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AXIOMATIC, SEQUENZEN-KALKUL, AND SUBORDINATE
PROOF VERSIONS OF S9

ARNOLD VANDER NAT

1.1 The System S9. In [8] the system S9 was presented with primitive
connectives ~, &, and H as S3 plus the axioms

(a) ~pv((~(p & ~P)^P) v(p*(p*p)))>
(b) ~pv((p*p)*p),
(c) (P*P)^~(~(P^P)^(P^P)),

the rules being Substitution, Strict Detachment, and Adjunction.1 A simpler
formulation of S9 can be given, however, in that (b) is redundant and (a) and
(c) can be simplified. If we abbreviate ~x^x by Πx and ~(#& ~y) by
x n> y, then in S3, x H y is strictly equivalent (s.e.) to Π(x ^> y) and x HΛΓ is
s.e. to Dt, where t is any tautology of classical two-valued logic, PC.
Thus, in S3 the axioms (a), (&), and (c) are s.e. to

(d) -(^•t)^(PDί),
(e) p^ (DtH/>),
(/) D t H ~ D D t

respectively. Now (/) is derivable from ~DDt and (β), and (e) is derivable
from ~DDt and (d). The latter is shown as follows. The formula {~p*-$q) &
(p H#) HD# is provable in S3, so that ~DDt β((~/)βΠt) ^ - (p βDt)) is
provable in S3. Hence, by ~DDt and (d) we have (~/>HDt) D (p ̂  dp).
Substituting Dt z> p for p and detaching ~ (Dt D />) HDt, we have (Dt z> />) D
(Dt H/)), which yields (e) by a two-valued tautology. Hence, in S3 (α), (δ),
and (c) are derivable from ~DDt and ~(/>HDt) D (p ^> Πp), and z zce versa.
A simpler formulation of S9 in ~, &, and β is thus S3 plus

(g) ~(~(p^p)^(p>-$p))

(h) ~(P^(P*P))^ (/>=> ( ~ H P ) ) .

1.2 It is desirable to present yet another formulation of S9: a Lemmon

1. For a detailed discussion of S9 see [8].
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formulation with primitives ~, 3, and D. (We shall dispense with the rule
of substitution in favor oi axiom-schemes.)

Axioms: 1. hDA^A
2. hD(A^ B) D D(DA D ΠB)
3. h~DDA
4. i — D ( A D Dt) ^ ( A D DA) w/zer^ t fs αrc y tautology of PC.

Rules: Rl. If A is a tautology of PC then D A zs α theorem
R2. From A and A~J B infer B

We note first of all that a formulation of S3 by Lemraon [6] is Rl, R2,
1, 2, plus the axioms

(la) D(DADA)
(2a) Π(Π(A^B) D D(DA D DJ5)).

We show that in virtue of 5 and 4, (la) and (2a) are derivable, so that S9 is
S3 plus 5 and 4. By Rl and #2 and 1 and 2 the formula ~ DGt D ~D((D A 3
£) 3 Dt) is provable. Hence, by 3 and R2 we have ~D ((DA => B) D Dt), and
by 4 and #2 we have (DA D . B ) O D ( D A D £ ) , which yields (la) and (2α). We
note, thus, that S9 (~, =>, D) is S7 plus 4. Moreover, we note that S9
(~, D, D) is deductively equivalent to S9 (~, &, H). If x D 3; and DA: are
defined as before, then S9 (~, &, H) contains S9 (*-,=), D). If, on the other
hand, x&, y is defined as ~(# D ^3;) and x^y as D (ΛΓ D ^ ) , then S9 (~, D, D)
contains S9 (^, &, H). A more rigorous proof of this is presented in 1.3,
theorem 3.

1.3 In [8] S9 (~, &, β) was shown to be complete with respect to the matrix
N, the values 1 and 2 being designated:2

ί & j 1 2 3 4 ~z i ^j 1 2 3 4

1 1 2 3 4 4 1 2 4 4 4
2 2 2 4 4 3 2 2 2 4 4
3 3 4 3 4 2 3 2 4 2 4
4 4 4 4 4 1 4 2 2 2 2

That is, it was shown that all and only those formulas (wffs) that are
satisfied by matrix N are provable in S9 (~, & , H ) . If we define an
N-valuation on A in the usual way, i.e. a function v from F^ , the set of
well-formed parts of A (wfps), into the set {1,2,3,4} such that (i) υ is
defined for VA, the set of variables of A, and, if ~B, B&C, or B ** C are
wfps of A then (ii) υ(~B) = ~t>(£), (iii) v(B&C) = v(B) & v(C), and
(iv) v(B >-$C) =v(B)^v(C), where ~i , z & j , and i H j are defined as in
matrix N9 and say that a wff A is N-valid iff for all iV- valuations von A,
t>(A) = 1 or v(A) = 2, then we have the following theorem.

