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A COMPLETENESS PROOF FOR C-CALCULUS

H. HIZ

To Alfred Tarskί who first
axiomatίzed C-calculus

Introduction, Every true formula of the classical implicational logic,

the C-calculus, is provable, by means of substitution and detachment, from

the following three axioms:

1. CCCpqrCqr

2. CCCpqrCCprr

3. CCqrCCCprrCCpqr1

In effect 1, 2 and 3 jointly assert the inferential equivalence of a formula of

the form CCaβγ with the set of two formulas of the forms Cβγ and CCaγγ.2

The completeness proof which follows is of elementary nature.3 First, the

deduction of useful theorems is given. Then, it is shown that a formula in

the implicational normal form is true if and only if it satisfies the chain

condition, and that every formula in the implicational normal form which

satisfies the chain condition is deducible from 1, 2 and 3. Finally, it is

shown that every formula of the C-calculus is inferentially equivalent to a

finite set of formulas in the implicational normal form.

1. This axiomatization was discovered in 1961.

2. Equivalence asserting axiomatizations, besides being pedagogically transparent,
may be of interest in connection with systematization of metalogic by means of
inferential equivalence; see [1].

3. The first completeness proof of an axiomatization of C-calculus was given by
Tarski, but never published. See footnote to p. 145 of [3]. Formula 2 was used
by Tarski in his first axiomatization of C-calculus. Another completeness proof
of C-calculus was given by Kurt SchUtte, cf. [5] and [4], pp. 214-217. Schϋtte's
proof presupposes completeness of the logic of implication and negation (the C-N~
calculus).
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Derivation of useful theorems.

1. CCCpqrCqr

2. CCCpqrCCprr

3. CCqrCCCprrCCpqr

1 p/Cpq, q/r, r/Cqr x Cl-4

4. CrC#r

2 #/r, r/CqCpr x C4 r/Cpr-5

5. CCpCqCprCqCpr

3 tf/C/>r, r/CqCpr x C4 r/Cpr-C5-6

6. CCpCprCqCpr

6 r//>, q/CrCqr x C4 r//>, q/p-C4-Ί

7. C/>/>

2 r/C/># x C7 p/Cpq-8

8o CCpCpqCpq

I />/r, r/CpCrq x C4 r/Cr^, ^//?-9

9. CqCpCrq

3 r/CpCrq x C9-C8 tf/Cr^-lO

10. CCpqCpCrq

3 <7/C<?r, r/CqCpr x CIO />/#, g/r, r//)-C5-11

11. CCpCqrCqCpr

II p/Cqr, r/Cpr x CIO />/#, #/r, r//?-12

12. CqCCqrCpr
3 r/CCqrCpr x C12-C5 q/Cqr-13

13. CCpqCCqrCpr

11 p/CCppp, q/Cpp, r/p x C7 p/CCppp-CΊ-lA

14. CCCpppp

13 p/CCpqp, q/CCppp, r/p x C2 r//>-C 14-15

15. CCCpqpp4

13 />/C/>tf, q/CCqrCpr, r/CCCprsCCqrs x C13-C13 p/Cgr,

g/C/?r, r/s-16

16. CCpqCCCprsCCqrs

11 p/Cpq, q/CCprs, r/CCqrs x C16-17

17. CCCprsCCpqCCqrs

17 />/C/>0, r//>, s//?, qr/r x C15-18

18. CCCpqrCCrpp

18 r/<?x 19

19. CCCpqqCCqpp5

11 />/C/><7, ^/C^r, r/Cpr x C13-20

20. CCqrCCpqCpr

Metatheorem I. 7/* Wβ zs α theorem where W zs «n n-term series

4. 4, 13 and 15 form the Tarski-Bernays axiomatization of the C-calculus; see [3],
p. 145 and p. 296. In the original Tarski axiomatization, 2 was used instead of 15.

5. The derivation from 16 to 19 follows essentially that of Lukasiewicz given in [2].



A COMPLETENESS PROOF FOR C-CALCULUS 255

(n ̂  2) of Cak (1 ̂  k ^ n) and each αf& and β is a well-formed formula, then

\Jβ is a theorem where U is a series like W except for the order of ele-

ments .

