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TOLERANCE GEOMETRY

FRED S. ROBERTS

1. Introduction* In his paper on visual perception [7], Zeeman points out
that any model of perception must take account of the fact that we cannot
distinguish between points that are sufficiently close. A similar observa-
tion has been made for choice behavior by Luce [1]. Zeeman's observation
leads him directly to a notion of a "tolerance" within which "we allow an
object to move before we notice any difference." Other authors use the
terms "threshold" and "just noticeable difference," for the same notion.

Zeeman defines a tolerance I on a set A as a binary relation on A
which is reflexive and symmetric, and he calls the pair (A,I) a tolerance
space. We shall use the more common term graph for this concept and
prefer to think of tolerance spaces or tolerance relations as graphs with
more specialized properties, motivated by the notion of "closeness."
Zeeman studies various properties of and relations between tolerance
spaces (graphs), using topological techniques.

In studying visual perception, it is convenient to distinguish between
physical space and (subjective) visual space, the space from which we draw
our "conscious" perceptions. It has been observed in the literature that
visual space has a non-Euclidean geometry (see Roberts and Suppes [4]).
To determine what this geometry is, observed relations such as between-
ness, alignment, perpendicularity (of two aligned sets of points), parallel-
ism, etc. are studied, and their properties are determined.

In order to study visual geometry, to take account of the tolerance
effect, it seems desirable to replace classical primitives, such as between-
ness, straightness, perpendicularity, and parallelism, with more general
notions, obtained from the classical ones by substituting closeness for
identity. We shall use the term tolerance geometry for any geometry whose
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primitives are obtained by such a perturbation. In this paper, we develop
an axiomatization for tolerance geometry on the line.

There is one important difference between the axiomatizations for
tolerance geometries and those for classical ones. For the latter we are
usually interested in categorical axiomatizations. For example, we are
interested in listing axioms necessary and sufficient for a given geometry
to be isomorphic onto the real plane. In the case of perception, we usually
deal only with finite point sets—or at least we can only observe finitely
many points to test our axioms. So it is more interesting to study finite
sets and to study axioms necessary and sufficient for isomorphism (or
homomorphism) into certain kinds of spaces. This will be our approach.

2. Indifference Graphs Perhaps the simplest example of a tolerance
geometry arises from the theory of indifference graphs, motivated by
observing judgments of indifference, similarity, etc. Here we take as the
only primitive a binary relation /on a finite set A, interpreted as "close-
ness." In the linear case, we ask for axioms on (A,I) necessary and
sufficient for an isomorphism (homomorphism) into the real line. In
particular, we shall consider the simplest case where closeness on the line
is defined by "being within e." Then, given e > 0, we seek conditions on
(A, I) necessary and sufficient for the existence of a function f:A -j>j& so
that for all x, y e A,

(1) xly*->\f(x) - f(y)\ < e .

The conditions will, of course, be independent of the particular value of e.
The theory of indifference graphs is developed in Roberts [2, 3], For

later use, we shall need to state below at least one of the axiom systems
for indifference graphs. Using standard terminology, we shall call the
relation / in a graph (A,I) the adjacency relation. A subgraph {B,J) of
{A,I) is a graph (B,J), where Be A and J is the restriction of / to B.
{Ay I) is connected if for every x and y there is a path between x and y, i.e.,
a sequence x,x1,x2, . . . , xn, y from A so that xlxj-x^l. . .Ixjy- A
component of a graph is a maximal connected subgraph. If x and y are in
the same component, the distance d(x, y) is the length of the shortest path
between x and y. d(x, y) = 0 if and only if x = y.

Following Scott and Suppes [5], an equivalence relation E on A is
defined by

xEy^->(Vz) [xlz<->ylz].

x* will denote the equivalence class containing x, A* the collection of
equivalence classes. /* is defined on A* by

x*l*y*<-j>xly.

G* = (A*, /*) will be called the reduction of the graph G = (A, /). If G ς* G*,
we shall say G is reduced.

Roberts [2] defines a point a in (A,I) as an extreme point if whenever
x and y are adjacent to but not equivalent to a, then xly and (ΞU) [xlz &
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ylz & ~alz], (This definition is motivated by considering extreme points of
finite subsets of Ί& and letting / mean "within e.") It is easy to see that

Lemma 1. If a and b are extreme points in a graph (A, /), then

(a) (alx and aly) —> xly.
(b) alb — aEb.