Theorem 1: A wff A is provable in S9 (~, &, H) fjjf A £s N-valid.

2. Matrix Nis the Lewis and Langford matrix, Group I, p. 493 of [7].
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A similar result is also true for S9 (~, 3, D). To arrive at this result
we shall, using the matrix N, construct a matrix M and show that S9
(~, z>, D) is complete with respect to M. We construct the matrix such that
~z = k in M iff ~z = k in JV, z Dj = k in M iff - (z & ~j) = k in JV, Dz = k in
M iff ~ iβf = & in N. Thus we have the matrix M:

i^j 1 2 3 4 ~z Dz

1 1 2 3 4 4 2
2 1 1 3 3 3 4
3 1 2 1 2 2 4
4 1 1 1 1 1 4

An M-valuation on A is defined for the matrix M just as iV-valuations were
defined for the matrix jV, and we shall say that a wff A is M-valid iff for all
M-valuations von A, v(A) = 1 or v(A) = 2.

Theorem 2: A wff A is provable in S9 (~, D, D) Z # A Z'S M-valid.

Proof: We leave it to the reader to verify that the axioms of S9 (~, 3, •)
are M-valid and that the rules preserve M-validity, so that if A is provable
in S9 (~, ̂ >, D) then A is M-valid. To show the converse, we first prove
lemmas 1-3 from which the desired result follows immediately.

We introduce a circle and a star transformation. Given a wff A in ~,
>̂, and D, the expression A°, a wff in ~, &, and H, is defined as follows:

(i) if B is a variable of A then 5° = B, and if ~ J3, 5 D C, or DJ5 are wfps of
A then (ii) (~B)°=~Be, (iii) (5 z> C)° = ~ (B° & - C°), and (iv) (DJ5)° =
~5° ^B°. Given a wff A in ~, &, and H, we define the expression A*, a wff
in ~, 3, and D, as follows: (i) if B is a variable of A then 5* = B, and if
~ £ , 5 & C, or 5 β C are wfps of A then (ii) (-£)* = - £ * , (iii) (B & C)* =
- (J5* D ~ C*), and (iv) (B^C)* = D(£* z> C*).

Lemma 1: If a wff A is M- valid, then A° is N-valid.

Proof: The proof is by induction. Let vM be an M-valuation on A and let vN

be an JV-valuation on A° such that if B is a variable of A, vM(B) = vN(B). We
shall show that if ΏB and B^> C are wfps of A such that vM(B) = vN(B°) and
VH (C) = υN(C°), then ΌH(ΠB) = vN((ΠB)°) and v^B Ώ C) = υN((B 3 C)°), so that
we will have shown that vM(A) = vN(A°). We show this as follows:

VM(ΠB) = DvM(J5) = ΠvN(B°) = (^vN(B°)^vN(Bσ)) = vN(^B0^B°) = vN((C}B)0)
vM(B z> C) = (^(B) D t;M(C)) = (f;N(B°) => %(C°)) = (~(tfo(B°) & ~t;N(C°))) =
vN(~(B° & ~C°)) = i;N((B => 0°).

Now, let A be M-valid, and let vN be any AT-valuation on A°. Let vM be the
M-valuation on A such that ^ restricted to VA is identical to vN restricted
to VA °. We have just shown that in that case vM(A) = vN(A°). But vM(A) = 1
or vM(Λ) = 2. Hence, vN(A°) = 1 or vN(A°) = 2, and hence, A° is JV-valid.

Lemma 2: If a wff A is provable in S9 (~, &, β), ίfê w A * zs provable in S9
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Proof: From the remarks in 1.1 and 1.2 it follows that if A is provable in
S3 (~, &, H) then A* is provable in S9 (~, D, D). We leave it to the reader
to complete the proof by showing that the starred versions of axioms (g)
and (h) are provable in S9 (~, ̂ >, D) and that the starred versions of Strict
Detachment and Adjunction are derivable in S9 (~, =>, D).

Lemma 3: If a wff (A°)* is provable in S9 (~, =>, D), then A is provable in
S9 (~, 3, α).

Proof: We note that by the circle transformation expressions of the form
x D y and Πx are replaced by expressions of the form ~(x &, ~y) and
~x^x. The star transformation replaces the latter b y — ( x 3 y) and
Π(~x^*x). Now, since x o y is s.e. to —(x^> ~~;y), and Πx is s.e. to
D(~Λ; => x), the lemma follows.

