Notre Dame Journal of Formal Logic Volume XIII, Number 3, July 1972 NDJFAM

AXIOMATIC, SEQUENZEN-KALKUL, AND SUBORDINATE PROOF VERSIONS OF S9

ARNOLD VANDER NAT

1.1 The System S9. In [8] the system S 9 was presented with primitive connectives \sim, \& , and \rightsquigarrow as S3 plus the axioms
(a) $\sim p \vee((\sim(p \& \sim p) \rightsquigarrow p) \vee(p \longmapsto(p \longmapsto p)))$,
(b) $\sim p \vee((p-3 p) \cdots p)$,
(c) $(p \mapsto p) \rightsquigarrow \sim(\sim(p \longmapsto p) \rightsquigarrow(p \leftrightarrow p))$,
the rules being Substitution, Strict Detachment, and Adjunction. ${ }^{1}$ A simpler formulation of S9 can be given, however, in that (b) is redundant and (a) and (c) can be simplified. If we abbreviate $\sim x \longmapsto x$ by $\square x$ and $\sim(x \& \sim y)$ by $x \supset y$, then in S3, $x \longmapsto y$ is strictly equivalent (s.e.) to $\square(x \supset y)$ and $x \longmapsto x$ is s.e. to $\square \mathrm{t}$, where t is any tautology of classical two-valued logic, PC. Thus, in S3 the axioms (a), (b), and (c) are s.e. to
(d) $\sim(p \nvdash \square \mathrm{t}) \supset(p \supset \square p)$,
(e) $p \supset(\square \mathrm{t} \longmapsto p)$,
(f) $\square \mathrm{t} \longmapsto \sim \square \square \mathrm{t}$
respectively. Now (f) is derivable from $\sim \square \square \mathrm{t}$ and (e), and (e) is derivable from $\sim \square \square \mathrm{t}$ and (d). The latter is shown as follows. The formula $(\sim p r q)$ \& $(p \longmapsto q) \longmapsto \square q$ is provable in S3, so that $\sim \square \square \mathrm{t} \longmapsto((\sim p \mapsto \square \mathrm{t}) \supset \sim(p \longmapsto \square \mathrm{t}))$ is provable in S3. Hence, by $\sim \square \square \mathrm{t}$ and (d) we have $(\sim p \mapsto \square \mathrm{t}) \supset(p \supset \square p)$. Substituting $\square \overline{\mathrm{t}} \supset p$ for p and detaching $\sim(\square \mathrm{t} \supset p) \leftrightarrow \square \mathrm{t}$, we have $(\square \mathrm{t} \supset p) \supset$ ($\square \mathrm{t} \longmapsto p$), which yields (e) by a two-valued tautology. Hence, in S3 (a), (b), and (c) are derivable from $\sim \square \square \mathrm{t}$ and $\sim(p \mapsto \square \mathrm{t}) \supset(p \supset \square p)$, and vice versa. A simpler formulation of $\mathrm{S} 9 \mathrm{in} \sim, \&$, and \rightsquigarrow is thus $S 3$ plus
(g) $\sim(\sim(p \rightsquigarrow p) \rightsquigarrow(p \rightsquigarrow p))$
(h) $\sim(p \longmapsto \sim(p \longmapsto p)) \supset(p \supset(\sim p \longmapsto p))$.
1.2 It is desirable to present yet another formulation of S 9 : a Lemmon

[^0]formulation with primitives \sim ，\supset ，and \square ．（We shall dispense with the rule of substitution in favor of axiom－schemes．）

Axioms：1．$\vdash \square A \supset A$
2．$\vdash \square(A \supset B) \supset \square(\square A \supset \square B)$
3．ト～ロロ
4．$\vdash \sim \square(A \supset \square \mathrm{t}) \supset(A \supset \square A)$ where t is any tautology of PC．
Rules：R1．If A is a tautology of PC then $\square A$ is a theorem
R2．From A and $A \supset B$ infer B
We note first of all that a formulation of $S 3$ by Lemmon［6］is $R 1, R 2$ ， 1,2 ，plus the axioms
（1a）$\square(\square A \supset A)$
（2a）$\square(\square(A \supset B) \supset \square(\square A \supset \square B))$ ．
We show that in virtue of 3 and $4,(1 a)$ and（ $2 a$ ）are derivable，so that S 9 is S3 plus 3 and 4．By $R 1$ and $R 2$ and 1 and 2 the formula $\sim \square \square \mathrm{t} \supset \sim \square((\square A \supset$ $B) \supset \square \mathrm{t})$ is provable．Hence，by 3 and $R 2$ we have $\sim \square((\square A \supset B) \supset \square \mathrm{t})$ ，and by 4 and $R 2$ we have $(\square A \supset B) \supset \square(\square A \supset B)$ ，which yields（ $1 a$ ）and（ $2 a$ ）．We note，thus，that $S 9(\sim, \supset, \square)$ is $S 7$ plus 4．Moreover，we note that $S 9$ （ \sim, \supset, \square ）is deductively equivalent to $S 9(\sim, \&, \vdash)$ ．If $x \supset y$ and $\square x$ are defined as before，then $\mathrm{S} 9(\sim, \&, ß)$ contains $\mathrm{S} 9(\sim, \supset, \square)$ ．If，on the other hand，$x \& y$ is defined as $\sim(x \supset \sim y)$ and $x \mapsto y$ as $\square(x \supset y)$ ，then $S 9(\sim, \supset, \square)$ contains $\mathrm{S} 9(\sim, \&, \mathfrak{\aleph})$ ．A more rigorous proof of this is presented in 1．3， theorem 3.

1．3 In［8］S9 $(\sim, \&, \rightsquigarrow)$ was shown to be complete with respect to the matrix N ，the values 1 and 2 being designated：${ }^{2}$

$i \& j$	1	2	3	4	$\sim i$
1	1	2	3	4	4
2	2	2	4	4	3
3	3	4	3	4	2
4	4	4	4	4	1

$i \nprec j$	1	2	3	4
1	2	4	4	4
2	2	2	4	4
3	2	4	2	4
4	2	2	2	2

That is，it was shown that all and only those formulas（wffs）that are satisfied by matrix N are provable in $S 9(\sim, \&, \not-\beta)$ ．If we define an N－valuation on A in the usual way，i．e．a function v from F_{A} ，the set of well－formed parts of A（wfps），into the set $\{1,2,3,4\}$ such that（i）v is defined for V_{A} ，the set of variables of A ，and，if $\sim B, B \& C$ ，or $B \rightsquigarrow C$ are wfps of A then（ii）$v(\sim B)=\sim v(B)$ ，（iii）$v(B \& C)=v(B) \& v(C)$ ，and （iv）$v(B \longleftrightarrow C)=v(B) \rightsquigarrow v(C)$ ，where $\sim i, i \& j$ ，and $i \nprec j$ are defined as in matrix N ，and say that a wff A is N－valid iff for all N－valuations v on A ， $v(A)=1$ or $v(A)=2$ ，then we have the following theorem．

