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AN EQUATIONAL AXIOMATIZATION AND A SEMI-LATTICE
THEORETICAL CHARACTERIZATION OF MIXED

ASSOCIATIVE NEWMAN ALGEBRAS

BOLE SLAW SOBOCINSKI

In [2]1 and [3] M. H. A. Newman constructed and investigated two
algebraic systems which he calls the fully complemented non-associative
mixed algebra and the fully complemented associative mixed algebra
respectively. In [6], [7], [8] and in this paper these systems are called
simply: Newman algebras and associative Newman algebras. In [4]
Newman constructed and investigated two relatively complemented alge-
braic systems which in some respect correspond respectively to the
systems mentioned above. He calls, cf. [4], p. 38, these systems "mixed
non-associative algebra" and "mixed (associative) algebra." In this
paper only the latter system will be investigated and it will be called
"mixed associative Newman algebra."

In [4], p. 40, the following characterization (the meaning of which will
be explained in section 1 below)

Theorem 3 (Newman). In order that a double algebra may be a mixed
algebra it is necessary and sufficient that it be distributive and idempo-
tent, that a(bb) - (ab)b, and that there exist a right ω and a left ω.

of mixed associative Newman algebra has been established. Moreover, in
[4], it has been proved that this algebraic system whose two basic binary
operations are + and x is the direct join of an associative Boolean ring
(without unity element) and a generalized Boolean algebra in the sense of
Stone, cf. [9], p. 721, section 3.

In this paper it will be shown that, as in the case of the fully

1An acquaintance with the papers [2], [3], [4], [6], [7] and [8] is presupposed. In
[2], [3] and [4] "ab" is used instead of α α x δ " . An enumeration of the algebraic
tables, cf section 5 below, is a continuation of the enumeration of such tables given
in [6] and [8].
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complemented associative Newman algebras, cf. [7] and [8], there exists
such a formalization of the relatively complemented associative Newman
algebras that

(i) These algebras can be axiomatized equationally,

and, moreover, that

(ii) These algebras can be considered as semi-lattices with respect to the
primitive binary operation x to which the additional postulates are added
concerning the properties of the other operations which are accepted as
primitive in the formalization mentioned above.

It should be remarked that throughout this paper the theoretical
foundations of the discussed algebraic systems and the properties of "even"
and "odd" elements belonging to the carrier set of the given mixed
associative Newman algebra will not be discussed, and that the axioms
A1-A9, Bl, Bl*, A10 and All, given below, will be used mostly tacitly in
the proofs presented in this paper. Also, it should be noticed that several
formulas which are valid in the field of the investigated system and which
will be needed for our end are already proven by Newman in [4]. But,
unfortunately, in [4] the proofs of these formulas are often given either with
the analysis of the mixed non-associative Newman algebras, or verbally,
or by a simple remark that a proof is analogous to certain deductions in the
field of the fully complemented Newman algebras which are presented in
[2], For this reason and in order to separate completely the mixed
associative Newman algebras from the other Newman algebraic systems
several proofs presented in [4] will be repeated in this paper, obviously,
with the indications that they are due to Newman. Although it will increase
the length of this paper considerably, it will allow the reader to understand
the deductions without a penetrating study of [2], [3] and [4].

1 Newman's Theorem 3 given above can be expressed in a fully formalized
way, as follows:

(A) Any algebraic system

« = < A , = , + , x , 0 , O >

with one binary relation =, two binary operations + and x, and two constant
elements 0 and O, is a relatively complemented mixed associative Newman
algebra if and only if it satisfies the following postulates:

Al [a]:aeA . D .a = a
A2 [ab]: a,b e A. a= b.^>. b= a
A3 [abc]:a,b,c eA .a = b .b = c . z>. a= c
A4 [ab]:a,b eA .^> .a +beA
A5 [ab]:a,beA .^.a x beA
A6 [abc]:a,b,c eA.a=c.^.a+b = c+b
A7 [abc]:a,b,c eA .b = c ,^> .a + b = a + c
A8 [abc]:a,b,c eA .a = c . 3 .axb = c xb
A9 [abc]:afb,c eA .b = c . 3 .a x b = ax c
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Bl OeA
B 2 [ab]:a,be A , α x b = a.^ . [ 3 c ] . ceA.c + a=b.cXa=0

Bl* OeA
B2* [ab]\a,be A .b x a = α . =>. [^c].ce A . c + a = b .ax c = O

Cl [abc]:a,b,ceA . D . α x (b + c) = (a x δ ) + (α x c )

C2 [αδc]: a, b, c e A . =>. (α + δ) x c = (αxc) + (δxc)

£ i [ a ] : a e A . ^ > . a = a x a
E 2 [ a b ] : a , b e A . ^ > . a x ( b x b ) = ( a x b ) x b

The axioms A1-A9 are the customary closure algebraic postulates with
respect to the operations + and x, and the assumptions concerning the
logical properties of the relation =. The right ω and the left ω of Newman's
Theorem 3 are the postulates Bl and B2, and the postulates Bl* and B2*
respectively, cf. in [4], p. 34 and p. 40. Obviously, the axioms Cl and C2
are the laws of distribution, and El is the law of indempotency with regard
to the operation x. Finally, E2 is a special case of the law of association
with respect to the operation x.

As in the case of the fully complemented Newman algebras, cf. [2] and
[6], it should be noticed that for all elements of the carrier set of any
relatively complemented Newman algebra the additive operation + is
commutative and associative, but not necessarily idempotent of nilpotent,
and that the multiplicative operation x is idempotent and commutative, but
not necessarily associative.

2 It follows implicitly from the considerations given in [4] that the axiom-
system of H given above in section 1 can be simplified. Namely:

2.1 Let us assume the discussed axiomatization of U. Then:

Fl [ab]:a,beA . 3 . (a x b) x b = a x b [E2; El]
F2 [a]:aeA .^ .a = a + 0
PR [α]:Hp(l).3.

I: rΛ . .l i1"*"!
4 . 0xa = (cxa)xa = cxa = 0. [1; 2; 3; Fl]

5. 0 x α = 0 . [4]

[id].
6. deA. )
7. d + 0 = a. > [1;B1;B2; 5]
8. dx 0 = 0. )
9. dxa=dx(d + θ) = ( d x d ) + ( d x θ ) = d + θ=a.