Definition, A graph G = (A,I) is an indifference graph if for every (finite)1

connected subgraph H of G, either H* has exactly one point or H* has
precisely two extreme points.

Remark. It is easy to write this out in terms of first order, universal
sentences. It can be shown however that one first order universal sentence
is not sufficient.

Theorem 1 (Roberts [2]). A finite graph (A, I) is an indifference graph if
and only if there is a function f A —*-& satisfying (I).2

Indifference graphs are linear tolerance spaces in a somewhat more
general sense than Theorem 1. The points of an indifference graph can be
simply (linearly) ordered so that points which are "close" (adjacent) can
never surround points which are not close (nonadjacent). In particular, it
is proved in Roberts [3] that a graph (A,I) is an indifference graph if and
only if there is a simple order R on A so that for all x, y>u, υe A,

(2) xRuRvRy & xly — ulυ.

If R satisfies (2), we shall say that R is compatible with /. It turns out that
extreme points of the graph correspond to extreme points (maxima and
minima) of the compatible simple order. Summarizing, we have

Theorem 2 (Roberts [3]).
(a) A graph {A, I) is an indifference graph if and only if there is a simple
order R on A compatible with I.
(b) // (A, I) is a reduced, connected indifference graph, then a is an
extreme point of {A, I) if and only if a is an extreme point {maximum or
minimum) of every compatible simple order.
(c) If G = (A, /) is a connected indifference graph and a, b are nonadjacent
extreme points of G, then there is a compatible simple order R on A so that
for all xe A, aRxRb.

Note. Part (c) of this theorem follows from part (b), given the observation
that a is an extreme point of G if and only if α* is an extreme point of G*
and the observation that we may pass from a compatible simple order on
G* to one on G by arbitrarily ordering points within equivalence classes.

1. All the graphs in this paper are finite, so finiteness of H will be understood
below.

2. The function may be taken 1-1 without loss of generality.
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3. e-Betweenness on the Line In Tarski's [6] fundamental axiomatization

of Euclidean geometry, he uses as primitives a ternary relation of

betweenness B on a set A and a quaternary relation of equidistance on A.

The main point of this paper is to state a Tarski-type axiomatization for

tolerance geometry for the simplest case, namely, the one-dimensional

one.

It turns out that if we limit ourselves to the line, the classical Tarski

axioms can be replaced by a simple set of axioms stated only in terms of

betweenness. We list these below. For ease of comparison, we shall

number them starting with Axiom C2.

Classical Axioms for Betweenness on the Line For all#, y, z, u, υ in A:

C2. B(#, y, z) — b(z, y, x).

C3. B(x, y, z) or b(x, zy y) or b(y, x, z).

C4. b(x, y, u) and b(y, z, u) —» b(x, y, z).

C5. If u Φ υ, then B(#, u, υ) and B(w, v, y) —> B(ΛΓ, U, y).

C6. B(#, y, z) and b(y, x, z) —» x = y.

C7. x= y— B(x, y, z).

Theorem 3. Suppose B is a ternary relation on a finite set A. Then Axioms

C2-C7 are necessary and sufficient for the existence of a 1-1 function

f\A-**& so that for all x, y, z e A,

(3) B(*, y, z)<r+[f(χ) sf(y) sf{z) or f(z) * f(y) i/(*)].

Proof. Necessity is straightforward and sufficiency can be verified by

induction on | A I.

The tolerance axioms for betweenness on the line characterize the

relation of e-betweenness. If B is the relation of classical betweenness on

the set A, then there is a function f:A —>-̂  so that for all x, y, ze A,

(4) B ( * , y, * ) < - > ! / ( * ) -/(3>)l + \f(y) -f(z)\= \f(x) -f(z)\.

For e-betweenness, we would like conditions on (A, B) necessary and

sufficient for the existence of a function / : A —> ^ satisfying, for all

x, y, zeA,

(5) *(x,y,z)<r+\f(x) -f(y)\+ \f(y) -f(z)\< \f(x) - f ( z ) \ + e.