Returning to the proof of theorem 2, if a wff A is M-valid then by
lemma 1 A° is iV-valid, and by theorem 1 A° is provable in S9 (~, &, H ) ; by
lemma 2 (A°)* is provable in S9 (~, 3, D), and by lemma 3 A is provable in
S9 (~, 3, D). This completes the proof of theorem 2.

Theorem 3: A wj[jf A is provable in S9 (~, 3, D) iff A° is provable in S9
(~, &,H).

Proo/: If A is provable in S9 (~, =>, D) then by theorem 2 A is M-valid, by
lemma 1 A° is iV-valid, by theorem 1 A° is provable in S9 (~, &, H ) . On the
other hand, if A° is provable in S9 (~, &,H), then by lemma 2 (A0)* is
provable in S9 (~, =>, D), and by lemma 3 A is provable in S9 (~, =>, D).

1.4 S9 has a very simple Kripke semantics. This result is important in
that there seems to be no way of understanding some of the theses of S9,
such as (OA D ΠOA) & -(OA-3DOA), (AHD£) D ~(~AHDJ5), and the
S9 axiom ~(AβDt) => (A z> DA), apart from viewing these theses as
expressing certain semantic conditions. We give, then, the following
Kripke semantics for S9 (cf. [5]).

The S9 model structure is the set of possible worlds W = {G, H] where
G is a normal world and # a non -^normal world.3 If inaccessibility relation
R is defined on W, then G#G and GHH, but for no world /, HRΪ (i.e. G and tf
are accessible to G, but no world is accessible to H). The assignment of
truth values to wffs is as usual, in particular, if /#/, then a wff DA is true
in / iff for all J such that IRJ A is true in J, and, if not IRI, then a wff DA
is false in /. It will be convenient, however, not to introduce an accessi-
bility relation and also to dispense with the usual notion of a model
(relative to a model structure) since there are only two specific worlds to
consider.

3. We follow Kripke here in calling a world non-normal if every wff of the form
OAT, even <C>(A&~A), is true in that world; otherwise, a world is normal. Or,
alternatively, given an accessibility relation, we call a world normal if some
world is accessible to it; otherwise a world is non~normal. See Hughes and
Cresswell [3], especially chapter 15.
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Given a wff A, a K-valuation on A is a functions from FA into {t, f}x
{t, f} such that (i) υ is defined for VA , and, if ~ B, B 3 C, or ΏB are wfps of
A, then, (ii) v(~B) = ~v(B), (iii) v(B D C) = v(J3) Dy(C), and (iv) φ ΰ ) =
(t,f) if *(J5) = (t,t), and υ{ΏB) = (f, f> if υ(B) Φ (t, t), where ~<z,j> = <~z, ~j)
and (z, j) 3 (k, I) = (i z> &, j D Z), and where ~z and z 3 j are defined in the
usual two-valued Boolean manner.

The conditions on K-valuations can be expressed in matrix form as
follows. Matrix K:

<i,j)^<k,l) 1 <t,t) <t, f) <f,t) <f, f) I ~(i,j) I Π(ί,j)

<t,t> <t,t> (t, f> <f,t) <f,f> <f,£> <t,f>
(t, f) <t,t> (t, t) (f, t) <f,t> <f,t> <f,f>
<f,t) (t, t) (t, f) (t, t) (t, f) <t, f) <f, f)
<f, ί> <t,t> <t,t> (t, t) <t,t> (t, t) <f, f)

We say that a wff A is K-valid iff for all K-valuations v on A, v(A) = (t, t)
or v(A) = (t, f). Inspection of matrices M and K show that M and K are
isomorphic under the correspondence of 1 with (t, t), 2 with (t, f), 3 with
(f, t) and 4 with (f, f). Hence, we have the following theorems.

Theorem 4: A wff A is M-valid iff A is K-valid.
Theorem 5: A wff A is provable in S9 iff A is K-valid.

For the purposes of the next section it will be convenient to be able to
separate what a K -valuation does to wffs in the world G from what it does
to wffs in the world H. Thus we introduce some additional notions.

fG and fH are functions from {t, f} x {t, f} into {t, f} such that fG((i,j)) = i

andfH((i,j)) = j.

A KG-valuation is a function vG = fG°v, where v is a if-valuation, and a
KH-valuation is a function vH = fH°v. Hence, for a K-valuation v, v(A) =
(i,j) iff vG(A) = i and vH(A) = j . We shall say that a wff A is KG-valid iff for
all ^-valuat ions vG on A, vG(A) = t.

Theorem 6: A w£fA zs K-valid iff A is KG-valid.

The conditions on ϋC-valuations given above can just as well be stated
in terms of KG and /£#-valuations.

