each such j, if $u, v(\neq u)$ satisfy

$$
\sum_{\mu=1}^{j-1} k_{\mu}<u \leq \sum_{\mu=1}^{j} k_{\mu}, \sum_{\mu=1}^{j-1} k_{\mu}<v \leq \sum_{\mu=1}^{j} k_{\mu}
$$

then α_{u} and α_{ν} have distinct leading coefficients and distinct remainders. Consider a sum of the form (5) in which $t \geq 3$, and let $\Gamma=\left\{j_{2}, j_{3}, \ldots, j_{t}\right\}$ where $\{1\} \cup \Gamma$ is the corresponding index set (6). For $\gamma\left(=j_{k}\right) \in \Gamma$, let $\gamma^{\prime}=$ j_{k-1} and let $\gamma^{+}=j_{k+1}$ in case $k<t$. In the notation of (3) and (4) any sum of the form (5) can be written as
(8) $\omega^{\lambda_{1}} a_{1,1}+e_{1,1}+\Sigma\left(\omega^{\lambda_{\gamma}}\left(a_{i \gamma^{\prime}, \gamma}+\Sigma a_{i, \gamma}\left(i \in J_{\gamma}\right)+a_{i \gamma, \gamma}\right)+e_{i \gamma, \gamma}\right)(\gamma \in \Gamma)$,
in which $i_{1}=1$ and for each $\gamma \in \Gamma, e_{i \gamma, \gamma}$ consists of all terms of $\alpha_{i y}$ that are of degree less than λ_{γ} and (in case $\gamma=j_{k}$ with $k<t$) greater than $\lambda_{\gamma_{+}}$. There is one possibility for $\left\langle a_{1,1}, e_{1,1}, a_{1, j_{2}}\right\rangle$, and by (7), there are $k_{\gamma} 2^{k} \gamma^{-1}$ possibilities for

$$
\begin{equation*}
\left\langle\Sigma a_{i, \gamma}\left(i \in J_{\gamma}\right)+a_{i \gamma, \gamma}, e_{i \gamma, \gamma}, a_{i \gamma, \gamma+}\right\rangle \tag{9}
\end{equation*}
$$

for each $\gamma \in \Gamma-\left\{j_{t}\right\}$ as well as for

$$
\begin{equation*}
\left\langle\Sigma a_{i, \gamma}\left(i \in J_{\gamma}\right)+a_{i \gamma, \gamma}, e_{i \gamma, \gamma}\right\rangle \tag{10}
\end{equation*}
$$

for $\gamma=j_{t}$. Consider all ordered ($t-1$)-tuples whose i th coordinate is an ordered triple of the form (9) corresponding to $\gamma=j_{i+1}, i=1,2, \ldots, t-2$, and whose ($t-1$)st coordinate is an ordered pair of the form (10). Two such distinct ordered ($t-1$)-tuples can yield the same sum (8) if and only if for some $\gamma \in \Gamma-\left\{j_{t}\right\}$, for $u, v(\neq u)$ such that

$$
\sum_{\mu=1}^{\gamma-1} k_{\mu}<u \leq \sum_{\mu=1}^{\gamma} k_{\mu}, \sum_{\mu=1}^{\gamma-1} k_{\mu}<v \leq \sum_{\mu=1}^{\gamma} k_{\mu}, \sum_{\mu=1}^{\gamma^{+}-1} k_{\mu}<z \leq \sum_{\mu=1}^{\gamma^{+}} k_{\mu}
$$

and for distinct subsets J and K of

$$
\left\{1+\sum_{\mu=1}^{\gamma^{+}-1} k_{\mu}, 2+\sum_{\mu=1}^{\gamma^{+}-1} k_{\mu}, \ldots, \sum_{\mu=1}^{\gamma^{+}} k_{\mu}\right\}-\{z\}
$$

$$
\begin{array}{r}
e_{u, \gamma}=e_{\nu, \gamma}, a_{u, \gamma^{+}} \neq a_{v, \gamma^{+}}, \text {as well as } \\
a_{u, \gamma^{+}}+\Sigma a_{i, \gamma^{+}}(i \in J)=a_{v, \gamma^{+}}+\Sigma a_{i, \gamma^{+}}(i \in K) . \tag{12}
\end{array}
$$