[ 1 ; 6 ; 7 ; C 2 ; E 2 ; 8 ; 7 ]
10. a = a x a = (d + 0) x a = (d x a) + (0 x a) = a + 0 .

[1; El; 6; 7; C2; 9; 5]
a = a + 0 [10]

Zl [a]:aeA . 3 . a = O +a
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PR [α] :Hp( l ) .D.

[ 3 c ] .
2. ceA. )
3. c+a = a. > [1;52*;£2]
4. α x c = 0 . )
5 . fl = flXfl = α x ( c + ύ i ) = ( f l X c ) + ( f l X f l ) = O + ί ϊ ,

[ 1 ; £ 2 ; 2 ; 3; C2; 4; £2]
α = O +α [5]

Z£ 0 = O [52; 52*; JF\2; Z2]
5 5 [ α δ ] : α , δ e A . b x a = a .^ . [ 3 c ] . c e A . c + a = b . a x c = 0 [ B 2 * ; Z2]

2.2 Since, obviously, in the field of the axioms A1-A9 {Bl; B2; B3] -»
{52*; B2*} and {£2; F2} -» {E2}, the proof given above in section 2.1 allows
us to reformulate definition (A) of the system 3ί, as follows:

(B) Any algebraic system

« = <A, =, +,x, 0)

w#ft ow£ binary relation =, two binary operations + and x, αwd one constant
element 0, zs a relatively complemented mixed associative Newman algebra
if and only if it satisfies the postulates A1-A9, Bl, B2, B3, Cl, C2, El and
Fl.

Since the definitions (A) and (B) of the system H are inferentially
equivalent and the set of postulates given in (B) is much simpler than the
set accepted in (A), our further investigations will be based on formulation
(B) of the system II.

3 For our end we need to show that several formulas are valid in the field
of the axiom-system given in (B). Hence, if we assume the mentioned set
of postulates, then we have F29 cf.9 its proof in section 2.1, and, moreover:

F3 [a]:aeA .^>.a = 0 + α [El; B2; C2; cf. proof of Q1 in [4], p. 35]
F4 [abc] :a,b,c eA .c + a = b .c x a = 0 . D i x α -a

[C2; F3; El; cf. proof of Q2 in [4], p. 35]
F5 [abc]:ayb,ceA ,c+a=b.axc = 0.^).axb=a [Cl; F3; El]
F6 [ab];.a,beA .=> :a x b = a . = .b x a = a

[B2; F4; B3; F5; cf. Q17 in [4], p . 40]
F7 [ab]:a,beA . 3 .b x (a x b) = a x b [Fl Fβ; cf. Q17 in [4], p . 40]
F8 [abed] :a,b,c,deA .a + b = d . α x δ = 0 . α + c = ί f . α x c = 0 . ^ J = c
PR [abed]: H p ( 5 ) . D .

6. b = (α x b) + (b x b) = (a + b) x b = (a + c) x b = (a x b) + ( e x 6 ) = c x b .
[1;F3;3;E1;C2;2;4;C2;3;F3]

b = bxc = (axc) + (bxc) = (a+b)xc = (axc)xc = c
[ 1 ; 6; F6; F3; 5 ; C2; 2 ; 4 ; C2; 5 ; El; F3]

F9 [ab]:a,beA .a + a = a . 3 ,{axb) + (a x b) =axb [C2]
F10 [abc] :a,b,c eA . c +a = b .ax c = 0 ,^>. bxc = c

[C2; El; F2; cf. Q2 in [4], p. 35]
Fll [abc]:a,b,ceA .c + a = b .c x a = 0 . 3 .c x b = c [C1;E1;F2]
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F 1 2 [ a b c ] : a , b , c e A . c + a = b . c X a = 0.^.aXc = 0

PR [αδc ] : H p ( 3 ) . = > .

4 . c=cxb. [1;2;3;FU]

5. bxa=a. [1; 2; 3; F4]

[id].

6. deA. )

7. d +a = 6 . > [1; J33; 5]

8. βXrf = 0 . )

9. bxd = d. [1;6;F1O;Ί;S]

10. c = c x δ = c x (d + α) = (c x d) + (c x a) = (c x d) + 0

[ l ; 4 ; 6 ; 7 ; C 2 ; 3]

= (c x d) + (fl x d) = (c + a) x d = 6 x rf = d . [8; C2; 2; 9]

β χ c = 0 [8; 10]

F13 [abc]: a, b, ce A. c + a= b. ax c = 0 .^> .c xa = 0

[Similar proof: F10; F5; B2; Fll; C2; Cl]

F14 [abed]: a, b, c, deA . c +a = b . c x a = 0 . d + a = b .d Xa = 0 . ^ . c = d

PR [αδcrf]:Hp(5).=>.

6. c = cxb. [1; Fll; 2; 3]

7. d=dxb. [ 1 ; F 2 I ; 4 ; 5 ]

8. d=bxd. [l Fβ Ί]

9. αxrf = θ. [ 1 ; F L 2 ; 4 ; 5 ]

c = c x δ = c x ( d + α ) = ( c x d ) + ( c x α ) = ( c X ί ί ) + O [1; 6; 4; CI; 3]

= (cXίί) + (βX(/) = (c+fl)Xίf = ί)Xrf = rf [9; C^; 2; 8]

F25 [fl6]:α,6eA .=>.[gc] .ceA .c + (a x b) = b .c x (a x b) = 0 [B2; Fl]

Since we have F14 and F15, we can introduce into the system the fol-

lowing definition:

DI [abx] :.a,b,xeA . 3 :b + a = x . = .x + (ax b) = b .xx (ax b) = 0

[F14; F15]

F16 [ab]:a,beA.^.b + aeA [Fl;B2;Dl]

F17 [ab]:a,beA .=> .(b * a) + (a x b) = b [Flβ Dl]

F18 [ab]:a,beA.^>.(b 4- a) x (a x b) = 0 [Flβ Dl]

F19 [ α ] : α e A . 3 . 0 = ( β τ α )

PR [α]:Hp(l).=>.

