A NOTE ON NEWMAN'S ALGEBRAIC SYSTEMS

BOLESもAW SOBOCIŃSKI

This note possesses a purely supplementary and informative character with respect to the papers [2], [3], [4], [5] and [6]. ${ }^{1}$ Namely, in order to describe the systems investigated in those papers more completely the definitions of the dual associative Newman algebras which are mentioned only casually in [6], p. 536, and of the dual mixed associative Newman algebras will be established. Additionally, a rather bad misprint and erroneous statement which both appear in [3] will be corrected.

1 It has been established in [4] that the associative Newman algebras can be defined, as follows:

Any algebraic structure

$$
\mathfrak{D}=\langle A,+, \times,-\rangle
$$

where + and \times are two binary operations, and - is a unary operation defined on the carrier set A, is an associative Newman algebra, if it satisfies the following postulates:

$P 1$	$[a b]: a, b \in A . \supset . a=a+(b \times-b)$	[Axiom F1 in [4]]
$P 2$	$[a b]: a, b \in A . \supset . a=a \times(b+-b)$	$[F 2$ in [4]]
$P 3$	$[a b c]: a, b, c \in A . \supset . a \times(b+c)=(c \times a)+(b \times a)$	$[H 1$ in [4]]
$P 4$	$[a b c]: a, b, c \in A . \supset . a \times(b \times c)=(a \times b) \times c$	$[L 1$ in [4]]

Therefore, it is self-evident that the dual associative Newman algebras can be defined as follows:

Any algebvaic structure

$$
\mathfrak{R}=\langle A,+, \times,-\rangle
$$

1. An acquaintance with the papers [2]-[6] is presupposed. Concerning the symbols used in this note it should be remarked that instead of " \bar{a} ", which is used in [2], [3] and [4] I am using here " $-a$ ". An enumeration of the algebraic tables, cf. section 3 below, is a continuation of the enumeration of such tables given in [2], [4], [5] and [6].
where + and \times are two binary operations, and - is a unary operation defined on the carrier set A, is a dual associative Newman algebra, if it satisfies the following postulates:

R1 [ab]: $a, b \in A . \supset . a=a \times(b+-b)$
R2 [ab]: $a, b \in A . \supset . a=a+(b \times-b)$
R3 [abc]: $a, b, c \in A . \supset . a+(b \times c)=(c+a) \times(b+a)$
$R 4$ [abc]:a, b, $c \in A . J . a+(b+c)=(a+b)+c$
Since 畂 19 , cf. [6], p. 542, verifies the axioms $R 1-R 4$, but falsifies the law of idempotency with respect to the operation \times, we know that system \mathfrak{R} is not necessarily a Boolean algebra. In section 3, point (1), below the mutual independency of the postulates $R 1-R 4$ will be proved.

Using the deductions entirely analogous to those which are given in [4] we can prove easily that in the field of the fixed carrier set A the axioms $R 1-R 4$ are inferentially equivalent to the following formulas: $R 1, R 2, R 4$ and
R5 [ab]: $a, b \in A . \supset . a+b=b+a$
$R 6 \quad[a b c]: a, b, c \in A . \supset . a+(b \times c)=(a+b) \times(a+c)$
and, moreover, that $R 1-R 4$ imply
R7 [a]: $a \in A . \supset . a=a+a$
Hence, $c f$. an analogous case in [4], we can conclude:
A dual associative Newman algebra can be considered as a semilattice with respect to the binary operation + to which the additional postulates are added concerning the properties of the operations \times and - .

2 In [5], p. 418, an equational axiomatization of the mixed associative Newman algebras has been established. Analogously, we can define the dual mixed associative Newman algebras as follows:

Any algebraic structure

$$
\boldsymbol{\mathfrak { S }}=\langle A,+, \times, \rightarrow\rangle
$$

where,$+ \times$ and \rightarrow are three binary operations defined on the carrier set A, is a dual mixed associative Newman algebra, if it satisfies the following postulates:

S1 [abc]: $a, b, c \in A . \supset . a+(b \times c)=(a+b) \times(a+c)$
S2 $[a b]: a, b \in A . \supset . a+b=b+a$
S3 [ab]:a, b $\in A . \supset .(a \rightarrow b) \times(a+b)=b$
S4 $[a b c]: a, b, c \in A . \supset .(a \rightarrow b)+(a+b)=c \rightarrow c$
Concerning the primitive binary operation \rightarrow of the system $\mathbb{\subseteq}$ it should be remarked that this operation is not a pseudo-complement operation \Rightarrow which is a familiar primitive operation in the relatively pseudo-complemented lattices. It will be shown in section 3, point (2), below that 1 AR 3 verifies $S 1-S 4$, but falsifies a formula:

$$
[a b]: a, b \in A . \supset .(a \rightarrow(b \times c))+(a \rightarrow b)=a \rightarrow b
$$

which corresponds to the well－known formula of relatively pseudo－ complemented lattices，$c f$ ．［1］，p．62：

$$
a \Longrightarrow(b \times c) \leq a \Rightarrow b
$$

In section 3，point（3）below the mutual independency of the postulates S1－S4 will be proved．Again，using deductions entirely analogous to those given in［5］，see p．418，Theorem 2，we can establish that：

A dual mixed associative Newman algebra can be considered as a semi－lattice with respect to the primitive operation + to which the addi－ tional postulates are added concerning the properties of the primitive operations \times and \rightarrow ．

3 In order to establish the independencies which are announced in sections 1 and 2 above we use the following algebraic tables： $\mathfrak{A l l} 14$ ， ［6］，p． 541 and p．545，and：

明々2

+	α	1	0
α	α	1	0
1	1	1	0
0	0	0	0

\times	α	1	0
α	α	1	α
1	1	1	1
0	α	1	0

x	$-x$
α	0
1	0
0	1

明23

+	0	η
0	0	0
η	0	η

\times	0	η
0	0	η
η	η	0

\rightarrow	0	η
0	0	η
η	0	0

明 24

＋	0	α	β	γ	δ	\times	0	α	β	γ	δ
0	0	0	0	0	0	0	0	α	β	γ	δ
α	0	α	0	0	α	α	α	α	δ	δ	δ
β	0	0	β	0	β	β	β	δ	β	δ	δ
γ	0	0	0	γ	γ	γ	γ	δ	δ	γ	δ
δ	0	α	β	γ	δ						

\rightarrow	0	α	β	γ	δ
0	0	α	β	γ	δ
α	0	0	β	γ	β
β	0	α	0	γ	γ
γ	0	α	β	0	α
δ	0	0	0	0	0

A 25

+	α	1	0
α	α	1	0
1	α	1	0
0	0	0	0

\times	α	1	0
α	α	1	α
1	1	1	1
0	α	1	0

\rightarrow	α	1	0
α	0	0	0
1	0	0	0
0	α	1	0

明 $2 \mathfrak{h}$

+	0	α
0	0	0
α	0	0

\times	0	α
0	0	α
α	α	0

\rightarrow	0	α
0	0	0
α	0	0

眼 27

+	0	α	β	γ
0	0	0	0	0
α	0	α	γ	β
β	0	γ	β	α
γ	0	β	α	γ

\times	0	α	β	γ
0	0	α	β	γ
α	α	0	γ	β
β	β	γ	0	α
γ	γ	β	α	0

\rightarrow	0	α	β	γ
0	0	α	β	γ
α	0	0	α	α
β	0	β	0	β
γ	0	γ	γ	0

（1）Since：（a）${ }^{4 l l} 15$ verifies $R 2, R 3$ and $R 4$ ，but falsifies $R 1, c f$ ．［6］，p．542；
（b）䏎之2 verifies $R 1, R 3$ and $R 4$ ，but flasifies $R 2$ for a / α and $b / 1$ ：（i）$\alpha=\alpha$ ，
（ii）$\alpha+(1 \times-1)=\alpha+(1 \times 0)=\alpha+0=0$ ；（c）明 14 verifies $R 1, R 2$ and $R 4$ ，but falsifies $R 3$ for $a / \gamma, b / \alpha$ and c / β ：（i）$\gamma+(\alpha \times \beta)=\gamma+1=\gamma$ ，（ii）$(\beta+\gamma) \times$ $(\alpha+\gamma)=\beta \times 0=0$ ；and（d）朋2 verifies R1，R2 and $R 3$ ，but falsifies $R 4$ ， $c f$ ．［6］，p．545，the proof that the axioms $R 1-R 4$ are mutually independent is complete．
（2）Since 朋々3 verifies S1，S2，S3 and S4，but falsifies the formula（ β ）for $a / 0, b / \eta$ and $c / \eta:$（i）$(0 \rightarrow(\eta \times \eta)+(0 \rightarrow \eta)=(0 \rightarrow 0)+\eta=0+\eta=0$ ，（ii） $0 \rightarrow$ $\eta=\eta$ ，we know that（ β ）is not a consequence of $S 1-S 4$ ．
（3）Since：（a）肘24 verifies S2，S3 and S4，but falsifies S1 for $a / \alpha, b / \beta$ and $c / \gamma:$（i）$\alpha+(\beta \times \gamma)=\alpha+\delta=\alpha$ ，（ii）$(\alpha+\beta) \times(\alpha+\gamma)=0 \times 0=0$ ；（b） 2 AR25 veri－ fies S 1，S3 and S4，but falsifies S2 for a / α and $b / 1$ ：（i）$\alpha+1=1$ ，（ii） $1+\alpha=$ α ；（c）\＃\＃th verifies $S 1$ ，S2 and $S 4$ ，but falsifies $S 3$ for $a / 0$ and b / α ：（i）$(0 \rightarrow$ $\alpha) \times(0+\alpha)=0 \times 0=0$ ，（ii）$\alpha=\alpha$ ；and（d）做 27 verifies S1，S2 and S3，but falsifies $S 4$ for $a / \alpha, b / \beta$ and $c / 0$ ：（i）$(\alpha \rightarrow \beta)+(\alpha+\beta)=\alpha+\gamma=\beta$ ，（ii） $0 \rightarrow$ $\overline{0}=0$ ，the proof that the axioms S1－S4 are mutually independent is complete．