The tolerance axioms are stated in terms of B and a binary relation /

on A defined from B by

(6) xly<->b{x,y,x).

Axioms for e-Betweenness on the Line For all x, y} z, u, v in A:

Tl. (A,/) is an indifference graph.

T2. B(#, y, z) — B(*, y, x).

T3. B(x, y, z) or 2>(x, z, y) or B(y, x, z).

T4. B(x, y, u) and b(y, z, u) and ~b(x, y, z) —» uly and ulz.

T5. If ~ulv, then B(ΛΓ, U, υ) and b(u, v, y) -* B(ΛΓ, M, y).

T6. B(ΛΓ, 3;, 2) and B(y, x, z) —> Λ /J; o r (^/Λ: αnί? ^ / ^ ) .

T7. jv/3; —» B(ΛΓ, 3;, z).
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Our main objective is to prove

Theorem 4. Suppose B is a ternary relation on a finite set A and e > Ois
given. Then Axioms T1-T7 are necessary and sufficient for the existence
of a function f:A-+-fc satisfying (5) .3

To prove necessity of the axioms, use the observation that xly <-H/(#) -
f(y)\ < e2.

 τ h e sufficiency proof starts with the observation that if (A, /) is
reduced, then B restricted to the collection of extreme points of (A,I) satis-
fies the classical axioms C2-C7 (Lemma 3). It follows from Theorem 3 that
in general B on the set of extreme points comes from a weak order, i.e., a
binary relation R which is reflexive, transitive, and complete (i.e., for all
x, y, xRy, or yRx). We choose an extreme point x0 minimal in this order.

Define a binary relation P on A by

(7) xPy<^>B(x0, y, x) and ~xly.

The basic result is thatP is a semiorder, a concept due to Luce [1] and to
Scott and Suppes [5]. To prove this, we use the theorem (Roberts [2]) that a
binary relation is a semiorder if and only if it is asymmetric and transitive
and its symmetric complement is an indifference graph. (The symmetric
complement of a binary relation (A, P) is a binary relation (A, /) so that
xIy<->~xPy & ~yPx.) The key to the proof hinges on showing that in fact,
/ is the symmetric complement of P. This is finally established in
Lemma 7, after proving Lemmas 4-6 as preliminary lemmas.

Once it is established that P is a semiorder, the Scott-Suppes [5]
representation theorem for semiorders gives an / so that

xPy*-*f(x) *f(y)+e/2.

This/ satisfies (5) as well.
We now turn to the details of the proof. Note first that /is symmetric

and reflexive by Axiom Tl, since all graphs are symmetric and reflexive
by definition.

Lemma 2 (Symmetric versions of Axioms T4 and T5.)

(a) B(AΓ, y, z) & B(#, z, u) & ~b(y, z, u) -> xly & xlz.

(b) If ~ulv, then B(#, u, v) & B(w, v, y) —> B(#, υ, y).

Proof, (a) Ax. T2 and Ax. T4. (b) Ax. T2 and Ax. T5.

Lemma 3. If (A, I) is reduced, then B restricted to the collection of ex-
treme points of (A, /) satisfies the classical axioms, C2-C7.

Proof. Note that Axioms C2 and C3 go through unchanged from Axioms T2
and T3. Axioms C5 and C7 follow from our corresponding T-axioms if we
note that by Lemma lb, two extreme points which are adjacent are also

3. It follows from the proof that the function / may be taken 1-1 without loss of
generality.
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equivalent and hence, since (A,I) is reduced, are equal. Axiom C6 follows
from Ax. T6, using both parts of Lemma 1. Finally, to verify Ax. C4,
suppose B(x, y, u) and B{y, z, u) and ~ B(x, y, z). Then by Ax. T4, uly and
ulz. By the extremality of u and Lemma la, ylz. Thus, by Ax. T7,
B(x, y, z), which is a contradiction. Q.E.D.

To handle the case where (A, /) may not be reduced, we define B* on
A* by £*(#*, y*, z*)+->B(x, y, z). Proof that B* is well-defined is tedious
but relatively straight-forward. If (A, B) satisfies Axioms T1-T7, then it is
easy to verify that (A*, B*) does also. One technical point: the / defined
from J5* by B*(x*, y*, x*) is in fact /*.