K0.1. If vG{A) = f, then vG(~A) = t.
K0.2. If vH(A) = f, then vH(~A) = t.
Kl.l. If vG(A) = t, then vG(~A) = f.
K1.2. If vH(A) = t, then vH(~A) = f.
K2.1. If vG(~A) = t or vG(B) = t, then vG(A Ώ B) = t.
K2.2. If vH{~A) = t or vH{B) = t, then vH(A D B) = t.

ZΉ.I. // t;G(A) = t αwί? ?;G(~5) = t, then vG(~(A 3 J5)) = t.
iΓ5.2. // vH(A) = t am? vH(~5) = t, then vH(~(A D 5)) = t.
# 4 . 1 . // vG(A) = t αwrf %(A) = t, then vG(ΠA) = t.
K5Λ. If vG(~A) =tor vH{~A) = t, then vG(~πA) = t.
K5.2. vH(~ΠA)=t.
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The conditions KO, 1 -K5.2 provide us with a semantic basis for still another

formulation of S9, a Gentzen formulation which we shall now introduce.4

2.1 The System LS9 We shall let a, β, y, δ range over finite and possibly

null sequences of wffs in ~, D, and D. If we want to explicitly indicate the

null sequence, we shall write Λ. An LS9-sequent is a pair of sequences

(a; β), where at least one of a and β is not null. The sequence a is called

the normal subsequent and β the non-normal subsequent of (a; β). (The

basic idea of a sequent Aly . . . , Am; Bίy . . . , Bnis that at least one of the

Aj in the normal subsequent is true in the normal world G, or else, that at

least one of the Bj in the non-normal subsequent is true in the non-normal

world H.) If a sequence a contains at least the wffs Al9 . . . , Any we shall

write a(A1} . . . , An). The axiom-schemes of LS9 are

PCI. a{A, ~A); β

PC2. a; β(A, ~A)

~ΏI2. a; β(~ΠA)

Examples of LS9-axioms are (~(A D B), D C, A 3 B; DA), and (~(A D A);

J5, 5, ~ £ , 5), and (Λ; -(A DA), ~ D(£ z> C)). The rules of LS9 are 5

-77. ( α , A , β ; y ) - ( α , ~ - A , β ; r )

~/2. (or; β , A , y ) - («; β, — A 9 γ )

=>/i. (α, -A, J5, β; r ) - (a, A =) 5 , β; y)

3/2. (Of; β, ~A, B, y) - (of; M ^ , y)

- D / i . (α, A, β; y) <mrf (α, - 5 , β; y) - (α, -(A D B), β; y)

^3/2. (α; β,A,γ) and (a; β, ~ β , y) - (cr; β, ~(A => B), y)

DΠ. (α, A, β; y, δ) αnί? (a, β; y, A, δ) - (α, DA, β; y, δ)

- D Π . (α, -A, β; y, -A, δ) - (α, ~DA, β; y, δ)

We shall use Γ, Δ, Φ, and Z to range over LS9-sequents. A derivation

for a sequent Φ in LS9 is a tree beginning with the node Φ and branching

upwards such that if a single node Γ is directly above a node Δ then there

is an LS9 rule Γ —> Δ and if a branch splits at a node Z into nodes Γ and Δ

then there is an LS9 rule (Γ and Δ) ~* Z; and such that the terminal nodes

are LS9 axioms.

We shall say that a wff A is provable in LS9 iff there is a derivation

for A; Λ in LS9. In the writing of derivations we shall separate the nodes

by horizontal lines, to the right of which lines we cite the rule by which the

next node comes. We illustrate the proof technique with the following

examples.

4. The author is indebted to Mr. Alasdair Urquhart for his help in formulating the
Kripke semantics for S9 and the axioms and rules of LS9.

5. The rules (and axioms) are abbreviated mnemonically: " / " indicates that the
rule is an introditction rule; what precedes * '/" indicates what connective is
being introduced; and " i " and "2n indicate introduction in normal and non-
normal subsequents respectively. Later we use UE" to indicate elimination
rules.
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Example 1.

~ΏI2
-•A;~DA ^ π n

~DDA; Λ
Example 2.

PCI ΏΪ2
~OA, DA; Λ DA; ~OA ΏJ1

O~DA, DA; Λ ^
n

~~O~DA, DA; Λ
 D i 7

~D~DA => DA; Λ

Thus, the wffs ~DDA and ODA D DA are provable in LS9. It may be
shown that a wff A is provable in PC iff there is a derivation for A; Λ
(using only PCI, ~Π, ^>I1, and ~=>π) and there is a derivation for Λ;
A (using only PC2, ~Ϊ2, ^12, and ~^I2). Hence we have the following
derived rule:

PC3. If t is any tautology of PC, to begin a derivation with a(t); β or
with a; β(t).