As any permutation is obtainable by successive permutations of neighboring

elements, it suffices to show that in Wβ any successive a^ and a^+i can be

interchanged preserving theoremhood. Let

a. CaxCa2 . . . Cah^CahCah+ιγ

be a theorem. By 11 p/ah, q/ah+1, r/γ,

b. CCah Cah+1γCah+ι Cahγ

By 20 and b,

c. CCoίfj-i.CahCah+iγCah-iCoi^Cahγ

Continuing in the same way,

d. CCQf!CQ!2 . . . Cah^CahCah+ιγCaγCa2 . . . Cah^Cah^Cahγ

Detaching a from d,

CaxCa2 . . . Coih.iCoίh+iCahγ

4 r/CCpqCCqrCpr, q/CrCCpqrx C13-21

21. CCrCCpqrCCpqCCqrCpr

21 IX 22

22. CpCCqrCCrCCpqrCCpqr

20 p/Cqr, q/CCrCCpqrCCpqr, r/CCCCpqrrrx C19 p/r,

q/CCpqr- 23

23. CCCqrCCrCCpqrCCpqrCCqrCCCCpqrrr

20 q/CCqrCCrCCpqrCCpqr, r/CCqrCCCCpqrrr x C23-C22-24

24. CpCCqrCCCCpqrrr

24 i x 25

25. CCCCpqrrCpCCqrr

20 q/CCqrr, r/CCrqq x C19 p/q, q/r-26

26. CCpCCqrrCpCCrqq

13 p/CpCCrqq, q/CCrqCpq, r/CCrCpqCpq x Cl l q/Crq,

r/q-C2 p/r, r/Cpq-2Ί

27. CCpCCrqqCCrCpqCpq

13 p/CpCCqrr, q/CpCCrqq, r/CCrCpqCpq x C26-C27-28

28. CCpCCqrrCCrCpqCpq

20 q/CCrCpqCpq, r/CCCpqrr, p/CpCCqrr x C19 p/r,

tf/C/?4-C28-29

29. CCpCCqrrCCCpqrr

4 r/CCCprpp, q/Cpq x C15 tf/r-30

30. CCpqCCCprpp

29 p/C/>4, <?/C/>r, r/p x C30-31

31. CCCCpqCprpp

19 p/CCpqCpr, q/p x C31-32
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32. CCpCCpqCprCCpqCpr

3 q/Cqr, r/CCpqCprx C20-C32-33

33. CCpCqrCCpqCpr

Implicational normal form. We write 'δ ' with a numerical subscript as

a metalinguistic variable ranging over variables. A well-formed formula a

is in the implicational normal form if and only if a is

CβnCβn^ . . . Cβiδo

with n^ 0, with each βk (1 ^ k ^ ri) either a variable or an implication of the

form Cδxδy. A formula in the implicational normal form is true if and only

if there is a chain βSχ, βs2, . . . , βsm (1 ^ sl9 s2, . . . , sm ^ n) such that either

βSl = δ0

or else

βsm = δm, β S m - ι = Cδmδm.lt . . . , & i = Cδ^Q .

Metatheorem Π. Every true formula in the implicational normal form

is a theorem.

Let of be a true formula in the implicational normal form and let ]3Sl,

βs2, . . . , βSm be the chain of conditions as described. The proof of Meta-

theorem II is by induction on the length of the chain. If βSl = δ0, then CβSίδ0

is 7 or a substitution instance of 7. Suppose that CδmCCδmδm.1 . . . CCδ^δo

is a theorem, then by detaching it from 20 q/δm,r/CCδmδm-1 . . . CCδj.δoδo,

r/δm+i w e obtain as a theorem CCδm+1δmCδm+1CCδmδm-1 . . . CCδ^QδQ and,

by Metatheorem I, Cδm+1CCδm+1δmCCδmδm.1 . . . CCδ^oδQ. Thus, by induc-

tion CβsmCβsm~iCβsm-2 . . . CβSlδQ. To this theorem we can add by 4 any

condition which is in a and not in the chain and by Metatheorem I we can

place it in the required position.

Reduction to sets of formulas in the implicational normal form. For

the purpose at hand, we say that a formula a is inferentially equivalent to a

finite set of formulas {βl9 ft>, . . . , ft,} if and only if Caβu Caβ2, . . . , Caβn

and CβιCβz . . . Cβna are theorems. Then, also, a is a theorem if and only

if βi> 02, . . 5 βn are theorems. The completeness proof will be provided

by showing that every formula is inferentially equivalent to a finite set of

formulas in the implicational normal form. As every true formula will be

provable from a set of true formulas inferentially equivalent to it and of the

implicational normal form, and since all true formulas in the implicational

normal form are provable, every true formula is a theorem.