Note that (A*, /*) is reduced. Thus, by Lemma 3, there is a simple
order R* on the collection of extreme points of (A*, /*) such that for all
extreme points a, β, γ in (A*, /*), B*(a, β, γ) if and only if β is between a
and y in β*. Note that x is an extreme point of (A, /) if and only if x* is an
extreme point of (A*, /*). Define a weak order R on the collection of
extreme points in (A, /) by xRy^>x*R*y*. Then for all extreme points
x, y, z in (A, /), B(x} y> z) if and only if y is between x and z in R.

Let x0 be a minimum point in the weak order R, i.e., an extreme point
so that whenever x and y are extreme points then B(x0, x, y) or B(xQ, y, x).
Define P on A by (7). We shall prove (Lemma 8) that P is a semiorder. To
establish this, we show first that / is the symmetric complement of P, by a
series of lemmas, culminating in Lemma 7.

Lemma 4. Suppose x and y are in the same component K of (A, I) and a^K.
Then ~B(x, a, y).

Proof. It is sufficient to prove either B(x, y, a) or B(y, x, a). For suppose,
say, B(x, y, a) holds. Then, B(x, a, y) cannot hold, otherwise by Ax. Tβ,
either aly or (xla and xly). Both contradict a 4 K.

The proof proceeds by induction on the distance d(x, y). If d(x, y) = 0,
then* = y and so xly. B(x3 y, a) follows by Ax. T7. By way of induction, let
x . . . zy be a minimum length path from x to y. Then d{x, z) < d(χ, y), so
by inductive assumption, B(x, z, a) or B(z, x, a). Suppose ~B(x, y, a) and
~B(y,x,a). By Ax. T3, B{x,a,y). If B(x,zfa) is the case, then by
Lemma 2a, we conclude B(z,a,y), since xla implies aeK, contrary to
assumption. Now ylz, so B(a, z, y). By Ax. Tβ we conclude aeK, again a
contradiction.

If B(z, x, a), then using B(x, a, y), Lemma 2b and the fact that a §K, we
conclude B{z, a, y). Since ylz, we also have B(a, z, y). By Ax. T6, we again
conclude aeK, contrary to assumption. Q.E.D.

Lemma 5. Suppose R is a compatible simple order on (A, /) and (A, I) is

connected. Then xRyRz —> B(x, y, z).

Proof. Suppose xRyRz holds. We may assume that x, y, and z are distinct.
We may also assume ~xly and ~ylz, for otherwise B(x, y, z) follows by
Ax. T7. Let A' = A - {u Φ x, y: xRuRy}, let A" =A - {v Φy, z: yRvRz], and
let /' and /" be the restrictions of / to A' and A", respectively. Using the
definition of compatibility, one proves that y and z are in one component of
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(Af, V) while x is in a different one. Thus, by Lemma 4, ~B(y, x, z).
Similarly, using (A'f, /"), we find ~J3(#, z, y). Thus by Ax. T3, B(x, y, z),
as desired. Q.E.D.

Lemma 6. If a is an extreme point of a component K of (A, I) and x, y eK,

then B(a, x, y) or B(a, y, x).

Proof. If K* has only one point, then aEx, so alx and we conclude B(a, x, y)
from Ax. T7. If K* has more than one point, then, since (A,I) is an
indifference graph, by definition K* has exactly two extreme points. It
follows by Lemma lb that there must be an extreme point b of (A,/)
nonadjacent to a. It follows from Theorem 2c that there is a compatible
simple order R on A such that aRyRb. We conclude B(a, y, b), by Lemma 5.
Similarly, B(a, x, b). Suppose now Lemma 6 is false, i.e., suppose
B(x, a, y). Now B(x, a, y) and B(a, y, b) implies either aly or B(x, a, b), by
Ax. T5. If aly, then B(a, y, x), and Lemma 6 is true. If B(x, a, b), then,
since B(a, x, b), we conclude by Ax. T6 that alx or (bla and blx). But ~ bla,
by choice of b. Thus, alx; and so from Ax. T7, we conclude B(a, x, y), as
desired. Q.E.D.

Lemma 7. I is the symmetric complement of P.