Theorem 1：A wff A is provable in $S 9\left(\sim, \&, \varkappa_{3}\right)$ iff A is N－valid．

[^1]A similar result is also true for $S 9(\sim, \supset, \square)$. To arrive at this result we shall, using the matrix N, construct a matrix M and show that S 9 (\sim, \supset, \square) is complete with respect to M. We construct the matrix such that $\sim i=k$ in M iff $\sim i=k$ in $N, i \supset j=k$ in M iff $\sim(i \& \sim j)=k$ in $N, \square i=k$ in M iff $\sim i ß i=k$ in N. Thus we have the matrix M :

$i \supset j$	1	2	3	4	$\sim i$	$\square i$
1	1	2	3	4	4	2
2	1	1	3	3	3	4
3	1	2	1	2	2	4
4	1	1	1	1	1	4

An M-valuation on A is defined for the matrix M just as N-valuations were defined for the matrix N, and we shall say that a wff A is M-valid iff for all M-valuations v on $A, v(A)=1$ or $v(A)=2$.
Theorem 2: A wff A is provable in $\mathrm{S} 9(\sim, \supset, \square)$ iff A is M-valid.
Proof: We leave it to the reader to verify that the axioms of $S 9(\sim, \supset, \square)$ are M-valid and that the rules preserve M-validity, so that if A is provable in $S 9(\sim, \supset, \square)$ then A is M-valid. To show the converse, we first prove lemmas 1-3 from which the desired result follows immediately.

We introduce a circle and a star transformation. Given a wff A in \sim, \supset, and \square, the expression A°, a wff in $\sim, \&$, and \mapsto, is defined as follows: (i) if B is a variable of A then $B^{\circ}=B$, and if $\sim B, B \supset C$, or $\square B$ are wfps of A then (ii) $(\sim B)^{\circ}=\sim B^{\circ}$, (iii) ($\left.B \supset C\right)^{\circ}=\sim\left(B^{\circ} \& \sim C^{\circ}\right.$), and (iv) $(\square B)^{\circ}=$ $\sim B^{\circ} \rightsquigarrow B^{\circ}$. Given a wff A in $\sim, \&$, and \rightsquigarrow, we define the expression A^{*}, a wff in \sim, \supset, and \square, as follows: (i) if B is a variable of A then $B^{*}=B$, and if $\sim B, B \& C$, or $B \rightsquigarrow C$ are wfps of A then (ii) $(\sim B)^{*}=\sim B^{*}$, (iii) $(B \& C)^{*}=$ $\sim\left(B^{*} \supset \sim C^{*}\right)$, and (iv) $(B \longleftrightarrow C)^{*}=\square\left(B^{*} \supset C^{*}\right)$.

Lemma 1: If a wff A is M-valid, then A° is N-valid.
Proof: The proof is by induction. Let v_{M} be an M-valuation on A and let v_{N} be an N-valuation on A° such that if B is a variable of $A, v_{M}(B)=v_{N}(B)$. We shall show that if $\square B$ and $B \supset C$ are wfps of A such that $v_{M}(B)=v_{N}\left(B^{\circ}\right)$ and $v_{M}(C)=v_{N}\left(C^{\circ}\right)$, then $v_{M}(\square B)=v_{N}\left((\square B)^{\circ}\right)$ and $v_{M}(B \supset C)=v_{N}\left((B \supset C)^{\circ}\right)$, so that we will have shown that $v_{M}(A)=v_{N}\left(A^{\circ}\right)$. We show this as follows:
$v_{M}(\square B)=\square v_{M}(B)=\square v_{N}\left(B^{\circ}\right)=\left(\sim v_{N}\left(B^{0}\right) \rightsquigarrow v_{N}\left(B^{0}\right)\right)=v_{N}\left(\sim B^{\circ} \rightsquigarrow B^{\circ}\right)=v_{N}\left((\square B)^{\circ}\right)$
$v_{M}(B \supset C)=\left(v_{M}(B) \supset v_{M}(C)\right)=\left(v_{N}\left(B^{\circ}\right) \supset v_{N}\left(C^{0}\right)\right)=\left(\sim\left(v_{N}\left(B^{\circ}\right) \& \sim v_{N}\left(C^{0}\right)\right)\right)=$ $v_{N}\left(\sim\left(B^{\circ} \& \sim C^{\circ}\right)\right)=v_{N}\left((B \supset C)^{\circ}\right)$.

Now, let A be M-valid, and let v_{N} be any N-valuation on A°. Let v_{M} be the M-valuation on A such that v_{M} restricted to V_{A} is identical to v_{N} restricted to $V_{A}{ }^{\circ}$. We have just shown that in that case $v_{M}(A)=v_{N}\left(A^{0}\right)$. But $v_{M}(A)=1$ or $v_{M}(A)=2$. Hence, $v_{N}\left(A^{\circ}\right)=1$ or $v_{N}\left(A^{\circ}\right)=2$, and hence, A° is N-valid.
Lemma 2: If a wff A is provable in $\mathbf{S} 9(\sim, \&, \not-)$, then $A *$ is provable in S 9 ($\sim, ~ \supset, ~ \square)$.

Proof: From the remarks in 1.1 and 1.2 it follows that if A is provable in S3 $(\sim, \&, \nvdash)$ then A^{*} is provable in $S 9(\sim, \supset, \square)$. We leave it to the reader to complete the proof by showing that the starred versions of axioms (g) and (h) are provable in $\mathrm{S} 9(\sim, \supset, \square)$ and that the starred versions of Strict Detachment and Adjunction are derivable in $\mathrm{S} 9(\sim, \supset, \square)$.

Lemma 3: If a wff $\left(A^{\circ}\right) *$ is provable in $\mathrm{S} 9(\sim, \supset, \square)$, then A is provable in S9 ($\sim, ~ \supset, ~ \square)$.
Proof: We note that by the circle transformation expressions of the form $x \supset y$ and $\square x$ are replaced by expressions of the form $\sim(x \& \sim y)$ and $\sim x \mapsto x$. The star transformation replaces the latter by $\sim \sim(x \supset \sim \sim y)$ and $\square(\sim x \supset x)$. Now, since $x \supset y$ is s.e. to $\sim \sim(x \supset \sim \sim y)$, and $\square x$ is s.e. to $\square(\sim x \supset x)$, the lemma follows.

Returning to the proof of theorem 2, if a wff A is M-valid then by lemma $1 A^{\circ}$ is N-valid, and by theorem $1 A^{\circ}$ is provable in $S 9(\sim, \&, \nvdash)$; by lemma $2\left(A^{\circ}\right)$ * is provable in $\mathrm{S} 9(\sim, \supset, \square)$, and by lemma $3 A$ is provable in S9 ($\sim, \supset, \square)$. This completes the proof of theorem 2.