0 = (a 4- Λ) x « = (a 4- α) x ((α v α) + α) [1; F2S; £ 2 ; F27; £ 2 ]

= ((a •?• α) x (α •=• α)) + ((fl τ β ) x α ) [Ci]

= (fl-rfl)+0 = fl^-fl [F25; F25; j^2; F2]

F20 [abc]:a,b,ceA ,^>. (b ± a) x (a x b) = (c ± c) [F18; F19]

F21 [abc]:a,b,ceA .b = c .^.b ± a = c ± a [1; F17; F18; A9; Flβ; F14]

F22 [abc]:a,b,ceA.a = c.^.b + a = b + c [1; F17; F18; A8; Flβ; F14]

F23 [ab]:aybeA .=).(fl x b) x (b + a) = 0 [Flβ; F17; F18; F12]

F24 [ab]:a,beA .^ .(b + a) x b = b + a

PR [α6]:Hp(l).=>.

(b -r fl) x 6 = (6 4- «) X ((6 -r fl) + (fl X 6)) [1; F26; FIZ]

= ((& τ α ) x ( δ τ fl)) + ((δ 4- fl) x (fl x δ)) [Cl]

= (δ T α) + 0 = δ T a [F2; F25; F2]
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F25 [ab]:a,beA . => . δ x (b 4- a) = δ 4- α

PR [αδ]:Hp(l).=>.

δ x ( δ τ α ) = ( ( δ v β ) + ( α x 6)) x (δ 4- α) [1; FI5; F17]

= ( ( δ 4- a ) x (δ - α ) ) + ( ( « x & ) x ( δ τ α ) ) [C2]

= (δ T α) + 0 = 5 T α [£2; F23; F2]

F26 [ab] :a,beA.axb=a.^.b± (b ± a) = a

PR [αδ]:Hp(2).D.

3. bxa=a. [1; 2; F6]

b + (δ - α) = (δ 4- (δ v α)) x δ = (δ 4- (δ 4- «)) x ((δ 4- α) + α)

[1; F26; F24; F17; 2]

= ((δ 4- (δ 4- a)) X ((δ 4- α) x δ)) + ((δ 4- (δ 4- a)) x α) [Cl; F^4]

= 0 + ((δ 4- (δ 4- α)) x a) = ((δ 4- (δ 4- «)) x α) + 0

[F18; F3; F2\

= ((δ 4- (δ 4- α)) x a) + (((δ 4- α) x δ) x α) [F2S; F24; 2]

= ((δ 4- (δ 4- α)) + ((δ 4- α) X δ)) X a = δ x α = a [C2; F17; 3]

F27 [άb]\a,beA.b + δ = δ . ^ . ( δ 4 - α ) + (δ4-α) = δ 4 - α [F25; F 2 4 ; C I ]

F28 [ 3 Λ ] . Λ € 4 [J52]

F^9 [ α ] : α e A . 3 . 0 x α = 0 [F19; E2; F2δ; c/. QiOin [4], p. 36]

F30 [ α ] : α e A . 3 . α x 0 = 0 [JB2; F29; F5; c/. Q10 in [4], p. 36]

F 3 2 [a]:aeA .^ .(a +a)x a = a +a [C2; El]

F32 [a]:ae A .^>. (a + a) + (a + a) = a + a

[El; Cl; C2; El; cf. proof of F27 in [6], p. 261]

F33 [a]:aeA.^>. ((a 4- (a + α)) x α) + ((α 4- (a + a)) x α) = 0

[A4; F16; Cl; F31; F18]

F34 [a]:ae A .=> . [ g δ c ] . δ , c e A . δ + δ = O . c + c = c . α = δ + c

P R [ α ] : H p ( l ) . 3 .

2 . α + α e A . [ 1 ; ^ . ^ ]

3 . («τ (α + α))eA. [1; 2; F2(5]

4. fl = β X α = ((ατ(fl + α)) + (fl+α))Xfl [1; 2; 3; £2; F17; F31]

= ((α 4- (a + «)) x α) + (a + a). [C2; F3l]

[ 3 δ c ] . δ , c e A . δ + b = 0.c + c = c.a = b + c [ 3 ; 2; F33; F32;4]

F35 [abed] :a,b,c,deA.a + a = O.b + b = b.c + c = O.d + d = d.^>.

(a + δ) x (c + d) = (ax c) + (δ x d)

[Cl; C2; F30; F29; F2; F3; cf. proof of F32 in [6] , p . 261]

Concerning F34 and F35 see a remark of Newman in [4], p. 37.

F36 [ab] :a,beA .a + b = 0 . D .a = b

PR [αδ]:Hp(2).D.

3. 0 = α + (δ x a). [1; F29; C2; E l ]

4. 0 = (αxδ) + δ. [1; F29; C2; El]

5. α = a X a = α X ((a 4- (δ x α)) + (δ x α)) [1; A5; El; F16; F17; Fl]

= ((a x (a 4- (δ x a))) + 0) + (δ x a) [Cl; F2; F7]

= ((a x (a 4- (δ x a))) + ((δ x α ) x ( α f ( δ x α)))) + (δ x α) [F^5; Fl]

= ((a + (δ x α)) x (α 4- (δ x a))) + (b x a) [C2]

= 0 + (bxa) = bxa. [3 ; F29; F3]

a= ax δ = 0 + (axb) [1; A5; F26; F6; 5; F5]

= (((α x δ) + δ) x (δ 4- (a x b))) + (axb) [4; F29]
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= (0 + ( δ x ( H ( α x &)))) + (δ x (a x b)) [C2; F23; Fl; F7]

= bx ((δ -r ( f l X δ ) ) + (axb)) = δ xb = δ

[F3; Cl; F17; Fl; El; cf. Q18 in [4], p. 41]

F37 [ab] :a,beA .a x b = a . ^ .a + b = b + a

PR [aδ]:Hp(2).D.

3. δ x α = fl. [ 1 ; F 6 ; 2 ]

α + 6 = ( f l + δ ) x δ = ( « + ' δ ) x ( ( δ τ f l ) + α ) [1; F16; 2; £ 2 ; C£; F27; 2]

= ((b x (b 4- a)) + ( σ x ( δ τ α))) + ((b x a) + (α x α))

[C2; C£; F£3; 2; F5; J\2; F23; 2; ^ 2 ; 3; .Ei]

= (b +a)x ((b + a) +a) = (b +a)x b = b +a

[C2; C1;F17; 2; C2;E1; 2]

F 3 S [ α δ c ] : α , & , c e A . α x c = α i x c = 6 ^ . α + δ = δ + β

P R [ α & c ] : H p ( 3 ) . = > .

