Notre Dame Journal of Formal Logic Volume XIII, Number 3, July 1972 NDJFAM

A NOTE ON E

ALEKSANDAR KRON

Since there is no characteristic matrix for E so far, there is no possibility of investigating whether E has the finite model property in the sense of [1]. The aim of this note is to prove that for any wff D of E there is a finite set of wffs having properties similar to some properties of a finite model.

I shall suppose that E is formulated as in [2] or [3], but I shall write \neg for negation instead of \neg . Let X_1, X_2, \ldots be the sequence of all finite non-empty sets of wffs of E. If $X_i = \{A_1, \ldots, A_n\}$, $i = 1, 2, \ldots$, then \overline{X}_i shall denote the wff $A_1 \& \ldots \& A_n$. Let us write X instead of X_i . X will be called *consistent* iff $\neg_E \neg \overline{X}$; X is *inconsistent* iff $\vdash_E \neg \overline{X}$. Clearly, if X is consistent, then for no wff $B \vdash_E \overline{X} \rightarrow B \& \neg B$.

Lemma 1. For any X, B and C, if X is consistent and $\vdash_E \overline{X} \to B \lor C$, then either $X \cup \{B\}$ or $X \cup \{C\}$ is consistent.

Proof. Suppose that the contrary is the case. Then we have both $\vdash_E \neg(\overline{X} \& B)$ and $\vdash_E \neg(\overline{X} \& C)$. By adjunction we obtain $\vdash_E \neg(\overline{X} \& B) \& \neg(\overline{X} \& C)$ and thus $\vdash_E \neg(\overline{X} \& B \lor \overline{X} \& C)$. But then we easily derive $\vdash_E \neg(\overline{X} \& (B \lor C))$ and $\vdash_E \neg \overline{X} \lor \neg(B \lor C)$. Since $\vdash_E \overline{X} \rightarrow B \lor C$, we have $\vdash_E \neg(B \lor C) \rightarrow \neg \overline{X}$. Therefore, $\vdash_E \neg \overline{X}$, contrary to the assumption of the lemma.

Lemma 2. For all X, B, C and D, if $\vdash_E \overline{X} \to B \lor C$ and $\dashv_E \overline{X} \to D$, then either $\dashv_E \overline{X} \And B \to D$ or $\dashv_E \overline{X} \And C \to D$.

Proof. Suppose that both $\vdash_E \overline{X} \& B \to D$ and $\vdash_E \overline{X} \& C \to D$. We first easily obtain $\vdash_E (\overline{X} \& B) \lor (\overline{X} \& C) \to D$ and then $\vdash_E \overline{X} \& (B \lor C) \to D$. Since $\vdash_E \overline{X} \to B \lor C$, we have $\vdash_E \overline{X} \to \overline{X} \& (B \lor C)$ and thus $\vdash_E \overline{X} \to D$, contrary to the hypothesis of the lemma.

Let *D* be an arbitrary wff of E, let $P^+(D)$ be the set of all subformulae of *D*, let $P^-(D)$ be the set of all negations of the wffs of $P^+(D)$ and let $P(D) = P^+(D) \cup P^-(D)$. Furthermore, let $X(D) = \{C_j \lor \neg C_j: C_j \in P^+(D)\}$, for all $1 \le j \le r$, where *r* is the number of subformulae of *D*. In the sequel I shall consider only the members Y_1, \ldots, Y_{2r} of the sequence X_1, X_2, \ldots satisfying the following two conditions:

Received June 26, 1971

424

(1) $X(D) \subseteq Y_k$

(2) $Y_k \subseteq \mathsf{P}(D)$,

 $1 \le k \le 2^{2r}$. If $Y_m \subseteq Y_n$, then Y_n is called an *extension* of Y_m . Thus, every Y_k is an extension of X(D). Let us write Y instead of Y_k , $1 \le k \le 2^{2r}$ and C instead of C_j , $1 \le j \le 2r$, and let us introduce Y', Y'', Z, etc., for the same purpose.

A set Y will be called *D*-normal iff it is consistent and for every $C \in P^+(D)$ either $C \in Y$ or $\neg C \in Y$.

Lemma 3. For any consistent Y there is a D-normal extension Z.

Proof. Since $X(D) \subseteq Y$, we have $\vdash_E \overline{Y} \to C \lor \neg C$, for all $C \in P^+(D)$. By Lemma 1, either $Y' = Y \cup \{C\}$ or $Y'' = Y \cup \{\neg C\}$ is consistent. Since X(D) is finite, repeating the same argument we could show that there is a *D*-normal extension *Z* of *Y*.

I shall note that the preceding lemma states only the existence of a D-normal extension Z of Y; it does not provide a construction of Z given Y.

Let M_D be the set of all normal extensions of X(D). Obviously, M_D is not empty. Let us say that $C \in P(D)$ is *valid* in M_D iff $C \in Y$ for all $Y \in M_D$; it is *refutable* in M_D iff there is an Y such that $C \notin Y$.

Lemma 4. For all $C \in P(D)$, if $\dashv_E C$, then C is refutable in M_D .

Proof. If $\exists_E C$, then $\exists_E \overline{X}(D) \to C$. But $\vdash_E \overline{X}(D) \to C \lor \neg C$. Therefore, by Lemma 2, $\exists_E \overline{X}(D) \And \neg C \to C$. I have to show that $X(D) \cup \{\neg C\}$ is consistent. Suppose that the contrary is the case. Then $\vdash_E \neg \overline{X}(D) \lor \neg \neg C$ and by the rule γ (see [4]), since $\vdash_E \overline{X}(D)$, we have $\vdash_E \neg \neg C$ and thus $\vdash_E C$, contrary to the hypothesis that $\exists_E C$. By Lemma 3 there is a *D*-normal extension of $X(D) \cup \{\neg C\}$. Therefore, there is an $Y \in M_D$ such that $C \notin Y$, and *C* is thus refutable in M_D

Corollary. If $C \in P(D)$ is valid in M_D , then $\vdash_E C$.

Lemma 5. For all $C \in P(D)$, if $\vdash_E C$, then C is valid in M_D .

Proof. Suppose that C is not valid in M_D . Then there is an $Y \in M_D$ such that $\neg C \in Y$. Obviously, $\vdash_E \overline{Y} \to \neg C$. But $\vdash_E Y \to \neg C \to .C \to \neg \overline{Y}$ and thus $\vdash_E C \to \neg \overline{Y}$. Now if $\vdash_E C$, we have $\vdash_E \neg \overline{Y}$ and Y is inconsistent, which is impossible, since $Y \in M_D$. Therefore, $\neg_E C$, and this proves the lemma.

REFERENCES

- Harrop, R., "On the existence of finite models and decision procedures for propositional calculi," *Proceedings of the Cambridge Philosophical Society*, vol. 54 (1958), pp. 1-13.
- [2] Anderson, A. R., and N. D. Belnap, Jr., Entailment, to appear.

ALEKSANDAR KRON

- [3] Belnap, N. D., Jr., "Intensional models for first degree formulas," *The Journal* of Symbolic Logic, vol. 32 (1967), pp. 1-22.
- [4] Meyer, R. K., and J. M. Dunn, "E, R and γ," The Journal of Symbolic Logic, vol. 34 (1967), pp. 460-474.

University of Beograd Beograd, Yugoslavia