Theorem 3: A wff A is provable in $\mathrm{S} 9(\sim, \supset, \square)$ iff A° is provable in S 9 $(\sim, \&, \nrightarrow)$.
Proof: If A is provable in $\mathrm{S} 9(\sim, \supset, \square)$ then by theorem $2 A$ is M-valid, by lemma $1 A^{\circ}$ is N-valid, by theorem $1 A^{\circ}$ is provable in $S 9(\sim, \&, \rightsquigarrow)$. On the other hand, if A° is provable in $S 9(\sim, \&, \not-3)$, then by lemma $2\left(A^{\circ}\right) *$ is provable in $S 9(\sim, \supset, \square)$, and by lemma $3 A$ is provable in $S 9(\sim, \supset, \square)$.
1.4 S9 has a very simple Kripke semantics. This result is important in that there seems to be no way of understanding some of the theses of S9, such as $(\diamond A \supset \square \diamond A) \& \sim(\diamond A \rightsquigarrow \square \diamond A),(A \rightsquigarrow \square B) \supset \sim(\sim A \rightsquigarrow \square B)$, and the S9 axiom $\sim(A \longmapsto \square \mathrm{t}) \supset(A \supset \square A)$, apart from viewing these theses as expressing certain semantic conditions. We give, then, the following Kripke semantics for S9 (cf. [5]).

The $\mathbf{S} 9$ model structure is the set of possible worlds $W=\{G, H\}$ where G is a normal world and H a non-normal world. ${ }^{3}$ If an accessibility relation R is defined on W, then $G R G$ and $G R H$, but for no world $I, H R I$ (i.e. G and H are accessible to G, but no world is accessible to H). The assignment of truth values to wffs is as usual, in particular, if $I R I$, then a wff $\square A$ is true in I iff for all J such that $I R J A$ is true in J, and, if not $I R I$, then a wff $\square A$ is false in I. It will be convenient, however, not to introduce an accessibility relation and also to dispense with the usual notion of a model (relative to a model structure) since there are only two specific worlds to consider.
3. We follow Kripke here in calling a world non-normal if every wff of the form $\diamond x$, even $\diamond(A \& \sim A)$, is true in that world; otherwise, a world is normal. Or, alternatively, given an accessibility relation, we call a world normal if some world is accessible to it; otherwise a world is non~normal. See Hughes and Cresswell [3], especially chapter 15.

Given a wff A, a K-valuation on A is a function v from F_{A} into $\{\mathbf{t}, \mathrm{f}\} \times$ $\{\mathrm{t}, \mathrm{f}\}$ such that (i) v is defined for V_{A}, and, if $\sim B, B \supset C$, or $\square B$ are wfps of A, then, (ii) $v(\sim B)=\sim v(B)$, (iii) $v(B \supset C)=v(B) \supset v(C)$, and (iv) $v(\square B)=$ $\langle\mathrm{t}, \mathrm{f}\rangle$ if $v(B)=\langle\mathrm{t}, \mathrm{t}\rangle$, and $v(\square B)=\langle\mathrm{f}, \mathrm{f}\rangle$ if $v(B) \neq\langle\mathrm{t}, \mathrm{t}\rangle$, where $\sim\langle i, j\rangle=\langle\sim i, \sim j\rangle$ and $\langle i, j\rangle \supset\langle k, l\rangle=\langle i \supset k, j \supset l\rangle$, and where $\sim i$ and $i \supset j$ are defined in the usual two-valued Boolean manner.

The conditions on K-valuations can be expressed in matrix form as follows. Matrix K :

$\langle i, j\rangle \supset\langle k, l\rangle$	$\langle\mathrm{t}, \mathrm{t}\rangle$	$\langle\mathrm{t}, \mathrm{f}\rangle$	$\langle\mathrm{f}, \mathrm{t}\rangle$	$\langle\mathrm{f}, \mathrm{f}\rangle$	$\sim\langle i, j\rangle$	$\square\langle i, j\rangle$
$\langle\mathrm{t}, \mathrm{t}\rangle$	$\langle\mathrm{t}, \mathrm{t}\rangle$	$\langle\mathrm{t}, \mathrm{f}\rangle$	$\langle\mathrm{f}, \mathrm{t}\rangle$	$\langle\mathrm{f}, \mathrm{f}\rangle$	$\langle\mathrm{f}, \mathrm{f}\rangle$	$\langle\mathrm{t}, \mathrm{f}\rangle$
$\langle\mathrm{t}, \mathrm{f}\rangle$	$\langle\mathrm{t}, \mathrm{t}\rangle$	$\langle\mathrm{t}, \mathrm{t}\rangle$	$\langle\mathrm{f}, \mathrm{t}\rangle$	$\langle\mathrm{f}, \mathrm{t} \mathrm{t}$	$\langle\mathrm{f}, \mathrm{t}\rangle$	$\langle\mathrm{f}, \mathrm{f}\rangle$
$\langle\mathrm{f}, \mathrm{t}\rangle$	$\langle\mathrm{t}, \mathrm{t}\rangle$	$\langle\mathrm{t}, \mathrm{f}\rangle$	$\langle\mathrm{t}, \mathrm{t}\rangle$	$\langle\mathrm{t}, \mathrm{f}\rangle$	$\langle\mathrm{t}, \mathrm{f}\rangle$	$\langle\mathrm{f}, \mathrm{f}\rangle$
$\langle\mathrm{f}, \mathrm{f}\rangle$	$\mathrm{tt}, \mathrm{t}\rangle$	$\langle\mathrm{t}, \mathrm{t}\rangle$	$\langle\mathrm{t}, \mathrm{t}\rangle$	$\langle\mathrm{t}, \mathrm{t}\rangle$	$\langle\mathrm{t}, \mathrm{t}\rangle$	$\langle\mathrm{f}, \mathrm{f}\rangle$

We say that a wff A is K-valid iff for all K-valuations v on $A, v(A)=\langle\mathrm{t}, \mathrm{t}\rangle$ or $v(A)=\langle\mathrm{t}, \mathrm{f}\rangle$. Inspection of matrices M and K show that M and K are isomorphic under the correspondence of 1 with $\langle t, t\rangle$, 2 with $\langle t, f\rangle, 3$ with $\langle\mathrm{f}, \mathrm{t}\rangle$ and 4 with $\langle\mathrm{f}, \mathrm{f}\rangle$. Hence, we have the following theorems.

Theorem 4: A wff A is M-valid iff A is K-valid.
Theorem 5: A wff A is provable in $\mathrm{S9}$ iff A is K-valid.
For the purposes of the next section it will be convenient to be able to separate what a K-valuation does to wffs in the world G from what it does to wffs in the world H. Thus we introduce some additional notions.
f_{G} and f_{H} are functions from $\{\mathrm{t}, \mathrm{f}\} \times\{\mathrm{t}, \mathrm{f}\}$ into $\{\mathrm{t}, \mathrm{f}\}$ such that $f_{G}(\langle i, j\rangle)=i$ and $f_{H}(\langle i, j\rangle)=j$.