Proof. By definition of P, if xly, then ~xPy and ~yPx. To complete the
proof, it is sufficient to verify the claim that for all x, y, B(x0, x, y) or
B(x0, y, x). For then ~xly -* (xPy or yPx). We verify the claim by cases.
Ko will denote the component containing x0.

Case 1. x, ye the same component K and K = Ko.
Case 2. x, ye the same component K and K 4 Ko.
Case 3. x, ye different components Kx and K2 and Ku say, is the same as

Ko.
Case 4. x, ye different components Kx and K2 and neither is Ko.

Case 1. The claim follows by Lemma 6.
Case 2. The claim follows by Lemma 4 and Ax. T3.
Case 3. By Lemma 4, B(x, x0, y) or B{x0, x, y). The latter is as desired.
Therefore, assume the former. If K% has just one point, then xEx0 and
B(x0, x, y) follows by Ax. T7. If K$ has two extreme points, then, since
(A, /) is an indifference graph, there is an extreme point y0 of Ko non-
adjacent to x0. Let a be an extreme point in K2.

We have by definition of x0 either B(x0, y0, a) or B{x0, a, y0). The latter
is impossible, by Lemma 4. Thus, B(x0, yQ, a). This gives us the initial
step of an inductive proof that in fact B(x0, y0, y) holds, where the induction
is on d(y, a). Using B(xΌ, y0, y) and the assumption B(x, x0, y), we conclude
by Ax. T4 that either B(x, x0, y0) or (ylxo and ylyo). The latter is im-
possible, since yeK2, yoeKo and K2 4 Ko. Thus B(x, x0, y0). But by Lemma
5, B{x0, x, y0), since by Theorem 2c there is a compatible simple order R
on (A,/) such that XoRxRyo. Thus, B(x, x0, y0) and B(x0, x, y0); and so by
Ax. T6, either xlxo or (yjx and yjίxώ The latter is impossible, sincere
and x0 are nonadjacent. Thus xlxo. The conclusion B(x0, x, y) follows by
Ax. T7.
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Case 4. Suppose ~ B(x0, x, y) and ~B(x0, y, x). Then by Ax. T3, B(x, x0, y).
Let a and b be extreme points of Kx and K2, respectively. We show
B(a, x09 b). This is a contradiction. For by definition of x0, either
B(x0, a, b) or B(x0, b, a) holds. In either case, an application of Ax. T6
shows that a, b, x0 are not in different components, and this is a contradic-
tion.

To establish B(a, x0, 6), one first establishes B(a, x0, y) by induction on
d(a, x) and then argues by induction on d(b, y). Q.E.D.

Lemma 8. P as defined by (7) is a semiorder.

Proof. It follows from Theorem 5, Corollary 2 of Roberts [2] that a binary
relation P is a semiorder if it is irreflexive and transitive and its
symmetric complement is an indifference graph. By Lemma 7 and Ax. Tl,
it is sufficient to prove that P is transitive. To do this, suppose xPy and
yPz. Then B(x0, y, x) and B(x0, z, y). By Lemma 2a, either B(z, y, x) or
(xoly and xolz). If xoly and xolz, then by Lemma la, the extremality of x0

implies ylz, violating yPz. We conclude B{x, y, z). This conclusion implies
~xlz, for if xlz, then by Ax. T7, B(y, x, z). Thus, by Ax. T6, either #/;y or
(zlx and zly), violating xPy or yPz.

To finish the proof of xPz, it is sufficient by Lemma 7 to show ~zPx.
But suppose zPx. Then B(x0, x, z). This plus B(x0, y, x) implies B(y, x, z)
or (xoly and xolx), by Lemma 2a. But by the extremality of x0, xoly and xolx
implies ylx, whence ~ xPy. Thus, B(y, x, z). Also B(x, y, z), as proved
above. Axiom Tβ now implies ~yPx or ~yPz. These contradictions show
that the assumption zPx is impossible. Q.E.D.

To complete the proof of sufficiency of the Axioms T1-T7, we note that
by a theorem of Scott and Suppes [5], there is a function / : A —»-̂  so that4

(8) #Py«->/(*) Ξ>/(y) +e/2.

Observing that xIy<^>\f(x)-f(y)\<e/2, the reader can verify t h a t /
satisfies (5) of Theorem 4, as desired.
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