If these conditions are met, then corresponding to each subset L of

$$
\left\{1+\sum_{\mu=1}^{\gamma-1} k_{\mu}, 2+\sum_{\mu=1}^{\gamma-1} k_{\mu}, \ldots, \sum_{\mu=1}^{\gamma} k_{\mu}\right\}-\{u, v\}
$$

as well as to each r such that
(13) $\left\{\begin{array}{l}r=1 \text { if } \gamma^{\prime}=1, \\ \sum_{\mu=1}^{\gamma^{\prime}-1} k_{\mu}<\gamma \leq \sum_{\mu=1}^{\gamma^{\prime}} k_{\mu} \text { if } \gamma^{\prime}>1,\end{array}\right.$
we have

$$
\begin{aligned}
\omega^{\lambda \gamma}\left(a_{r, \gamma}+\Sigma a_{i, \gamma}(i \in L \cup\{v\})\right. & \left.+a_{u, \gamma}\right)+e_{u, \gamma} \\
& +\omega^{\lambda \gamma^{+}}\left(a_{u, \gamma^{+}}+\Sigma a_{i, \gamma^{+}}(i \in J)+a_{z, \gamma^{+}}\right)+e_{z, \gamma^{+}} \\
=\omega^{\lambda y}\left(a_{r, \gamma}+\Sigma a_{i, \gamma}(i \in L \cup\{u\})\right. & \left.+a_{v, \gamma}\right)+e_{v, \gamma} \\
& +\omega^{\lambda \gamma^{+}}\left(a_{v, \gamma^{+}}+\Sigma a_{i, \gamma^{+}}(i \in K)+a_{z, \gamma^{+}}\right)+e_{z, \gamma^{+}} .
\end{aligned}
$$

Consequently, at least $k_{\gamma^{\prime}} 2^{k \gamma^{-2}}$ of the sums (8) are repeated.
Moreover, if $\delta, \varepsilon, \zeta$ are such that $1 \leq \delta<\varepsilon<\zeta \leq s$, then for any index set (6) containing $\delta=j_{i}, \varepsilon=j_{i+1}$, and $\zeta=j_{i+2}, 1 \leq i \leq t-2$, the above argument applies with $\delta, \varepsilon, \zeta$ replacing $\gamma^{\prime}, \gamma, \gamma^{+}$, respectively. Thus for $\delta, \varepsilon, \zeta$ as indicated, as many as

$$
k_{\delta} 2^{\max \{0, \delta-2\}+k_{\epsilon}-2+s-\zeta}
$$

of the sums (8) might be eliminated.
We now show that for $\delta=1, \varepsilon=2$, and $\zeta=s$, there are, in fact, ordinals, $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$, subject to (2), for which $k_{1}(=1), k_{2}, \ldots, k_{s}$ form an S_{n}-system, and which yield precisely $m_{n}-2^{k_{2}-2}$ sums. Let