A K_{G}-valuation is a function $v_{G}=f_{G} \circ v$, where v is a K-valuation, and a K_{H}-valuation is a function $v_{H}=f_{H}{ }^{\circ} v$. Hence, for a K-valuation $v, v(A)=$ $\langle i, j\rangle$ iff $v_{G}(A)=i$ and $v_{H}(A)=j$. We shall say that a wff A is K_{G}-valid iff for all K_{G}-valuations v_{G} on $A, v_{G}(A)=\mathrm{t}$.
Theorem 6: A wff A is K-valid iff A is K_{G}-valid.
The conditions on K-valuations given above can just as well be stated in terms of K_{G} and K_{H}-valuations.
K0.1. If $v_{G}(A)=\mathrm{f}$, then $v_{G}(\sim A)=\mathrm{t}$.
K0.2. If $v_{H}(A)=\mathrm{f}$, then $v_{H}(\sim A)=\mathrm{t}$.
K1.1. If $v_{G}(A)=\mathrm{t}$, then $v_{G}(\sim A)=\mathrm{f}$.
K1.2. If $v_{H}(A)=\mathrm{t}$, then $v_{H}(\sim A)=\mathrm{f}$.
K2.1. If $v_{G}(\sim A)=\mathrm{t}$ or $v_{G}(B)=\mathrm{t}$, then $v_{G}(A \supset B)=\mathrm{t}$.
K2.2. If $v_{H}(\sim A)=\mathrm{t}$ or $v_{H}(B)=\mathrm{t}$, then $v_{H}(A \supset B)=\mathrm{t}$.
K3.1. If $v_{G}(A)=\mathrm{t}$ and $v_{G}(\sim B)=\mathrm{t}$, then $v_{G}(\sim(A \supset B))=\mathrm{t}$.
K3.2. If $v_{H}(A)=\mathrm{t}$ and $v_{H}(\sim B)=\mathrm{t}$, then $v_{H}(\sim(A \supset B))=\mathrm{t}$.
K4.1. If $v_{G}(A)=\mathrm{t}$ and $v_{H}(A)=\mathrm{t}$, then $v_{G}(\square A)=\mathrm{t}$.
K5.1. If $v_{G}(\sim A)=\mathrm{t}$ or $v_{H}(\sim A)=\mathrm{t}$, then $v_{G}(\sim \square A)=\mathrm{t}$.
K5.2. $\quad v_{H}(\sim \square A)=\mathrm{t}$.

The conditions K0.1-K5.2 provide us with a semantic basis for still another formulation of S9, a Gentzen formulation which we shall now introduce. ${ }^{4}$
2.1 The System LS9 We shall let $\alpha, \beta, \gamma, \delta$ range over finite and possibly null sequences of wffs in \sim, \supset, and \square. If we want to explicitly indicate the null sequence, we shall write Λ. An LS9-sequent is a pair of sequences ($\alpha ; \beta$), where at least one of α and β is not null. The sequence α is called the normal subsequent and β the non-normal subsequent of $(\alpha ; \beta)$. (The basic idea of a sequent $A_{1}, \ldots, A_{m} ; B_{1}, \ldots, B_{n}$ is that at least one of the A_{i} in the normal subsequent is true in the normal world G, or else, that at least one of the B_{j} in the non-normal subsequent is true in the non-normal world H.) If a sequence α contains at least the wffs A_{1}, \ldots, A_{n}, we shall write $\alpha\left(A_{1}, \ldots, A_{n}\right)$. The axiom-schemes of LS9 are

PC1. $\alpha(A, \sim A) ; \beta$
PC2. $\alpha ; \beta(A, \sim A)$
$\sim \square I 2 . \quad \alpha ; \beta(\sim \square A)$
Examples of LS9-axioms are ($\sim(A \supset B), \square C, A \supset B ; \square A$), and $(\sim(A \supset A)$; $B, B, \sim B, B)$, and $(\Lambda ; \sim(A \supset A), \sim \square(B \supset C))$. The rules of LS9 are ${ }^{5}$

```
\(\sim\) I1. \(\quad(\alpha, A, \beta ; \gamma) \rightarrow(\alpha, \sim \sim A, \beta ; \gamma)\)
\(\sim\) I2. \(\quad(\alpha ; \beta, A, \gamma) \rightarrow(\alpha ; \beta, \sim \sim A, \gamma)\)
ग11. \((\alpha, \sim A, B, \beta ; \gamma) \rightarrow(\alpha, A \supset B, \beta ; \gamma)\)
ग12. \((\alpha ; \beta, \sim A, B, \gamma) \rightarrow(\alpha ; \beta, A \supset B, \gamma)\)
\(\sim \supset I 1 . \quad(\alpha, A, \beta ; \gamma)\) and \((\alpha, \sim B, \beta ; \gamma) \rightarrow(\alpha, \sim(A \supset B), \beta ; \gamma)\)
~गI2. \((\alpha ; \beta, A, \gamma)\) and \((\alpha ; \beta, \sim B, \gamma) \rightarrow(\alpha ; \beta, \sim(A \supset B), \gamma)\)
\(\square I 1 . \quad(\alpha, A, \beta ; \gamma, \delta)\) and \((\alpha, \beta ; \gamma, A, \delta) \rightarrow(\alpha, \square A, \beta ; \gamma, \delta)\)
\(\sim \square I 1 . \quad(\alpha, \sim A, \beta ; \gamma, \sim A, \delta) \rightarrow(\alpha, \sim \square A, \beta ; \gamma, \delta)\)
```

We shall use Γ, Δ, Φ, and Z to range over LS9-sequents. A derivation for a sequent Φ in LS9 is a tree beginning with the node Φ and branching upwards such that if a single node Γ is directly above a node Δ then there is an LS9 rule $\Gamma \rightarrow \Delta$ and if a branch splits at a node Z into nodes Γ and Δ then there is an LS9 rule (Γ and Δ) $\rightarrow \mathrm{Z}$; and such that the terminal nodes are LS9 axioms.

We shall say that a wff A is provable in LS9 iff there is a derivation for $A ; \Lambda$ in LS9. In the writing of derivations we shall separate the nodes by horizontal lines, to the right of which lines we cite the rule by which the next node comes. We illustrate the proof technique with the following examples.