Metatheorem IΠ. CCaβγ^>{Cβγ, CCaγγ}6 [1, 2, 3]

Metatheorem IV. CCaββ^>CCβaa [19]

Metatheorem V. CCCaβγγ^->CaCCβγγ [25,29]

Metatheorem VI. // β^{γ, ε},then Caβ<->{Cotγ, Cat]

6. '*—*' stands for 'is inferentially equivalent to.'
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Proof: a. /3<->{y, ε}

b. Cβγ

c. Cβε

d. CγCεβ [a]
e. CCaβCaγ [20, b]
f. CCaβCaε [20, c]

g. CCo yCczCεβ [20, d]

h. CCaγCCaεCaβ [13, 33, g]

Caβ<->{Caγ, Caε} [e, f, h]

Metatheorem VII. // a<->{βl9 βz} and βi<->{γi, y2} then α<—>{y1? y2, β2}

[13,33,1]

Metatheorems VI and VII also cover the cases where y = ε, βx = β2, γι = γ%.

Every well-formed formula a is of the form

a = Ca1Ca2 . . . Can60

If n = 0, a is a variable and en is not true. Let gβ be the number of

occurrences of ζC9 in β and g[β] = maxgβi (1 ^ i ^ m) where β = Cβx . . .

Cβmδι. Let gof = g[a] and, in addition, let α, be the last occurring α?t- such

that go:,- = g[α?]. If gα?7 ^ 1, then a is in the implicational normal form.

Suppose now that gα; > 1. One of the cases holds: A. αy = CCβγε, B. α?y =

CβCγε.
In case A, CajCaj+1 . . . Co:wδo = CCCβγεCaj+1 . . . Canδ0. By III this

formula is inferentially equivalent to the set {θj, θj'},

θj = CεCaj+ι . . . Cofwδo

θj' = CCCβγCaj+ι . . . Canδ0Caj+1 . . . Canδ0

θj'^>CCCaj+1 . . . Canδ0CβγCβγ, by IV,

07

 f«->Cα ; +iCCCα!7 + 2 . . . Canδ0CβγCβγ, by V.

Continuing in the same way, by V and VI,

Θj'<r+Caj+1 . . . CoίnCCδoCβγCβγ

θj r^->Caj+1 . . . CoίnCCCβγδoδo, by IV and n -j times VI.

θj'*->Caj+1 . . . CanCβCCγδoδo = θj", by V and n -j times VI.

g[e/]<gMandg[%"]<gM.

In case B, CajCaί+1 . . . Canδ0 = CCβCγεCaj+1 . . . Canδ0. By III this

formula is inferentially equivalent to the set {θj, θj'},

θj = CCyεOα7+1 . . . Canδ0

θj' = CCβCaj+1 . . . Canδ0Caj+1 . . . Canδ0

Proceeding as in case A,

θj'^>CCCaj+1 . . . Canδoββ

θjf^Caj+ιCaj+2 . . . CanCCδoββ

θj'^Caj+iCcij+z . . . CQfwCCβδoδo = θj"

Again, g[07] < g[a] and g[V f] ^ 9la]- l n either case, by successive applica-
tions of VI and VII
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α<->{Cα1 . . . Cotj-iθj, Caλ . . . CoLj^θj"}

If it is still the case that g[Cax . . . Caj-iθj] = g[a], then by a similar
reasoning there are formulas θk and θk" such that g[θk] < g[a], g[θk"] < g[α],
& < ; and 0 ^ . . . Ca^ιθί<-^>{Ca1 . . . Ca^θk, Caλ . . . Cak^θk

ff}. Similarly,
there are formulas λκ and λκ

fr such that g[λκ] < g[α], g[λκ"] < g[o>] and
Ca, ... Cα/-1θ/"<-*{Cα1 . . . Cat^λk, Ca, . . . Cak^λk"}. By VII a^^iCa, . . .
C<*k-iθk, Cax . . . Cαk_i0*", Cdfi . . . Cαfc-iλ*, Cαfx . . . Cak^λ^}. Repeating the
reasoning as many times as there are α* with gα, = g[α] we obtain a set of
formulas which is inferentially equivalent to a and, for each formula β in
theset,g[β]<g[α].

Repeating the entire procedure g[α] - 1 times, we obtain a finite set of
formulas which is inferentially equivalent to a and for each formula β in the
set, g[/3] ^ 1, i.e., β is in the implicational normal form, which completes
the completeness proof.
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