Example 3.
PC3 PC3 PCI PC2

~A,t,~A,DA;Λ ~A,~A,OA;t u n ~A,A; ~A,Ot ~A;~A,A,Ot Q Π

~A,Dt, ~A,DA;Λ ~A,OA; ~A , Ot

ADDt, -A, DA; Λ ~A,OA;A 3 Dt Q

D(A 3 Dt), ~A, DA; Λ ^ ^

D(ADDt), -A,DA;Λ D / J

^ - a ( A D D t ) , A PDA; Λ _JΠ

-D(A=) Dt)3(A3 DA); Λ

2.2 As was suggested in 2.1, LS9-sequents are to be thought of in terms of
the Kripke semantics for S9. Given a sequent (a; β) we are to think of it as
the assertion that at least one of the wffs in a is true in G, or else, that at
least one of the wffs in β is true in H. With this understanding the axioms
and rules of LS9 correspond exactly with conditions K0Λ-K5.2 given in 1.4.
Thus, it should turn out that the Kripke semantics for S9 is also the
semantics for LS9, and this being the case, it should also turn out that LS9
is deductively equivalent to S9. The remainder of this section will be
devoted to proving these results,

A full construction on a sequent Φ in LS9 is a tree beginning with the
node Φ and branching upwards such that if a single node Γ is directly above
a node Δ then there is an LS9 rule Γ —* Δ and if a branch splits at a node Z
into nodes Γ and Δ then there is an LS9 rule (Γ and Δ) —» Z; and such that if
Z is a terminal node, then Z is an LS9 axiom or else there is no sequent Γ
(or sequents Γ and Δ) such that Γ-> Z (or (Γ and Δ) -* Z). We note that
terminal nodes in full constructions are LS9 axioms or else non-axiom
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sequents with only variables or the negations of variables, except that the
non-normal subsequents possibly have wffs of the form Πx. Moreover, the
following two lemmas are immediate consequences of our definitions.

Lemma 1: For each LS9-sequent Φ there is a full construction on Φ in LS9.
Lemma 2: D is a derivation for Φ iff D is a full construction on Φ all of
whose terminal nodes are LS9 axioms.

If a = Aί9 . . . , Am, and υ is a K-valuation, we write υG(a) = t if for
some Ai in a, vG(A{) = t; otherwise vG(a) = f, and similarly for vH. We also
write v(a; β) = t if a Φ A and vG(a) = t, or if β Φ A and vH(β) = t; otherwise
we write v(a; β) = f. If v(a; β) = t, we shall say that (a; β) is satisfied by υ,
and if v(a; β) = f, we shall say that v falsifies (a; β). Inspection of the
axioms and rules will verify the following facts for any K-valuation v:

fact 1. The axioms of LS9 are satisfied by υ.
fact 2. If Γ is satisfied by υ and Γ -»Φ, then Φ is satisfied by v; and,

if Γ and Δ are satisfied by υ and (Γ and Δ) —> Φ, then Φ is
satisfied by v.

fact 3. if υ falsifies Γ and Γ -* Φ, or (Γ and Δ) -> Φ, then υ falsifies Φ.

These facts give us the following lemmas and theorems.

Lemma 3: Given a K-valuation v, if every terminal node in a full construc-
tion on Φ is satisfied by v, then Φ is satisfied by v.
Lemma 4: Given a K-valuation v, if v falsifies any node in a full construc-
tion on Φ, then v falsifies Φ.
Theorem 1: A wff A is KG-valid iff there is a derivation for A; A.

Proof: Let D be a derivation for A; Λ, and let v be any K-valuation on A.
Every terminal node in D is an axiom, and by lemma 2 D is a full construc-
tion on A; Λ. By lemma 3 and fact I, A; Λ is satisfied by υ so that vG(A) = t.
Hence, if there is a derivation for A; Λ, A is KG-valid. To show the
converse, suppose there is no derivation for A; Λ. By lemma 1 there is a
full construction on A; Λ, and by lemma 2 this full construction will have at
least one non-axiom terminal node (a; β). Since (a; β) is terminal and
non-axiom, the wffs in a (if there are any) are either variables or negations
of variables, and hence are such that each wff can be assigned the value f
without violating the conditions on a KG-valuation. Similarly, since the
wffs in β (if there are any; and, there must be some in β if there are none
in a) are either variables, the negations of variables, or else wffs of the
form Ώx, each wff can be assigned the value f without violating the condi-
tions on a KH-valuation. Let v, then, be a K-valuation such that vG(a) = f
and vH(β) - f. Then υ falsifies (a; β), and, by lemma 4, v falsifies A; Λ, so
that A is not KG -valid.

Theorem 2: A wff A is provable in S9 iffA is provable in LS9.

