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TRUTH IN CONSTRUCTIVE METAMATHEMATICS

JOHN STAPLES

1 Introduction Metamathematics may be divided into two parts: that
which relies on the use of logic, and that which does not. Most meta-
mathematics which uses logic uses classical (two-valued) logic: we shall
call it classical metamathematics. It is of course possible to consider
metamathematics which uses logic, but which intends for the logic a
constructive interpretation; we shall call that constructive metamathe-
matics. There is a need for greater interest in constructive metamathe-
matics, for example, to deal with theories which are in some way not
standard, but which are claimed to admit a constructive interpretation.
This paper is (apart from some asides) intended as a contribution to
constructive metamathematics.

2 TarskVs notion of truth

2.1 In classical metamathematics the word "truth" has been given a
technical meaning by Tar ski, apparently without causing too much confusion
with whatever is one's primary, intuitive notion of the meaning of the word.
Tar ski's notion of truth is not however confined to classical metamathe-
matics. Its role is to describe the meaning of the logical concepts in a
theory, in terms of the logical notions underlying the metatheory; it can do
that in constructive metamathematics just as well as in classical meta-
mathematics. When one considers the fundamental role of Tar ski's notion
in classical metamathematics, it is of some interest to know whether it can
have any comparable role in constructive metamathematics.

Consider Tarski's definition of truth. It defines the truth of compound
formulas and open formulas of a first order theory in terms of the truth of
the closed atomic formulas, as follows. The definition is recursive, and it
is assumed that the variables of the theory are intended to range over a
fixed set S of objects; also that each relation symbol is intended to refer to
a specific relation on that set of objects. We can also assume that the
theory has a constant corresponding to each object in S (if it does not,
extend the theory by adding such constants, define truth for the extended
theory and take truth for the original theory to be the restriction of that
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notion to the original theory). For the sake of brevity I shall ignore the
distinction between objects of S and their names.

(i) an open formula A(xλ, . . ., xn) with just the free variables displayed, is
true just when for all objects clf . . ., cn of S, A{cu . . ., cn) is true,
(ii) a closed formula A & B is true just when A is true and B is true,
(iii) a closed formula AvB is true just when either A is true or B is true,
(iv) a closed formula Ί A is true just when A is not true,
(v) a closed formula A >̂ B is true just when B is true if A is true,
(vi) a closed formula (3x)A(x) is true just when for some object c of S, A(c)
is true,
(vii) a closed formula (Vx)A(x) is true just when A(c) is true for all objects
c in S.

It is this notion of truth which we shall discuss below. We are not
intending to confuse it with one's primary, intuitive notion of truth, but we
are interested in how well the two correspond.

2.2 Consider first Kleene's notions of realizability ([2], p. 95). Truth as
defined above fails to correspond to "is realizable", for theories where
both are defined, because (v) and (vii) are not like the corresponding
clauses in the definitions of realizability. For a closed formula A ^ B to be
realizable, one requires a uniform (recursive) procedure for obtaining
objects which realize B from objects which realize A. Similarly, for
(Vx)A(x) to be realizable, one requires a uniform (recursive) procedure for
obtaining objects which realize A(c) from any object which codes c.

Gδdel's method for interpreting constructive theories also does not
relate to the above definition of truth, though in this case the differences
are more fundamental. On the other hand, when one looks at the description
of truth given by Bishop ([I], pp. 7-8) one finds that it corresponds quite
closely with the above definition of truth. Taking Bishop's ''prove'' to mean
"show to be true (in the intuitive sense)", we consider his comments on the
interpretation of implication and of universal quantification. They are, in
paraphrase:

To show P => Q is true we must show that Q is true whenever P is true.

To show (Vx)A(x) true we must show A(c) is true, for every c which can be
substituted for x.

Moreover, Bishop says explicitly ([l], p. 8) that universal statements
have the same meaning in constructive mathematics as in classical
mathematics, reinforcing the idea that explicit uniformities such as are
required in the realizability notion do not form part of Bishop's notion of
truth.