[^2]Example 1.

$$
\begin{array}{ll}
\overline{\sim \square A ; \sim \square A} & \sim \square I 2 \\
\sim \square \square A ; \Lambda &
\end{array}
$$

Example 2.

$$
\begin{gathered}
\frac{\sim \square A, \square A ; \Lambda \quad \square A ; \sim \square A}{\sim \square} \sim \square I 1 \\
\frac{\square \sim \square A, \square A ; \Lambda}{\sim \sim \square \sim \square A, \square A ; \Lambda} \\
\frac{\sim \sim}{\sim \sim \square \sim \square A \supset \square A ; \Lambda} \\
\sim I 1
\end{gathered}
$$

Thus, the wffs $\sim \square \square A$ and $\diamond \square A \supset \square A$ are provable in LS9. It may be shown that a wff A is provable in PC iff there is a derivation for $A ; \Lambda$ (using only PC1, $\sim I 1, \supset I 1$, and $\sim \supset I 1$) and there is a derivation for Λ; A (using only $P C 2, \sim I 2, \supset I 2$, and $\sim \supset I 2$). Hence we have the following derived rule:

PC3. If t is any tautology of PC , to begin a derivation with $\alpha(\mathrm{t}) ; \beta$ or with $\alpha ; \beta(\mathrm{t})$.

Example 3.

2.2 As was suggested in 2.1, LS9-sequents are to be thought of in terms of the Kripke semantics for S 9 . Given a sequent ($\alpha ; \beta$) we are to think of it as the assertion that at least one of the wffs in α is true in G, or else, that at least one of the wffs in β is true in H. With this understanding the axioms and rules of LS9 correspond exactly with conditions $K 0.1-K 5.2$ given in 1.4. Thus, it should turn out that the Kripke semantics for S 9 is also the semantics for LS9, and this being the case, it should also turn out that LS9 is deductively equivalent to S 9 . The remainder of this section will be devoted to proving these results.

A full construction on a sequent Φ in LS9 is a tree beginning with the node Φ and branching upwards such that if a single node Γ is directly above a node Δ then there is an LS9 rule $\Gamma \rightarrow \Delta$ and if a branch splits at a node Z into nodes Γ and Δ then there is an LS9 rule (Γ and Δ) $\rightarrow \mathrm{Z}$; and such that if Z is a terminal node, then Z is an LS9 axiom or else there is no sequent Γ (or sequents Γ and Δ) such that $\Gamma \rightarrow Z$ (or (Γ and Δ) $\rightarrow \mathrm{Z}$). We note that terminal nodes in full constructions are LS9 axioms or else non-axiom
sequents with only variables or the negations of variables, except that the non-normal subsequents possibly have wffs of the form $\square x$. Moreover, the following two lemmas are immediate consequences of our definitions.

Lemma 1: For each LS9-sequent Φ there is a full construction on Φ in LS9. Lemma 2: D is a derivation for Φ iff D is a full construction on Φ all of whose terminal nodes are LS9 axioms.

If $\alpha=A_{1}, \ldots, A_{m}$, and v is a K-valuation, we write $v_{G}(\alpha)=\mathrm{t}$ if for some A_{i} in $\alpha, v_{G}\left(A_{i}\right)=\mathrm{t}$; otherwise $v_{G}(\alpha)=\mathrm{f}$, and similarly for v_{H}. We also write $v(\alpha ; \beta)=\mathrm{t}$ if $\alpha \neq \Lambda$ and $v_{G}(\alpha)=\mathrm{t}$, or if $\beta \neq \Lambda$ and $v_{H}(\beta)=\mathrm{t}$; otherwise we write $v(\alpha ; \beta)=\mathrm{f}$. If $v(\alpha ; \beta)=\mathrm{t}$, we shall say that $(\alpha ; \beta)$ is satisfied by v, and if $v(\alpha ; \beta)=\mathrm{f}$, we shall say that v falsifies $(\alpha ; \beta)$. Inspection of the axioms and rules will verify the following facts for any K-valuation v :
fact 1. The axioms of LS9 are satisfied by v.
fact 2. If Γ is satisfied by v and $\Gamma \rightarrow \Phi$, then Φ is satisfied by v; and, if Γ and Δ are satisfied by v and (Γ and Δ) $\rightarrow \Phi$, then Φ is satisfied by v.
fact 3. if v falsifies Γ and $\Gamma \rightarrow \Phi$, or (Γ and Δ) $\rightarrow \Phi$, then v falsifies Φ. These facts give us the following lemmas and theorems.

Lemma 3: Given a K-valuation v, if every terminal node in a full construction on Φ is satisfied by v, then Φ is satisfied by v.
Lemma 4: Given a K-valuation v, if v falsifies any node in a full construction on Φ, then v falsifies Φ.
Theorem 1: A wff A is K_{G}-valid iff there is a derivation for $A ; \Lambda$.
Proof: Let D be a derivation for $A ; \Lambda$, and let v be any K-valuation on A. Every terminal node in D is an axiom, and by lemma $2 D$ is a full construction on $A ; \Lambda$. By lemma 3 and fact $1, A ; \Lambda$ is satisfied by v so that $v_{G}(A)=\mathrm{t}$. Hence, if there is a derivation for $A ; \Lambda, A$ is K_{G}-valid. To show the converse, suppose there is no derivation for A; Λ. By lemma 1 there is a full construction on $A ; \Lambda$, and by lemma 2 this full construction will have at least one non-axiom terminal node ($\alpha ; \beta$). Since $(\alpha ; \beta$) is terminal and non-axiom, the wffs in α (if there are any) are either variables or negations of variables, and hence are such that each wff can be assigned the value f without violating the conditions on a K_{G}-valuation. Similarly, since the wffs in β (if there are any; and, there must be some in β if there are none in α) are either variables, the negations of variables, or else wffs of the form $\square x$, each wff can be assigned the value f without violating the conditions on a K_{H}-valuation. Let v, then, be a K-valuation such that $v_{G}(\alpha)=\mathrm{f}$ and $v_{\boldsymbol{H}}(\beta)=\mathrm{f}$. Then v falsifies $(\alpha ; \beta$), and, by lemma 4, v falsifies $A ; \Lambda$, so that A is not K_{G}-valid.

Theorem 2: A wff A is provable in S9 iff A is provable in LS9.
3. The System $\mathrm{S} 9^{*}$. In this section we present $\mathrm{S} 9 *$, a system of natural
deduction. ${ }^{6}$ We shall show that $59 *$ is deductively equivalent to S 9 . The semantical motivation for $\mathrm{S} 9 *$ with regard to the Kripke semantics for S 9 will be obvious: an NCP is the normal world G, and an NNCP is the non-normal world H. ${ }^{7}$
3.1 We give the notion of proof and the proof technique of $\mathrm{S} 9 *$.

A hypothetical proof (HP) is a vertical sequence of wffs A_{1}, \ldots, $A_{n}(n \geq 1)$ to the right of an $H P$ line such that each wff in the sequence comes by an S9* rule.

A non-normal categorical proof (NNCP) is a vertical sequence of wffs $A_{1}, \ldots, A_{n}(n \geq 0)$ to the right of an NNCP line such that each wff in the sequence comes by an $S 9 *$ rule.