4 Corrections：

（A）The proof of $F 3$ in［3］，p．268，lines 8－13，contains rather bad misprints． It should be given，as follows：
F3 $\quad[a b]: a, b \in A . \supset . a=(b+\bar{b}) \times a$
PR［ab］：Hp（1）．\supset ．

$$
\begin{array}{rlr}
a & =a \times(b+\bar{b})=(\bar{b} \times a)+(b \times a)=((\bar{b} \times(b+\bar{b})) \times a)+((b \times(b+\bar{b})) \times a) \\
& =(\bar{b} \times((b+\bar{b}) \times a))+(b \times((b+\bar{b}) \times a)) & {[1 ; F 2 ; H 1 ; F 2]} \\
& =((b+\bar{b}) \times a) \times(b+\bar{b})=(b+\bar{b}) \times a & {[A 10 ; L 1]} \tag{A10;L1}\\
{[H 1 ; F 2]}
\end{array}
$$

（B）Since AH5，cf．［2］，p．263，falsifies $H 1$ for $a / 0, b / \alpha$ and $c / 1$ ：（i） $0+$ $(\alpha \times 1)=0+1=1$ ，（ii）$(1+0) \times(\alpha+0)=1 \times \alpha=\alpha$ ，the statement＂匑 veri－ fies $F 1$ and $H 1$ ，but falsifies $F 2$ ，＂which due to a manuscript mix－up appeared in［3］，p．268，lines $30-31$ ，is obviously false．It should be substituted by the correct one：

[^0]股 28

+	α	1	0
α	α	1	α
1	1	1	1
0	α	1	0

\times	α	1	0
α	α	1	0
1	1	1	0
0	0	0	0

x	$-x$
α	0
1	0
0	1

verifies $F 1$, H1 and $L 1$, but falsifies $F 2$ for a / α, and $b / 1$: (i) $\alpha=\alpha$, (ii) $\alpha \times$ $((1+\overline{1})=\alpha \times(1+0)=\alpha \times 1=1 \prime$.

REFERENCES

[1] Rasiowa, H., and R. Sikorski, "The mathematics of metamathematics," Monografie Matematyczne, tom 41. Państwowe Wydawnictwo Naukowe, Warszawa (1963).
[2] Sobociński, B., "A new formalization of Newman algebras," Notre Dame Journal of Formal Logic, vol. XIII (1972), pp. 255-264.
[3] Sobociński, B.,"An equational axiomatization of associative Newman algebras," Notre Dame Journal of Formal Logic, vol. XIII (1972), pp. 265-269.
[4] Sobociński, B., "A semi-lattice theoretical characterization of associative Newman algebras," Notre Dame Journal of Formal Logic, vol. XIII (1972), pp. 283-285.
[5] Sobociński, B., "An equational axiomatization and a semi-lattice theoretical characterization of mixed associative Newman algebras,', Notre Dame Journal of Formal Logic, vol. XIII (1972), pp. 407-423.
[6] Sobociński, B., "Solution to the problem concerning the Boolean bases for cylindric algebras,', Notre Dame Journal of Formal Logic, vol. XIII (1972), pp. 529-545.

University of Notre Dame
Notre Dame, Indiana

[^0]: ＂an algebraic table