3. The System S9*. In this section we present S9*, a system of natural
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deduction.6 We shall show that S9* is deductively equivalent to S9. The
semantical motivation for S9* with regard to the Kripke semantics for S9
will be obvious: an NCP is the normal world G, and an NNCP is the
non-normal world H.7

3.1 We give the notion of proofand the proof technique of S9*.
A hypothetical proof (HP) is a vertical sequence of wffs Al9 . . . ,

An (n ^ 1) to the right of an HP line such that each wff in the sequence
comes by an S9* rule.

A non-normal categorical proof (NNCP) is a vertical sequence of wffs
A1? . . . , An (n ^ 0) to the right of an NNCP line such that each wff in the
sequence comes by an S9* rule.

Wffs and proofs will be called items. P, Q, and R will range over
proofs, and a and β will range over items. We continue to define the notion
of proof: if P is a proof with items α1 ? . . . , otn, and Q is a proof, then P ' is
a proof where Pr has items al9 . . . , an, Q, provided that if P is an NNCP
then Q is an HP.

A normal categorical proof (NCP) is a sequence of items to the right of
an NCP line such that each item in the sequence comes by the rules of S9*o

Note that a proof qua item is said to come by the rules of S9* if each item
in the proof comes by the rules of S9*. In diagrams, we have:

Ax Ax ax

HP . NNCP . NCP
. n ^ l . n ^ 0 . n^ 0
Λ.n Λ.n 0ίn

We introduce some more terminology. If P and Q are proofs such that
Phas items α1? . . . , Q, . . . , an, then Q is called a (first-order) subproof
of P. If, moreover, R is a subproof of Q, then R is a second-order subproof
of P. A subproof of R is a third-order subproof of P and a second-order
subproof of Q, and so on. Finally, if P is an NCP with the wff A as the last
item, then we say that P is a proof for A.

The proof technique of S9* consists of the following sets of rules.

Rules of Auxiliary Transformation
Rl. To draw an NCP line.
R2. To draw an HP line at any stage of the proof.
R3. To draw an NNCP line at any stage of the proof provided that we

6. S9* is styled after the manner of Fitch's method of subordinate proof, [2], with
which we assume familiarity.

7. For the definitions of NCP and NNCP see section 3.1. In general, categorical
proofs (CP) are possible worlds, an NCP being some normal world and an NNCP
being some non-normal world. If Q is a subCP of P, then Q is accessible to P;
since non-normal worlds have no worlds accessible to them, no CP is a subproof,
of any order, of an NNCP.
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do not violate the following restriction on the nesting of NNCPs:
no NNCP may be a subproof of any order of another NNCP.

Rules of Inference
HYP. To write A as the first item (the hypothesis) in an HP.

REIT. If Q is a subHP of P, and if A is an item in P, to write A in Q.
=>I. If Q is a subHP of P, where Q has hypothesis A and last item B,

to write A D B in P.
=>E. If A and A^> B are items in P, to write B in P.

RAA. If Q is a subHP of P, and Q has hypothesis ~ A and items B and
~ J5, to write A in P.

AX. To write -DA in an NNCP.
DE. If DA is an item in P, to write A in P (NDE), or if, moreover,

Q is a subNNCP of P, to write A in Q (NNDE).
OE. If A and ~DA are items in P, and if Q is a subNNCP of P, to

write ~A in Q.
NN~I. If P is an HP with hypothesis A and contains a subNNCP with

items 5 and ~ B, to write ~ A in P.

We leave it to the reader to verify that the following rules can be derived in
S9*.

DI. If A is an item in P and also in a subNNCP of P, to write DA
in P.

Ol. If ~A is an item in a subNNCP of P, to write -DA in P.
PC. If t is a tautology of PC, to write t in any proof and Dt in any

HP not nested in an NNCP.

We shall say that a wff A is provable in S9* iff there is a proof for A in
S9*. In the writing of proofs we shall adopt the convention of consecutively
numbering each wff to the left of the NCP line in the order that they are
written and of writing a justification for each wff to its right. Also, we
shall suppress any use of the rules of auxiliary transformation. We
illustrate the proof technique with the following examples.