Wffs and proofs will be called items. P, Q, and R will range over proofs, and α and β will range over items. We continue to define the notion of proof: if P is a proof with items $\alpha_{1}, \ldots, \alpha_{n}$, and Q is a proof, then P^{\prime} is a proof where P^{\prime} has items $\alpha_{1}, \ldots, \alpha_{n}, Q$, provided that if P is an NNCP then Q is an HP.

A normal categorical proof (NCP) is a sequence of items to the right of an $N C P$ line such that each item in the sequence comes by the rules of $59 *$ 。 Note that a proof qua item is said to come by the rules of $59 *$ if each item in the proof comes by the rules of $S 9 *$. In diagrams, we have:

$$
\begin{array}{|ll||l|l}
A_{1} & & \begin{array}{l}
A_{1} \\
\cdot \\
\cdot \\
\cdot
\end{array} & \mathrm{HP} \\
\cdot & n \geq 1 \\
A_{n} & \mathrm{NNCP} & \cdot \\
\cdot & n \geq 0 & \mathrm{NCP} \\
A_{n} & \cdot & n \geq 0 \\
\alpha_{n}
\end{array}
$$

We introduce some more terminology. If P and Q are proofs such that P has items $\alpha_{1}, \ldots, Q, \ldots, \alpha_{n}$, then Q is called a (first-order) subproof of P. If, moreover, R is a subproof of Q, then R is a second-order subproof of P. A subproof of R is a third-order subproof of P and a second-order subproof of Q, and so on. Finally, if P is an NCP with the wff A as the last item, then we say that P is a proof for A.

The proof technique of S9* consists of the following sets of rules.

Rules of Auxiliary Transformation

R1. To draw an NCP line.
R2. To draw an HP line at any stage of the proof.
R3. To draw an NNCP line at any stage of the proof provided that we
6. S9* is styled after the manner of Fitch's method of subordinate proof, [2], with which we assume familiarity.
7. For the definitions of NCP and NNCP see section 3.1. In general, categorical proofs (CP) are possible worlds, an NCP being some normal world and an NNCP being some non-normal world. If Q is a subCP of P, then Q is accessible to P; since non-normal worlds have no worlds accessible to them, no CP is a subproof, of any order, of an NNCP.
do not violate the following restriction on the nesting of NNCPs: no NNCP may be a subproof of any order of another NNCP.

Rules of Inference

HYP. To write A as the first item (the hypothesis) in an HP.
REIT. If Q is a subHP of P, and if A is an item in P, to write A in Q.
$\supset \mathrm{I}$. If Q is a subHP of P, where Q has hypothesis A and last item B, to write $A \supset B$ in P.
\supset E. If A and $A \supset B$ are items in P, to write B in P.
RAA. If Q is a subHP of P, and Q has hypothesis $\sim A$ and items B and $\sim B$, to write A in P.
AX. To write $\sim \square A$ in an NNCP.
$\square E$. If $\square A$ is an item in P, to write A in P (N $\square E)$, or if, moreover, Q is a subNNCP of P, to write A in Q (NNロE).
$\diamond \mathbf{E}$. If A and $\sim \square A$ are items in P, and if Q is a subNNCP of P, to write $\sim A$ in Q.
NN~I. If P is an HP with hypothesis A and contains a subNNCP with items B and $\sim B$, to write $\sim A$ in P.

We leave it to the reader to verify that the following rules can be derived in S9*.
$\square \mathrm{I}$. If A is an item in P and also in a subNNCP of P, to write $\square A$ in P.
\diamond I. If $\sim A$ is an item in a subNNCP of P, to write $\sim \square A$ in P.
PC. If t is a tautology of PC, to write t in any proof and $\square t$ in any HP not nested in an NNCP.

We shall say that a wff A is provable in S9* iff there is a proof for A in S9*. In the writing of proofs we shall adopt the convention of consecutively numbering each wff to the left of the NCP line in the order that they are written and of writing a justification for each wff to its right. Also, we shall suppress any use of the rules of auxiliary transformation. We illustrate the proof technique with the following examples.

Example 1.

1.	$\\|_{\sim \square A}$	AX
2.	$\sim \square \square A$	$1, \diamond \mathrm{I}$

Example 2.

1.	$\sim \square \sim A$	HYP	
2.	$\sim \\| \sim \square \sim A$	AX	
3.	$\square \sim \square \sim A$	$1,2, \square \mathrm{I}$	
4.	$\diamond A \supset \square \diamond A$	$1-3, \supset \mathrm{I}$	

Example 3.

1.	$\sim \square(A \supset \square \mathrm{t})$	HYP
2.	A	HYP
3.	$\sim \square(A \supset \square \mathrm{t})$	1, REIT
4.	A	HYP
5.	$\square \mathrm{t}$	PC

6.	$A \supset \square \mathrm{t}$	4-5, $\supset \mathrm{I}$	
7.	$\\| \sim(A \supset \square \mathrm{t})$	$3,6, \diamond \mathrm{E}$	
8.	$\sim(A \supset \square \mathrm{t}) \supset A$	PC	
9.	${ }^{\prime}$	7, 8, 〕E	
10.	$\square A$	2,9, \square I	
11.	$A \supset \square A$	2-10, \supset I	
12.	$\sim \square(A \supset \square \mathrm{t}) \supset(A \supset \square A)$	1-11, $\supset \mathrm{I}$	

3.2 We shall show that $\mathrm{S} 9 *$ is deductively equivalent to S 9 . We leave it to reader to show that the axioms of $S 9$ are derivable in S9*. Moreover, the rules of S 9 are rules of $\mathrm{S} 9 *$. Hence, if a wff is provable in S9, it is provable in S9*. To show the converse, we introduce the notion of quasi-proof and prove some lemmas. ${ }^{8}$

Lemma 1: The following theorems of S 9 are derivable in any HP and any NNCP:

1. $A \supset A$
2. $A \supset(B \supset A)$
3. $(A \supset B) \supset((A \supset(B \supset C)) \supset(A \supset C))$
4. $(A \supset \square B) \supset(A \supset B)$
5. $(\sim A \supset B) \supset((\sim A \supset \sim B) \supset A)$
6. $A_{1} \supset\left(A_{2} \supset \ldots\left(A_{n-1} \supset\left(A_{n} \supset T\right)\right) \ldots\right)$, where $n \geq 1$ and T is one of the theorems 1-5.

The following theorems of S9 are derivable in any HP not nested within an NNCP.
7. \qquad
8. $\square A \supset \square(\sim \square \mathrm{t} \supset A)$
9. $A \supset(\sim \square A \supset \square(\sim \square \mathrm{t} \supset \sim A))$
10. $\square(\sim \square \mathrm{t} \supset A) \supset(\square(\sim \square \mathrm{t} \supset(A \supset B)) \supset \square(\sim \square \mathrm{t} \supset B))$
11. $A \supset(\square(\sim \square \mathrm{t} \supset B) \supset(\square(\sim \square \mathrm{t} \supset \sim B) \supset \sim A))$
12. $\square(\sim \square \mathrm{t} \supset T)$, where T is one of the theorems 1-6
13. $A_{1} \supset\left(A_{2} \supset \ldots\left(A_{n-1} \supset\left(A_{n} \supset T\right)\right) \ldots\right.$, where $n \geq 1$ and T is one of the theorems 7-12.