α_{1}	$=\omega^{2 s-2}$	
α_{2}	$=\omega^{2 s-3}+\omega^{2 s-4}$	
α_{3}	$=\omega^{2 s-3} 2+\omega^{2 s-4}$	
α_{4}	$=\omega^{2 s-3} 4+\omega^{2 s-4} 2$	
α_{5}	$=\omega^{2 s-3} 8+\omega^{2 s-4} 3$	
\vdots		
\vdots		
$\alpha_{k_{1}+k_{2}}$		
$\alpha_{k_{1}+k_{2}+1}$		$\omega^{2 s-3} 2^{k_{2}-1}+\omega^{2 s-4}\left(k_{2}-1\right)$
$\alpha_{k_{1}+k_{2}+2}$		$\omega^{2 s-5}+\omega^{2 s-6}$
$\alpha_{k_{1}+k_{2}+3}$	$\omega^{2 s-5} 2+\omega^{2 s-6} 2$	
$:$	$\omega^{2 s-5} 4+\omega^{2 s-6} 3$	
$:$		
$\alpha_{k_{1}+k_{2}+k_{3}}$		
$:$		
$:$		$\omega^{2 s-5} 2^{k_{3}-1}+\omega^{2 s-6} k_{3}$
$\alpha_{k_{1}+k_{2}+\ldots+k_{s-2}+1}$	$=$	
$\alpha_{k_{1}+k_{2}+\ldots+k_{s-2}+2}$	$=$	$\omega^{3} 2+\omega^{2} 2$
$\alpha_{k_{1}+k_{2}+\ldots+k_{s-2}+3}$		

```
\(\alpha_{k_{1}+k_{2}+\ldots+k_{s-1}}=\quad \omega^{3} 2^{k_{s-1}-1}+\omega^{2} k_{s-1}\)
\(\alpha_{k_{1}+k_{2}+\ldots+k_{s-1}+1}=\quad \omega+1\)
\(\alpha_{k_{1}+k_{2}+\ldots k_{s-1+2}}=\quad \omega 2+2\)
\(\alpha_{k_{1}+k_{2}+\ldots+k_{s-1+3}}=\quad \omega 4+3\)
\(\alpha_{n} \quad=\quad \omega 2^{k_{s}-1}+k_{s}\).
```

Let $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ be as above. There are $k_{j} 2^{k_{j}-1}$ distinct possibilities for each such β_{j}. The only index set that we need consider with respect to repetition of sums is $\{1,2, s\}$; for any other index set, $\left\{1, j_{2}, \ldots, j_{t}\right\}$, the corresponding sum (5) has exactly

$$
\prod_{\mu=2 k_{j \mu}}^{t} 2^{k_{j}-1}
$$

possibilities. Let $\gamma=2$; then $\gamma^{\prime}=1$ and $\gamma^{+}=s$. Let $u=2, v=3$,

$$
z=1+\sum_{\mu=1}^{s-1} k_{\mu}, J=\left\{2+\sum_{\mu=1}^{s-1} k_{\mu}, 3+\sum_{\mu=1}^{s-1} k_{\mu}, \ldots, n\right\},
$$

$K=\phi$. Then (11) and (12) hold for these values of u, v, z, J, K, and for no others. There are $2^{k_{2}-2}$ subsets of $\left\{2,3, \ldots, 1+k_{2}\right\}-\{u, v\}$ as well as exactly one value of r satisfying (13); thus exactly $2^{k_{2}-2}$ of the sums (8) are eliminated. It follows that $s_{n}=m_{n}-2^{k_{2}-2}$ for $n \geq 9$.

For an S_{n}-system, we reindex if necessary so that $k_{2}=\min \left\{k_{2}, k_{3}\right.$, $\left.\ldots, k_{s}\right\}$. By [3], p. 260, we have $k_{2}=4$ for $n=9,10,14,15$, and $20 ; k_{2}=5$ for $n=11,12,16,17,18$, and for $n \geq 21 ; k_{2}=6$ for $n=13$ and 19 .

REFERENCES

[1] Erdös, P., "Some Remarks on Set Theory," Proceedings of the American Mathematical Society, vol. 1 (1950), pp. 127-141.
[2] Sierpiński, W., "Sur les Series Infinies de Nombres Ordinaux," Fundamenta Mathematicae, vol. 36 (1949), pp. 248-253.
[3] Wakulicz, A., "Sur la Somme d'un Nombre Fini de Nombres Ordinaux,", Fundamenta Mathematicae, vol. 36 (1949), pp. 254-266.
[4] Wakulicz, A., "Sur les Sommes de Quatre Nombres Ordinaux," Polska Akademia Umiejętności, Sprawozdania z Czynności i Posiedzeñ, vol. 42 (1952), pp. 23-28.
[5] Wakulicz, A., "Correction au Travail 'Sur les Sommes d'un Nombre Fini de Nombres Ordinaux' de A. Wakulicz,' Fundamenta Mathematicae, vol. 38 (1951), p. 239.
[6] Zuckerman, M. M., "Sums of at Most 8 Ordinals". (to appear in Zeitschrift für Mathematische Logik und Grundlagen der Mathematik).

[^0]: *This research was partially supported by a City University of New York Faculty Summer Research Grant, 1968.