Example 1.
1. II~DA AX
2. ~DDA 1,01

Example 2.
1. I U D-A HYP
2. ||~D~A AX
3. D - D - A 1, 2, DI
4. OA^DOA 1~3,:3I

Example 3.
1. U_D(ADDt) HYP
2. | A _ HYP
3. ~D(A=>Dt) 1,REIT
4. |A_ HYP
5. |Dt PC
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6. A D π t 4-5, DI

7. ~ ( A D Dt) 3,6,OE

8. -(A=) Dt) DA PC

9. A 7,8,DE

10. DA 2,9, DI

11. A D Q A 2-10,31

12. ~D(A D Dt) D ( A D DA) 1-11, DI

3.2 We shall show that S9* is deductively equivalent to S9. We leave it to

reader to show that the axioms of S9 are derivable in S9*. Moreover, the

rules of S9 are rules of S9*. Hence, if a wff is provable in S9, it is

provable in S9*. To show the converse, we introduce the notion of

quasi-proof and prove some lemmas.8

Lemma 1: The following theorems of S9 are derivable in any HP and any

NNCP:

1. A D A

2. A^ (£D A)

3. (A^ E) D ((A ^ (B^ C)) D (A^ O)

4. (A D D£) D (A^ B)

5. (~A ^ B)^ ((-A D ~B) D A)

6. Aλ^ {A2^ . . . (An_x D (Aw 3 Γ ) ) . . .), where n ^ 1 and Γ is one of the

theorems 1-5.

The following theorems of S9 are derivable in any HP not nested within an

NNCP.

7. D(~Dt D ~DA)

8. DA D D(~Dt D A)

9. A D (~DA D D(~Dt D ~A))

10. D(~Dt D A)^ (D(~Dt D (A D 5)) D D(~Dt D £ ) )

11. AD (D(~Dt D 5) D (D(~Dt D ~B) D ^ A))

12. D(~DtD Γ), where Γ is one of the theorems 1-6

13. Ax^ (A2^ . . . (Aw_i D (Aw D Γ)) . . .), where n s> 1 and Γ is one of the

theorems 7-12.

Proof: Using the methods of 1 or 2 we show that the formulas are S9

theorems. Then using the method of 3.1 we establish the lemma. By

lemma 1 come two derived rules which will be helpful in showing the

equivalence of S9* to S9.

THM1. To insert any of the theorems 1-6 in an HP or an NNCP.

THM2. To insert any of the theorems 7-13 in a HP not nested within

an NNCP.

Now, a quasi-proof is a proof such that each item either comes by the rules

8. The method of proof used to prove lemmas 2-4 and theorem 1 of this section is
an adaption of Anderson and Belnap [1] , which in turn stems from Fitch [2],
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of S9* or else comes by the rules THM1 or THM2. Lemma 1 guarantees
that whenever we use THM1 or THM2 we could have used the rule REIT
instead.

Lemma 2: If Q, with items Ai, . . . , An, is a subHP of P, where Q itself
contains no proofs, then P can be converted into a quasi-proof in which Q is
replaced by the items Aλ D A L , . . . , A1 3 An and some {appropriate)
theorems o/S9.

Proof: Let P be a proof containing the proof Q, an HP with items Ax, . . . ,
An. Q contains no subproofs. Let Qr be the sequence of wffs Ax 3 Au . . . ,
Aλ 3 An, and let P' be the result of replacing Q by Qr in P. We shall show
that Pr can be converted into a quasi-proof P" by showing how to insert
theorems of S9 among the items of P ' . Assuming that the latter holds for
items Al9 . . . , A,--! in Q(i ^ 1), we show that it holds for the item A; in Q,
thereby proving the lemma.

If Ai is an item in Q, then Ai cannot have come by 31, RAA, AX, <C>E,
nor NN~I, but only by HYP, REIT, 3E, or NDE.
Case 1. Ai comes by HYP. Then A, = Ax. Insert Ax 3 Ax in P' (THM1).
Case 2. A{ comes by REIT. Then A, is already in P. Insert Af 3 {Aι 3 A, )
in Pr (THM1), and use 3E to get Aι 3 Af .
C#S£ 5. A, comes by ^ E . Then Ai comes from B and B 3 At in Q. By
hypothesis Ax 3 5 and Ax 3 (£ 3 A, ) are already in P f . Insert (Ax ̂  β) =>
((Ai D (5 3 Ai)) 3 (Ax ^ A, )) in P ' (THM1) to get Aγ =) A, by DE.
Case 4, Ai comes by NOE. Then Ai comes from DA, in Q. By hypothesis
Ai => DA, is already in P ; . Insert (Ax ^ DA2 ) => (Ai => A, ) in P' (THM1) to
get Ax 3 Ai by =>E.

We note, finally, that if an item B in P follows from items in Q, then it
does so by either 31 or by RAA. If the former, then B = Aλ => Aw. But
Ax ^ An is in P ' by cases 1-4. So use REIT to get B. If the latter, then Q
has hypothesis Ax = ~B and some items A; and ~ A/. By cases 1-4 ~J3 D
AJ and ~ £ D -Ay are in P ' . Insert ( ~ 5 ^ Ay) 3 ((~5 3 -Ay) 3 5) in P '
(THM1) and use ̂ E to get B.