Proof: Using the methods of 1 or 2 we show that the formulas are S9 theorems. Then using the method of 3.1 we establish the lemma. By lemma 1 come two derived rules which will be helpful in showing the equivalence of $\mathbf{S} 9 *$ to $\mathbf{S 9}$.

THM1. To insert any of the theorems 1-6 in an HP or an NNCP.
THM2. To insert any of the theorems 7-13 in a HP not nested within an NNCP.

Now, a quasi-proof is a proof such that each item either comes by the rules
8. The method of proof used to prove lemmas $2-4$ and theorem 1 of this section is an adaption of Anderson and Belnap [1], which in turn stems from Fitch [2].
of S9* or else comes by the rules THM1 or THM2. Lemma 1 guarantees that whenever we use THM1 or THM2 we could have used the rule REIT instead.

Lemma 2: If Q, with items A_{1}, \ldots, A_{n}, is a subHP of P, where Q itself contains no proofs, then P can be converted into a quasi-proof in which Q is replaced by the items $A_{1} \supset A_{1}, \ldots, A_{1} \supset A_{n}$ and some (appropriate) theorems of S9.

Proof: Let P be a proof containing the proof Q, an HP with items A_{1}, \ldots, $A_{n} . Q$ contains no subproofs. Let Q^{\prime} be the sequence of wffs $A_{1} \supset A_{1}, \ldots$, $A_{1} \supset A_{n}$, and let P^{\prime} be the result of replacing Q by Q^{\prime} in P. We shall show that P^{\prime} can be converted into a quasi-proof $P^{\prime \prime}$ by showing how to insert theorems of S 9 among the items of P^{\prime}. Assuming that the latter holds for items A_{1}, \ldots, A_{i-1} in $Q(i \geq 1)$, we show that it holds for the item A_{i} in Q, thereby proving the lemma.

If A_{i} is an item in Q, then A_{i} cannot have come by $\supset \mathrm{I}, \mathrm{RAA}, \mathrm{AX}, \diamond \mathrm{E}$, nor NN~I, but only by HYP, REIT, $\supset \mathrm{E}$, or NロE.
Case 1. A_{i} comes by HYP. Then $A_{i}=A_{1}$. Insert $A_{1} \supset A_{1}$ in P^{\prime} (THM1).
Case 2. A_{i} comes by REIT. Then A_{i} is already in P. Insert $A_{i} \supset\left(A_{1} \supset A_{i}\right)$ in P^{\prime} (THM1), and use $\supset \mathrm{E}$ to get $A_{1} \supset A_{i}$.
Case 3. A_{i} comes by $\supset \mathrm{E}$. Then A_{i} comes from B and $B \supset A_{i}$ in Q. By hypothesis $A_{1} \supset B$ and $A_{1} \supset\left(B \supset A_{i}\right)$ are already in P^{\prime}. Insert $\left(A_{1} \supset B\right) \supset$ $\left(\left(A_{1} \supset\left(B \supset A_{i}\right)\right) \supset\left(A_{1} \supset A_{i}\right)\right)$ in $P^{\prime}(\mathrm{THM} 1)$ to get $A_{1} \supset A_{i}$ by $\supset \mathrm{E}$.
Case 4. A_{i} comes by $\mathrm{N} \square \mathrm{E}$. Then A_{i} comes from $\square A_{i}$ in Q. By hypothesis $A_{1} \supset \square A_{i}$ is already in P^{\prime}. Insert $\left(A_{1} \supset \square A_{i}\right) \supset\left(A_{1} \supset A_{i}\right)$ in P^{\prime} (THM1) to get $A_{1} \supset A_{i}$ by \supset E.

We note, finally, that if an item B in P follows from items in Q, then it does so by either $\supset \mathrm{I}$ or by RAA. If the former, then $B=A_{1} \supset A_{n}$. But $A_{1} \supset A_{n}$ is in P^{\prime} by cases 1-4. So use REIT to get B. If the latter, then Q has hypothesis $A_{1}=\sim B$ and some items A_{j} and $\sim A_{j}$. By cases 1-4 $\sim B \supset$ A_{j} and $\sim B \supset \sim A_{j}$ are in P^{\prime}. Insert $\left(\sim B \supset A_{j}\right) \supset\left(\left(\sim B \supset \sim A_{j}\right) \supset B\right)$ in P^{\prime} (THM1) and use $\supset \mathrm{E}$ to get B.

Lemma 3: If an NNCP Q, with items A_{1}, \ldots, A_{n}, is an item in a proof P, where Q itself contains no proofs, then P can be converted into a quasiproof in which Q is replaced by the items $\square\left(\sim \square \mathrm{t} \supset A_{1}\right), \ldots, \square\left(\sim \square \mathrm{t} \supset A_{n}\right)$ and some (appropriate) theorems of S 9.

Proof: As in lemma 2 we shall show how to insert theorems of S9 among the wffs $\square\left(\sim \square \mathrm{t} \supset A_{1}\right), \ldots, \square\left(\sim \square \mathrm{t} \supset A_{n}\right)$ in P^{\prime} such that all the items in $P^{\prime \prime}$ are justified by the rules of S9* or by the rules THM1 or THM2. Again, the proof is by induction on $A_{i} . A_{i}$ cannot have come by HYP, REIT, $\supset \mathrm{I}$, RAA, nor $\mathrm{NN} \sim \mathrm{I}$, but only by $\mathrm{AX}, \mathrm{NN} \square \mathrm{E}, \diamond \mathrm{E}$ or $\supset \mathrm{E}$.
Case 1. A_{i} comes by AX. Then $A_{i}=\sim \square B$. Insert $\square(\sim \square \mathrm{t} \supset \sim \square B)$ in P^{\prime} (THM2).
Case 2. A_{i} comes by NNDE. Then A_{i} in Q comes from $\square A_{i}$ in P. Insert $\square A_{i} \supset \square\left(\sim \square \mathrm{t} \supset A_{i}\right)$ in P^{\prime} (THM2) and use $\supset \mathrm{E}$ to get $\square\left(\sim \square \mathrm{t} \supset A_{i}\right)$.
Case 3. A_{i} comes by $\diamond E$. Then $A_{i}=\sim B$ and $\sim B$ in Q comes from B and
$\sim \square B$ in P. Insert $B \supset(\sim \square B \supset \square(\sim \square \mathrm{t} \supset \sim B))$ in $P^{\prime}(\mathrm{THM} 2)$ and use $\supset \mathrm{E}$ to get $\square\left(\sim \square \mathrm{t} \supset A_{i}\right)$.
Case 4. A_{i} comes by $\supset \mathrm{E}$. Then A_{i} comes from B and $B \supset A_{i}$ in Q. By hypothesis $\square(\sim \square \mathrm{t} \supset B)$ and $\square\left(\sim \square \mathrm{t} \supset\left(B \supset A_{i}\right)\right)$ are already in P^{\prime}. Insert $\square(\sim \square \mathrm{t} \supset B) \supset\left(\square\left(\sim \square \mathrm{t} \supset\left(B \supset A_{i}\right)\right) \supset \square\left(\sim \square \mathrm{t} \supset A_{i}\right)\right)$ in P^{\prime} (THM2) and use $\supset \mathrm{E}$ to get $\square\left(\sim \square \mathrm{t} \supset A_{i}\right)$.