4 . c x f l = α . [1; 2; Fβ]

5. cxb = b. [1;3;F6]

6. α + 6 = (α + b) x (a + 6) [1; £ 2 ]

= ((c x α ) + ( δ x a)) + ((α X b) + (c x 6)) [Cl; C2; El; 4; 5]

= ((c + δ ) x α ) + ((α + c) x 6) [C2]

= ((6 + c) x a) + ((c + a) x 6) [F57; 3; 2]

= ((δ + α) x a) + ((b + a) x b) = (6 + a) x (a + δ ) .

[C^;4; 5;J52;C2]

7. 6 + α = (α + b) x {b +a).

[Similar proof: 1; 2; 3; 4; 5; £ 2 ; C2; C2; F37]

8. δ + α = (b +a)x {a + b). [1;A4;Ί;F6]

a +b = b +a [ 1 ; 6; 8 ]

F39 [abcd]:a,b,c,deA ,axd = a.bxd = b.cxd = c.^>.

a + {b + c) = (α + δ ) + c

PR [ α δ c ( i ] : H p ( 4 ) . 3 .

5 . ίfXfl=α. [1; 2;F6]

6. dxb=b. [1;3;F6]

7. ί ? x c = c . [ 1 ; 4 ; F 5 ]

8. d + (d +c) = (d + (d + c)) x ((d + c) + c) [1; F26; E2; 4; C2; F17; 4]

= ((rf + d) x (d * c)) + ((c + (rf + d)) x c)

[Cl; C2;F23; 4; F2; C2; 7; ̂ 2 ; C2]

= (((d + d)x (d+c)) + (cx(d+c))) +

(((d +d) +c)xc) [F2; F23; 4;A4; F31; 4; F38]

= ((d +d) +c)x {(d+ c) + c) = (d + d) +c .

[C2; C1;F17; 4; C2; El; 4]

9. d + {b +c) = (d + (b + c)) x {(d 4- δ) + δ) [1; F25; El; 3; 4; C£; F27; 3]

= ((d x (d - b)) + (cx(di b))) +

((d + 0 + c)) x δ) [Cl; C2; F23; 3; F 3 ; El; 6; C2]

= (((rf x (d 4- δ)) + ( δ x ( ί f τ δ))) + (c x (rf v δ))) +

(((rf + d) + c) x δ) [F2; F23; 3; 8]

= ((d + δ) + c) x ((d 4- δ) + δ)1 = (rf + δ) + c .

[C^; 6; El; C2; Cl; F17; 3; C2; 2; 3]

α + (δ + c) = (α + (δ + c)) x ((d + a) + a) [1; F2^; 2; 3; 4; C£; F27; 2]
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= ((b x (d + a)) + (cx ( r f i β ) ) ) +
((d + (δ + c)) x α) [C2; C2; F23; 2; F 3 ; E l ; 5; C2]

= {((a x(d + a)) + ( b x ( d ± a))) + ( c x (rf * α ) ) ) +
(((rf + 6) + c) x α) [F3; F23; 2; 9]

= ((a +b) + c)x ((d -r α) + α) = (α + b) + c
[C2; 2; £ 1 ; C£; C2; F27; 2; 3; 4; C2]

Concerning the proofs of F38 and JF\?9 cf. Q19 in [4], p. 41 and the
proofs of P17 and P18 in [2], p. 260.

F40 [ab]: a,b e A .a + a = 0 . 3 . (a x b) + {a x b) = 0 [C2;F29]
F41 [abc];a, b,ceA.b+b = O.a + (bxc) = c + (b'Xc).^.a = c
PR [αδc] :Hp(3) .3 .
4. ((δ x c) x α) + (b x c) = (δ x c) X (c + (b x c)) [1; £2; CJ; 3]

= (δ x c) + (δ X c) = 0 . [Cl; Fl; El; F40; 2]
5. (δx c)x a= (bx c ) . [1; 4; F35]

α = α + ( ( δ x c ) + ( δ x c ) ) = (α + (δx c)) + ( 6 x c )
[1; F^; F40; 2; F39; £2; 5]

= (c + ( b x c)) + ( b x c) = c + ((b x c) + ( b x c)) = c
[3; F5P; El; Fl; F40; 2; F^]

F 4 2 [abed] ; a , b , c , d e A . b + b = 0.c + c = 0 . d + d = 0 . c x a = c.

d x b = d . ( a + c) + ( d + b ) = a + b . ^ > . c = d

PR [αδcrf]:Hp(7).=>.
8. flXc=c. [1; 5; -F6]
9. (αxc) + c = 0 . [1; 8; 3]

10. c + (δ x c) = (α x c) + (b x c) = (a + b) x c [1; 8; C2]
= {{a + c) + (d+ b))x c [7]
= 0 + ( ( ί ί x c ) + ( δ x c)) = (dx c) + (bx c ) . [C2;E1; 9;F3]

11. c = ί ? x c . [ l ; F 4 2 ; 2 ; 1 0 ]
12. 0 x r f ) + ( i x δ ) = O. [ 1 ; 4 ; £ 2 ; 6]
13. (dxa) +c = ((dxa) + (dx c)) + ((tf xd) + (dx δ)) [1; 11; F ^ ; 12]

= 6?x ((α + c) + (rf +δ)) =dx (a +b) [Cl; l]
= (dxa)+d. [Cl β]

14. (d x a ) + c = ((d x a ) + c ) x a = ((d x a ) + d ) x a = 0 .
[1; F2; 5; C^; 13; C2; Fl; F40; 4]

15. dxa =c . [1;F36; 14]
c =cf [1; 13; 15; 3;F35]

JP45 [αδ]:α, δe A . δ + δ = 0.=>.(αXδ) + ( α x δ ) = 0 [Cl;F3θ]
F44 [ab]:a,beA. b + b = 0 .=>. «x b = b Xa
PR [αδ]:Hp(2).D.

3. a + b = (a + b)x (a + b) = (a + (bx a)) + ((a x δ) + δ ) . [ 1 ; £ 2 ; C 2 ; C ^ ]
ax b= bxa [1; F42; 2; F40; F43; Fl; 3]

F45 [αδc]: α, δ, c e A . δ + 6 = 0 . ^ . α x (δx c) = (α x δ) x c
PR [Λδc]:Hp(2).z>.