Lemma 3: If an NNCP Q, with items Au . . . , An, is an item in a proof P,
where Q itself contains no proofs, then P can be converted into a quasi-
proof in which Q is replaced by the items D(~Gt 3 AJ, . . . , D(~Dt 3 An)
and some (appropriate) theorems o/S9.

Proof: As in lemma 2 we shall show how to insert theorems of S9 among
the wffs D(~Dt DΛJ D(~Dt 3 An) in P' such that all the items in P"
are justified by the rules of S9* or by the rules THM1 or THM2. Again, the
proof is by induction on At . A, cannot have come by HYP, REIT, ^>I, RAA,
nor NN~I, but only by AX, NNDE, O E o r ^ E .
Case 2. A, comes by AX. Then A, = ~ D £ . Insert D(~Dt => - G β ) in Pr

(THM2).
Case 2. Ai comes by NNGE. Then A, in Q comes from DAt in P. Insert
ΏAi 3 D(~Dt 3 A/) in P f (THM2) and use 3E to get D(~Dt 3 A{).
Case 3. A{ comes by OE. Then A{ = ~B and ~B in Q comes from B and
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~ΠB in P. Insert £ D ( ~ D 5 ^ D(~Dt 3 -5)) in P ' (THM2) and use 3E to

get D(~ϋt ΊAi).
Case 4, A, comes by ^E. Then A, comes from B and J5 D A, in Q. By
hypothesis D(~Dt =>£) and D(~Dt 3 (B D A, )) are already in P ' . Insert
D(~Dt => B) D (D(~Dt D (5 => A, )) ^ D(~Dt 3 A, )) in P ' (THM2) and use
^E to get D(~Dt 3 A, ).

Finally, if an item 5 in P follows from items in the NNCP Q, then it
does so only by NN~I. In that case P has hypothesis A and Q has items C,
~C, where B = -A. By cases 1-4 D(~Ot => C) and G(~Qt D ~ C) are in P'.
Insert A z> (D(~Dt => C) 3 (G(~Gt => ~ C) D -A)) in P ' and use ̂ E to get B.

Lemma 4: If P is a proof for the wff A, then P can be converted into a
quasi-proof P" such that every item in P" is either a theorem of S9 or else
comes by the rules REIT, ^E, or NDE.

Proof: Let P be a proof for A. We shall suppose for convenience that P
contains only the proofs Ql9 . . . , Qw, where Q, is an z-order subproof of P.

Step 1. By lemmas 2 and 3 Qn-ι can be converted into a quasiproof
Qn-ι containing no subproof and containing some S9 theorems.

Step 2. Let us assume that Q, was converted into a quasi-proof Q"
containing no subproof and containing some S9 theorems. We show that
Qi-λ can be converted into such a quasiproof also.
Case 1. Q'/ is a quasi-HP with hypothesis A. Every item in Q'/ came by the
rules of S9* or by THM1, or else, every item in Q" came by the rules of
S9* or by THM2.

Case 1.1. If an item T in Q? came by THM1, then we insert A =) T in Q\^λ

by THM1.
Case 1.2. If an item T in Q'/ came by THM2, then we insert A => Γ in Q,LX

by THM2.
Case i.5. If- an item 5 in Q" came by an S9* rule, then we insert theorems
of S9 as in lemma 2 by THM1, replacing B in Q\' by A ̂ B in Q' .-L
Case 2. QJ ' is a quasi-NNCP. Every item in QJf came by the rules of S9*
or by THM1.
Case 2.1. If an item T in Q'/ came by THM1, then we insert D(~Qt =) Γ) in
QJ -i by THM2.
Case ^.2. If an item A in Q'/ came by an S9* rule, then we insert theorems
of S9 as in lemma 3 by THM2, replacing A in Q[' by D(~Gt z> A) in QJ_lβ

Hence, if Q?f is a quasi-proof containing no subproof, then cases 1 and
2 show how to convert Q, -i into a quasi-proof containing no subproof, such
that every item is either a theorem of S9 or else comes by the rules of S9*.
By Step 1 and Step 2, it follows that if P is a proof for A, then P can be
converted into a quasi-proof P f f such that every item in P" is either a
theorem of S9 or else comes by the rules REIT, ^E, or NDE.

Theorem 1: A wff A is provable in S9 iff A is provable in S9*.

Proof: From lemma 4 it follows that if P is a proof for A, then P can be
converted into a quasi-proof P" such that every item in P" is a theorem of
S9 (since DA D A is a theorem of S9), in which case A is also a theorem of
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S9. Thus, we have shown that if a wff A is provable in S9*, then it is
provable in S9 so that we have the theorem.
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