Finally, if an item B in P follows from items in the NNCP Q, then it does so only by NN~I. In that case P has hypothesis A and Q has items C, $\sim C$, where $B=\sim A$. By cases 1-4 $\square(\sim \square \mathrm{t} \supset C)$ and $\square(\sim \square \mathrm{t} \supset \sim C)$ are in P^{\prime}. Insert $A \supset(\square(\sim \square \mathrm{t} \supset C) \supset(\square(\sim \square \mathrm{t} \supset \sim C) \supset \sim A))$ in P^{\prime} and use $\supset \mathrm{E}$ to get B.

Lemma 4: If P is a proof for the wff A, then P can be converted into a quasi-proof $P^{\prime \prime}$ such that every item in $P^{\prime \prime}$ is either a theorem of S9 or else comes by the rules REIT, $\supset \mathrm{E}$, or $\mathrm{N} \square \mathrm{E}$.

Proof: Let P be a proof for A. We shall suppose for convenience that P contains only the proofs Q_{1}, \ldots, Q_{n}, where Q_{i} is an i-order subproof of P.

Step 1. By lemmas 2 and $3 Q_{n-1}$ can be converted into a quasiproof $Q_{n-1}^{\prime \prime}$ containing no subproof and containing some S 9 theorems.

Step 2. Let us assume that Q_{i} was converted into a quasi-proof $Q_{i}^{\prime \prime}$ containing no subproof and containing some S 9 theorems. We show that Q_{i-1} can be converted into such a quasiproof also.
Case 1. $Q_{i}^{\prime \prime}$ is a quasi-HP with hypothesis A. Every item in $Q_{i}^{\prime \prime}$ came by the rules of S9* or by THM1, or else, every item in $Q_{i}^{\prime \prime}$ came by the rules of S9* or by THM2.
Case 1.1. If an item T in $Q_{i}^{\prime \prime}$ came by THM1, then we insert $A \supset T$ in Q_{i-1}^{\prime} by THM1.
Case 1.2. If an item T in $Q_{i}^{\prime \prime}$ came by THM2, then we insert $A \supset T$ in Q_{i-1}^{\prime} by THM2.
Case 1.3. If an item B in $Q_{i}^{\prime \prime}$ came by an S9* rule, then we insert theorems of S 9 as in lemma 2 by THM1, replacing B in $Q_{i}^{\prime \prime}$ by $A \supset B$ in Q_{i-1}^{\prime}.
Case 2. $Q_{i}^{\prime \prime}$ is a quasi-NNCP. Every item in $Q_{i}^{\prime \prime}$ came by the rules of S9* or by THM1.
Case 2.1. If an item T in $Q_{i}^{\prime \prime}$ came by THM1, then we insert $\square(\sim \square \mathrm{t} \supset T)$ in Q_{i-1}^{\prime} by THM2.
Case 2.2. If an item A in $Q_{i}^{\prime \prime}$ came by an S9* $^{\text {rule, then we insert theorems }}$ of S9 as in lemma 3 by THM2, replacing A in $Q_{i}^{\prime \prime}$ by $\square(\sim \square \mathrm{t} \supset A)$ in Q_{i-1}^{\prime}.

Hence, if $Q_{i}^{\prime \prime}$ is a quasi-proof containing no subproof, then cases 1 and 2 show how to convert Q_{i-1} into a quasi-proof containing no subproof, such that every item is either a theorem of S9 or else comes by the rules of S9*. By Step 1 and Step 2, it follows that if P is a proof for A, then P can be converted into a quasi-proof $P^{\prime \prime}$ such that every item in $P^{\prime \prime}$ is either a theorem of 59 or else comes by the rules REIT, $\supset E$, or N $\square E$.

Theorem 1: A wff A is provable in 59 iff A is provable in $\mathrm{S} 9 *$.
Proof: From lemma 4 it follows that if P is a proof for A, then P can be converted into a quasi-proof $P^{\prime \prime}$ such that every item in $P^{\prime \prime}$ is a theorem of S9 (since $\square A \supset A$ is a theorem of $S 9$), in which case A is also a theorem of

S9. Thus, we have shown that if a wff A is provable in 59^{*}, then it is provable in $S 9$ so that we have the theorem.

REFERENCES

[1] Anderson, A. R., and N. D. Belnap, Jr., "The Pure Calculus of Entailment," The Journal of Symbolic Logic, vol. 27 (1962), pp. 19-52.
[2] Fitch, F. B., Symbolic Logic, Ronald Press Co., New York (1952).
[3] Hughes, G. E., and M. J. Cresswell, An Introduction to Modal Logic, Methuen and Co., Ltd., London (1968).
[4] Kripke, S. A., "Semantical Analysis of Modal Logic I: Normal Propositional Calculi," Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 9 (1963), pp. 67-96.
[5] Kripke, S. A., "Semantical Analysis of Modal Logic II: Non-normal Modal Propositional Calculi," The Theory of Models (ed. by Addison, Henkin, and Tarski), North-Holland Publishing Co., Amsterdam (1965), pp. 206-236.
[6] Lemmon, E. J., 'New Foundations for Lewis Modal Systems," The Journal of Symbolic Logic, vol. 22 (1957), pp. 176-186.
[[7] Lewis, C. I., and C. H. Langford, Symbolic Logic, The Century Co., New York and London (1932).
[8] McCall, S., and A. vander Nat, "The System S9," Philosophical Logic (ed. by Davis, Hockney, and Wilson), D. Reidel Publishing Co., Dortrecht (1969), pp. 194-214.

University of Pittsburgh
Pittsburgh, Pennsylvania

[^0]: 1. For a detailed discussion of S9 see [8].
[^1]: 2．Matrix N is the Lewis and Langford matrix，Group I，p． 493 of［7］．

[^2]: 4. The author is indebted to Mr. Alasdair Urquhart for his help in formulating the Kripke semantics for S9 and the axioms and rules of LS9.
 5. The rules (and axioms) are abbreviated mnemonically: " I " indicates that the rule is an introduction rule; what precedes " I ' indicates what connective is being introduced; and " 1 " and ' 2 " indicate introduction in normal and nonnormal subsequents respectively. Later we use " E " to indicate elimination rules.