3. α x δ = δ x f l . [1; 2; F44]
4. (δxα) + (δxα) = 0. [1; 2; F4θ]
5. (δ x c) + (δ x c) = 0 . [1; 2; F40]
6. (δ x c) x a = a x (b x c). [1; 5; F44]
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7. ((δ x a) x c) + ((δ x a) x c) = 0 . [1; 4; F4θ]

8. ((δ x c) x α) + ((δ x c) x α) = 0 . [1; 5; F4θ]

9. ((δ x α) x c) x (δ x α) = (c x (6 x a)) x (b x a) [1; 4; F44]

= (δ Xfl) x c . [F2;4; F44]

10. ((6 x c) x α) x (6 x c) = (α x (6 x c)) x (6 x c) [1; 6]

= (bxc)xa. [Fl; 4; F44]

11. (5Xfl) + ( 5 x c ) = δ x ( α + c ) = ( δ x ( f l + c ) ) x ( f l + c) [1; Cl; F l ]

= ((δ x«) + ((δ x c) x a)) +

(((δ x a) x c) + (δ x c)). [C2; C^; Fl]

12. (δ x c) x a = (δ x a) x c . [1; F42; 5; 7; 8; 9; 10; 11]

α x (δ x c) = {axb)xc [1; 12; 6; 3]

The theses F419 F42> F44 and F45 are stronger than the corresponding

formulas Q20, Q21? Q22 and Q23 proven in [4], pp. 41-42.

F46 [ab]:a,beA . δ + δ = δ . ^ . α + ( δ x α ) = α

PR [αδ]:Hp(2).D.

α + (δ x a) = (a + (δ x a)) x <z = (β + (δ x a)) x

((α τft) + (δxα)) [l F I ^ ^ i F i ; C^ F i z ]

= (α 4- δ) + ((α x (δ x α)) + (δ x α))

[Cl; C2; F25; F23; F2; El]

= (α v δ) + (δ X a) = a [F7; C2; 2; Flf\

F47 [ab]:a,beA . δ + δ = δ . = ) . ( δ x α ) + α = α

[Similar proof: F7; El; Cl; F16; F17; C2; Cl; F18; F3; F24; El;

Fl; C2; F17]

Concerning F46 and F47 cf. Q26 in [4], p. 42.

F48 [ab] ;a,b eA .a + a = a . δ + δ = δ ,~3 .(a + δ) + (a + b) = a + b

PR [αδ]:Hp(3).^.

[ 3 cd].

4. c,ί?e A .

ί: CΛTΛ: ^ ^ ^ ]
7. α + δ = c + d .

8. a + b = (a + b) x (c + d) = ((a + δ) x c) + ((c + rf) x rf)

[ 1 ; 4 ; £ 2 ; 7 ; C J ; 7 ]

= ((a x 0) + (δ x 0)) + ((0 xd)+d) = d.

[2; 3; 5; 6; C2; Cl; El; F30; F29; F3]

(a + b) + (a + δ) = a + δ [1; 4; 8; 6; 8; c/. QΊ3 in [4], p. 37]

F49 [abcdefg] :a,b,c,d9e ,f,geA .a + a = a . δ + δ = δ . c + c = c . ( i + < i = i ? .

e + ^ = e.f+f = f.g+g=g.^> .[^m].meA .m+m = m.axm=a.

bxm = b.cxm-c.dxm=d.exm-e.fxm=f.gxm=g

PR [αδcde/g ] : Hp(8). =>.

9. U = α + (δ + (c + (rf + (e + (/ + g ))))). [Abbreviation]

10. 2ίeA. [9;1;A4]

11. 31+21 = 31. [9;1-8;F48]

12. a x a = a + ((δ + (c + (rf + (e + (f+g))))) x a) = a .

[9; 1; 10; C2; El; 3-8; A4; F48; F4β]
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13. axίί =a . [9; 1; 10; 12; Fβ]

14. b x 21 = b.

[Similar proof: 9; 1; 10; C2; El; 4-8; A4; F48; F46; F47; 2; Fβ]

15. c x 2ί = c .

[Similar proof: 9; 1; 10; C2; El; 5-8; A4; F4S; F46; F47; 3; 2; Ftf]

16. d x % =d.

[Similar proof: 9; 1; 10; C2; El; 6-8; A4; F48; F46; F47; 4; 3; 2; F6]

17. 0 x 2ί =e .

[Similar proof: 9; 1; 10; C2; El; 1; 8; A4; F48; F46; F47; 5; 4; 3; 2; F6]

18. / X 2 ί = / .

[Similar proof: 9; 1; 10; C£; El; 8; F46; F47; 6; 5; 4; 3; 2; F6]

19. gx%=g. [Similar proof: 9; 1; 10; C2; El; F47; 7; 6; 5; 4; 3; 2; Eβ]

[•^m] .me A .m + m = m .a x m = a . δ x m = b .c x m = c .d x m = < i .

e x m = e . / x m = / . < § r x m = ^ r

[9; 10; 11; 13; 14; 15; 16; 17; 18; 19; cf. Q29 in [4], p. 43]
F 5 0 [abc]:a,b,ceA . b + b = b . a x c = a . b x c = b . ^ > .

c ± ( { c + a ) x {c ± b ) ) = a + b

PR [αδc] :Hp(4) .=>.

5. 0 = ( δ x c ) x ( c τ δ ) = ( 5 x ((c * α) + α)) x (c -s- δ) [ 1 ; F 2 5 ; F 2 3 ; F 2 7 ; 3]

= ((δ x ( c τ α)) x (c 4- 6)) + ((5 x α) x (c v &)).

[ C l ; C2]

6. ( δ x ( c τ α)) x ( c τ & ) = ( 5 x α ) x ( c τ & ) . [1 ; F16; F36; 5]

7. 0 = {(b X (c -f α)) X (c v 6)) + ((6 x ( c τ α)) x ( c f 6)) [ 1 ; F 2 6 ; 5; 6]

= {b x (c - α)) x ( c τ δ ) , [C2; 2]

8. ( α + / ) ) X c = f l + δ . [1 ; C£; 3; 4]

9. 0 = (c 4- (α + δ)) x (α + δ) = ((c 4- (α + δ)) x a) +

((c 4- (α + δ)) x δ ) . [1 ; A4; F16; F18; 8; Cl]

10. (tr 4- (α + δ)) x α = (c 4- (α + δ)) x δ . [1; A4; F16; F36; 9]

11. 0 = ((c 4- (α + 6)) xb) + ((c 4- (α + δ)) x δ) [1; A4; F25; 9; 10]

= (c 4- (α + δ)) x ( δ + δ ) = ( c r ( f l + & ) ) x δ . [C2; 2]

12. 0 = (c - (« + δ)) x a . [1; A^; F 2 ^ ; 11; 10]

13. (c 4- (α + 6)) x (c 4- 6) = ((c 4- (α + 5)) x (c 4- δ)) +

( M ( f l + δ ) ) x δ ) [1;A4;F16;F2; 11]

= (c 4- (α + δ)) x ((c 4- δ) + δ) [C2]

= (c 4- (α + δ)) x c = c 4- (α + δ ) . [Fi7; 4; F^4]

14. (c 4- (α + δ)) x ( c τ β ) = ((c 4- (α + δ)) x (c T- α)) +

((c 4- (α + δ)) X a) [1; A4; F l ^ ; F 2 ; 12]

= ( c τ ( β + &)) x ((c 4- a) + α) [Cl]

= (c 4- (α + δ)) x c = c 4- (α + 6 ) . [F17; 3; F24]

15. δ x ( c τ f l ) = ( α x ( c τ f l ) ) + ( δ x ( c τ a)) [1; F l ^ ; F 3 ; F25; 3]

= (a + δ) x (c 4- α ) . [C2]

16. ( c τ ( β + δ)) + (δ x (c - α)) = ({c 4- (α + δ)) x (c 4- «)) +

((α + δ) x (c 4- α) [1; A4; F16; 14; 15]

= ((c 4- (α + δ)) + (α + δ)) x (c 4- α) [C2]

= c x ( c ^ α ) = c v α . [jPi7; 8; F^5]

17. ( c τ f l ) x ( c τ δ ) = ((c 4- (α + δ)) + (δ x (c 4- α))) x (c 4- δ)

[1; A4;F16; 16]
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= ((c * (a + 6)) x (c 4- b)) + ((δ x (c 4- α)) x

(c - 6)) [C2]

= ( c M « + δ)) + 0 = C r ( « + δ ) . [13; 7; F2]

c 4- ((c 4- α) x (c -r 6)) = c •=• (c 4- (α + b)) = α + 6

[l;A4*,F16; F26; 1 7 ; 8 ]

F 5 2 [abc]:a,b,ceA .axc=a.bxc = b.(axb)xc=axb.

(bxa)xc = bxa.c+c=c.^>.axb = bxa

PR [α&c] :Hp(6).=).

7. c± (axb) = c± ((c + (c ± a)) x (c 4- (c 4- δ))) [1; A4; F26; F ^ ; 2; 3]

= ( c τ α ) + ( c τ δ ) = ( c τ 6 ) + ( c f α ) [i^50; F^Z; 6; F24; F3S]

= c τ ( M M &)) x M M «))) [F50; F27; 6; F24]

= C T ( δ x α ) . [F2^; 3; 2; 1]

axb = bxa [1;A4; F16; F8; F17; 4; F18; 4; F17; 5;F18; 5; 7]

7^5^ [ab]:a,beA .a +a = a .b + b = b .^ .a x b = b x a [F9; F49; F5l]

F53 [ab]:a,beA .^ .a xb =b xa

[F44; F52; F34; F35; cf. proof of F33 in [6], p. 261]

F54 [abed] ;a,b,c,deA.d+d = d.axd=a.bxd = b.cxd = c.

(α x b) x d = a x b . (b x c) x d = b x c . (α x (& x c)) x d = a x (b x c).

((α x 6) x c) x d = (α x 6) x c . 3 .a x (b x c) = (a x b) x c

PR [αδcί?]:Hp(9).=>.

10. d 4 ( α x ( 6 x c ) ) = ί ί τ ( ( d 4 ( d τ a)) x

(dί (d+ (bx c)))) [1; A5; F i 6 ; F2^; 3; F2^; 7]

= (rf 4- α) + (rf 4- (δ x c)) [^50; F^7; 2]
= (rf 4- α) + (df 4- ((^ 4- (d 4- 6)) x

(d4- (cί^c)))) [F^;4;F^;5]

= (d 4- α) + ((df 4- δ) + (rf 4- c)) [F50; F^Z; 2]

= {{d 4- α) + (df 4- δ)) + (rf 4- c) [F55; -F27; 2]

= (d 4- ((d 4-0 4- α)) X (d 4- (d 4- δ)))) +

(rf 4- c) [F50; F27; 2]

= (d 4- (α x δ)) + (d 4- c) [F26; 3; F^6; 4]

= d 4- ((d 4- (d 4- (Λ x δ))) x (d 4- (ώ 4- c))) [î 5<9; F^7; 2]

= d 4- ((α x δ) x c ) . [F26; 6; F26; 5]

a x (δ x c) = (α x 6) x c

[1;A5;F16;F8;F17; S;F18; 8; F17; 9;F18; 9; 10]

i ^ 5 5 [abc]:a,b,c e A .a + a = a .b + δ = δ . c + c = c . 3 . α x ( δ x c )

= ( e x δ j i x c [A5; F9; F49; F54]

F56 [abc]:a,b,c eA . 3 .α x (δx c) = (ax b)x c

[F45; F55; F34; F35; cf. proof of LI in [7], p. 267]

Since system U contains £2 as one of its postulates, and in its field the

formulas F53 and F56 are provable, we know that the multiplicative opera-

tion x of the mixed associative Newman algebras is idempotent, commuta-

tive and associative. Concerning the proofs of F53 and F56 it should be

noticed that:

(a) Entirely the same modes of reasoning which were used above in order

to obtain F53 and F56 allow us to prove these formulas in the field of U

without the applications of the defined operation 4-. However, in such cases
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the proofs would be longer and less transparent due to the necessity of the
constant use of particular quantifiers;

and that:

(b) In order to .show that F53 and F56 are valid in U we have to prove
before hand that the formulas F44, F45, F52 and F55 are the consequences
of the axiom-system of %. Although, as it is mentioned above, F44 and F45
are stronger than the corresponding formulas Q22 and Q23, cf. [4], p. 42,
their proofs are essentially the same as Newman's proofs of Q22 and Q23.
On the other hand, in this paper F 52 and F55 are obtained in a completely
different way than the corresponding formulas established by Newman in
[4], pp. 42-43. The proofs presented here of F52 and F55 are rather simi-
lar, in some respects, to the deductions which allowed Newman to prove the
formulas P31 and P32 in [2], p. 263.

4 In this section we shall prove the validity of the following formalization
of mixed associative Newman algebras:

(C) Any algebraic system

B = (By =, + , X, -0

with one binary relation = and three binary operations +, x and -f , is a
relatively complemented associative Newman algebra if and only if it
satisfies the postulates Al-A9 given in (A), adjusted to the carrier set B of
Jβ, and, additionally, the following axioms :

A10 [ab]:a,beB.^ .b + aeB
All [ 3 Λ ] . « € B

Gl [abc]: α, δ, ce B . 3 . a x (b + c) = (a x b) + (a x c)
G2 [ab] :a,beB . D . α x b = bx a
G3 [ab] :a,beB . 3 .(b + a) + (ax b) = b
G4 [abc] :a,b,ceB . 3 .(b 4- a)x (ax b) = c 4- c

The proof presented below that system S3 is a correct formalization of
the algebras under consideration will imply at once the desired theorems.
Namely:

Theorem 1. The mixed associative Newman algebras can be axiomatized
equationaΐly,

and

Theorem 2. The mixed associative Newman algebras can be considered as
semi-lattices with respect to the primitive binary operation x to which the
additional postulates are added concerning the properties of the primitive
operations + and -r.

4.1 Concerning the primitive binary operation -r of the system SB it should
be remarked that this operation is not a pseudo-difference (such termi-
nology is used, e.g., in [5], p. 57) which is a familiar primitive operation in
Brouwerian algebras. The following algebraic table, cf. [7], p. 266:
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+ O a x O a 4- O a

O O a O O O O O O

a a 0 a O a a a 0

verifies all postulates of system id, but falsifies a formula

(a) [abc]:a,b,ceB .^ . (a + c) x ((a + b) + c) = a + c

which corresponds to one of the proper axioms of Brouwerian algebra, cf.

[l],p. 125:

a-c^(a + b)-c

Namely, formula (a) fails for a/a, b/a and c/O; (i) (a 4- O) x ((a + a) 4- O) =
ax (O 4- O) = ax O = O, and (ii) a ± 0 = a.

4.2 Now, let us assume the axioms of system 8. Then:

G5 [abc]:a,b,ceB . D . (a + δ) x c = (α x c) + (δ x c) [GI; G2]
G6 [fl]:αe5,3.flXfl=flX(αXfl)

PR [α]:Hp(l).D.
flXfl=((flXfl)τ(flXα)) + ((α x α) x (α x α)) [1; A5; G3]

= ((α -r a) x (a x a)) + {(a x a)x {ax a)) [G4]
= ((a + a) + (ax a))x (ax a) = ax (ax a) [G5; G4]

G7 [a]:aeB . =).α x a = ((α x α) 4- a) + (α x α)
PR H : H p ( l ) . = ) .

flXfl=((βXfl)τβ) + ( ί i x ( α x α)) [1 ; A5; G3]
= ((α x α) 4- a) + (α x a) [G6]

G8 [a]:aeB ,^> .ax a = (ax a)x (ax a)
PR [α]:Hp(l).=>.

flXα=((αXfl)τ(flXfl)) + ((α x α) x (a x a)) [ 1 ; A5; G3]
= (((α x a) 4- α) x (α x (a x a))) + ((a x a)x (ax a)) [G4]
= (((a x a) 4- a)x (ax a)) + ((a x a) x (ax a)) [A 9; G6]
= (((a x a) -4- a) + (a x a)) x(ax a) [G5]
= (ax a) x (ax a) [G7]

G9 [a]:aeB.^.a = ax a
PR [α]:Hp(l).=>.

β = ( β τ f l ) + (αxα) [1; G3]
= ((« τfl)x(flX a)) + ((« x a) x (a x a)) [G4; G8]
= ((α 4- α) + (ax a))x (ax a) = ax (ax a) = ax a [G5; G3; G6]

G10 [a]:aeB , D . (α 4- α) + a = a [G3; G9]
Gil [ab] :a,beB. D . ( α x b) x b = ax b
PR [αδ]:Hp(l).=>.

(ax b)x b= bx (ax b) = ((b+ a) + (axb))x (ax b) [ 1 ; G2; G3]
= ((6 τ f l ) x ( α x b)) + ((Λ x δ ) x ( α x δ)) [G5]
= ((α x δ) 4- (α x δ)) + (a x b) = a x b [G4; G9; Glθ]

G12 [ab]:a,beB.^ .a+ a= b ± b [G4]

Therefore, having G12 we can introduce into the system the following
definition:

Dl [a]:ae J3.D .0 = a 4- a [G12]
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G13 OeB [All AlO Dl]

G14 [ a b ] : a , b e B . a x δ = a . = > . [ g c ] . c e £ , c + α = δ , c x α = 0

[A10; G3; G4; Dl]

G15 [ab]:a,beB i x α = α . 3 . [ 3 c ] . c e ΰ . c + α = δ . α X c = 0 \βl4; G2]

G16 [ α ] : α e 5 . D . α = 0 + α [G10; Dl]

G17 [abc]:a,b,ceB .=>. (δ τ δ ) x « = c τ c [GL2; G 3 ; G < j

G l δ ( > ] : α e £ . 3 . α = a + 0

P R [ α ] : H p ( l ) . = > .

2. (a ± {a +a)) + (a + a) = a. [1; G3; GJ7]

3. (a 4- (a 4- a)) x (α 4- α) = a 4- a . [1; G4; GI7]

4. (α 4- (α 4- α))Xfl = (α 4- (α 4- α)) x ((α 4- (α 4- α)) + (α 4- α)) [1; 2]

= ((Λ-Γ (Λ -f α))x (α 4-(α-rα))) +

((α - (β - α)) x (α ^ a)) [Gl]

= (α 4- (a T- α)) + (β 4- α) = α . [G9; 3; 2]

α = a x α = ((α -r (a -r α)) + (β v α)) x α [1; G9; 2]

= ((α •=• (a v «)) x a) + ((α - α) x a) = a + 0 [1; G5; 4; GI7; Dl]

G19 [ab]:a,beB . D .(6 τ α ) x δ = δ τ « [G5; G2; GP; G4; 2)1; G2£]

G 2 0 [ α δ Λ : ] : a , b , x e B . x + ( a x b ) = b . x x ( a x b ) = O . ^ . b ± a = x

PR [ α δ c ] : H p ( 3 ) . 3 .

6 4- a = (b + a) x b = δ x (5 -r α) = (ΛΓ + (a x 6)) x (6 + a) [1; G29; G2; 2]

= (Λ: x {b 4- α)) + ((α x δ ) x ( δ τ a)) [G5]

= (x x (b 4- α)) + 0 = (# x (δ 4- α)) + (^ x (α x δ)) [G2; G4; Dl; 3]

= Λ; x ((b 4- α) + (α x b)) = Λ: X b = x x (# + (a x δ)) [Gl; G3; 2]

= (ΛΓ x x) + (ΛΓ x (α x δ)) = x + 0 = x [Gl; G9; 3; G18]

G21 [abx]:.a,b,xeB.o>;b + a = x. = .x + (axb) = b.xx (a x b) = 0

[G3; G4; Dl; G2O]

G22 [abc]:a,b,ceB .b = c . i> . δ 4- a = c •=• α

PR [Λδc]:Hp(2).3.

3. (δ 4- α) + (α x c) = (δ -r a) + (a x b) = δ = c . [1; 2; A9; G3; 2]

4. (δ v α) x (α x c) = (δ 4- a) x {a x b) = 0 . [1; 2; A9; G4; Dl]

b 4- a = c 4- α [1; A20; G20; 3; 4]

G23 [abcd]:a,b,c,deB .c +a = b.cxa = 0.d + a = b.

dx a = 0 .^ .c = d

PR [abcd]:Hp(5).Ώ.

6. α x δ = a x (c + α) = (α x c) + (a x a) [1; 2; Gl]

= ( c x α ) + α = 0 + α = α, [G2; G9; 3; G16]

c = d [ l ; 2; 3; 4; 5; 6; G£0]

G 2 4 [ a b c ] : a , b , c e B . a = c . ^ > . b ± a = b ± c
PR [αδc]: Hp(2). 3 .

3. (δ4- c) + (ax b) = (δ 4- c) + ( e x δ) =δ . [1; 2; AS; G5]

4. (δ 4- c) x {a x b) = (δ 4- c) X (c x δ) = 0 . [1; 2; Aδ; G4; Dl]

b 4- α = δ 4- c [1; G3; G4; 3; 4; G^5]

4.3 An inspection of the deductions presented above in 3 and 4.2 shows that:

(i) The theses A1-A9, Bl, B2, B3, Cl, C2, El, Fl, F16, F28, F17, F20 and

F53 of .K correspond synonymously and respectively to the theses A1-A9,

G13, G14, G15, Gl, G5, G9, Gll,A10, All, G3, G4 and G2 of 8 ;

and, moreover, that:
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(ii) The theses DI and F19 of % correspond in the same manner to the

theses G21 and Dl of S3.

Therefore, due to (ii) it follows immediately from (i) that the system SB

is a relatively complemented associative Newman algebra. Thus, Theorem

1 is proved. Furthermore, it should be noticed that:

(iii) Since (i) and (ii) establish that the systems % and 8 are inferentially

equivalent, if their respective carrier sets are equal, or they are infer-

entially equivalent up to isomorphism, if their carrier sets have only the

same cardinality, any theorem provable in the field of one of these

systems, is also provable in the field of the other;

and that:

(iv) Since the theses F21 and F22 are provable in 51, and the theses G22 and

G24 are the consequences of SB, the acceptance of the binary operation 4-, as

a primitive notion in mixed associative Newman algebra, does not

necessarily require any assumption of special postulates concerning the

extensionality of the relation = with respect to this binary operation.

4.4 It is shown in 4.2 that G9 holds in SB. Moreover, since F56 is provable

in H, cf. section 3, it follows from point (iii) of 4.3 that F56 is also a

consequence of the axiom-system of 8. Therefore, Theorem 2 is proved.

However, if in order to obtain a set of postulates of SB which could be

considered as a semi-lattice system with respect to the operation x we

shall accept the following set of formulas: Al-All, G99 G2, F56, Gl, G3

and G4, as an axiom-system of 8, then, obviously, such set of postulates

will not be mutually independent. If for some reason it would be desired

to have an axiom-system of 83 such that its axioms would be mutually

independent and that it would contain G9, G2 and F56, then such axiomatiza-

tion of SB can be easily obtained by reconstructing the set of axioms given

above in a way analogous to that which was used in [8], p. 285.

5 The mutual independence of the axioms Gl, G2, G3 and G4 is established

by using the following algebraic tables (matrices):

+ O a β γ δ x O a β γ δ

O 0 a β γ δ O O O O O O

a a a δ δ δ a O a O O a

β β δ β δ δ β O O β O β

γ γ δ δ γ δ γ O O O γ γ

δ δ δ δ δ δ δ O a β γ δ

v O a β γ δ

O O O O O O

a a 0 a a O

β β β O β O

γ γ γ γ O O

δ δ β γ a O
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+ a I O x a I O + a I O

1 Π a a I a a a I 0 a O O a

^ 1 1 1 1 1 a 1 0 1 0 0 1
O a I 0 O O O O O O O O

+ O a x O a -r 0 a

^111 O O a O O O O O O

a a O a O O a O 0

+ O (X β γ X 0 a β γ 4- O CH β γ

O O a β γ O O O O O O O O O O

βlZ a a 0 γ β a 0 a γ β a a o β γ
β β γ O a β 0 γ β a β β a O γ
γ γ β a O γ O β a γ γ γ a β O

Concerning the matrices β$-βl2 cf. β7 in [8], p. 284, ^15 and f̂l4 in
[6], p. 263, and Newman's example E15 in [4], p. 46, respectively. Since:

(a) matrix 1̂9 verifies G2, G3 and G49 but falsifies Gl for a/a, b/β and c/γ:
(i) a x (β + γ) = a x δ = α, and (ii) (a x β) + (a x γ) = O +0=0,
(b) matrix |R10 verifies Gl, G3 and G4, but falsifies G2 for a/a and 6//:
(i) α x / = J , and (ii)/x α = a,
(c) matrix |HίU verifies Gl, G2, and G4, but falsifies G3 for α/α and b/a:
(i) (ατff) + (αxf l )=o + θ = θ, and (ii) a = a,
(d) matrix £U2 verifies Gl, G2, G3, but falsifies G4 for α/β, δ/α and c/a:
(i) (en -f- β) x (β x a) = β x y = a, and (ii) α 4- a = 0,

we know that the axioms Gl, G2, G3 and G4 are mutually independent.
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