Since the treatment of the other logical notions also corresponds well
with the constructive interpretation of Tarski's notion of truth, we have the
perhaps unexpected situation that Bishop's notion of truth can be described
in much the same way as Tarski's definition. The explanation of course
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lies in the constructive interpretation which we are giving to the logical

notions which are used in Tarski's definition. As Tarski's definition seems

a reasonable model of Bishop's intuitive notion, we shall study it further.

3 Properties of Tarski's notion of truth In this section " t r u e " is to be

interpreted according to Tarski's definition, except where stated otherwise.

3.1 The axioms of intuitionist predicate calculus are true To see that,

one simply checks in turn each of the axiom schemes. The result is

essentially well-known, so we do not argue it in detail.

3.2 We do not of course expect to extend 3.1 to classical predicate

calculus, but we do now enquire whether there are logical statements

additional to those of the intuitionist predicate calculus which are true.

3.3 To begin with we define (after Gentzen, and Gόdel) for each formula A

of the theory under consideration, a formula G(A) as follows:

(i) For atomic formulas, G(A) is 11 A,

(ii) G(A & B) is G(A) & G(B)

(iii) G(AvB) isl(lG(A) & ΊG{B))

(iv) G(l A) is 1G(A)

(v) G(A ^ B) is G(A) D G(B)

(vi) G((Vx)A(x)) is (Vx)G(A(x))

(vii) G((3x)A(x)) is l(\fx)lG(A(x)).

The following observation is essentially also due to Gentzen, and Gδdel.

3.4 For every formula A, ΊΊG(A) ^ G{A) is provable in the intuitionist

predicate calculus

The proof is straightforward, by induction following the definition of

G{A), and is therefore omitted. From 3.1 we therefore have:

3.5 For every formula A, 11G{A) ^ G(A) is true

We can conclude that

3.6 Classical derivability can be given a constructive interpretation

By that one simply means that if a formula B can be derived using

classical logic from formulas Al9 . . ., An, then the following assertion is

true: G(B) can be derived from G{Aλ), . . ., G(An) using intuitionist logic.

For, observe that

A,AΏB G(A)9 G(A) D G(B)

- Π Γ - t r a n s l a t e s t 0 G(B) '

and generalization,

A(x) G(A{x))
/̂ , v w x t r a n s l a t e s to . . . Aί NX :
(Vx)A(x) (Vx)G(A(x)) '

both the rules of inference obtained are obviously valid. More particularly,

3.7 In a theory such that G(A) is true for every axiom Ay G(B) is true for

every B which is derivable from the axioms by classical logic
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An instance of a theory as supposed in 3.7, is intuitionist first order
arithmetic, as was shown by both Gentzen and Godel. Other instances are
known.

4 A possible further property of Tar ski's notion of truth

4.1 Whether the axiom scheme which we consider in this section is true
according to Tar ski's definition, depends on the intuitive notion of truth
underlying the metamathematics. For example it is trivially true if we
interpret the metamathematics classically. Our interest, however, is in
whether it has any plausibility in constructive metamathematics. We
continue to use " t rue" to refer to Tarski's definition, and we abbreviate
"not true" to "false". Consider an arbitrary formula A(x) with one free
variable, and the formulas A(c) which are obtained from it by substituting
an arbitrary constant c for x. The statement we wish to examine the
plausibility of, is the assertion that the first of the following two possi-
bilities excludes the second:

(i) not all A(c) are true,
(ii) no A(c) is false.

Now if we had required, as for example would be the case in a
realizability interpretation, that "all A(c) are true" is a justified assertion
only when one has some explicit uniform means for justifying eachA(c),
then the assertion (i) would not exclude (ii); the lack of such a uniform
means would justify (i), even if no individual instance of A(c) were false. In
fact however, we require for "all A(c) are true" to be justified, only that
each individual instance A(c) be true. If it is not the case that each
individual instance A(c) is true, it may well be considered plausible that (ii)
is excluded.

We shall now examine the consequences of assuming that (i) excludes
(ii). It should be made clear however that a proof that some logical
principle (such as this one) is true according to Tarski's definition, will
involve the assumption that the same principle is true in the intuitive
sense; and if some discussion such as the above convinces one that (i)
excludes (ii) is true in the intuitive sense, then there is no difficulty in
completing the proof that (i) excludes (ii) is true in the sense of Tarski.

4.2 First we examine the symbolic expression of the assertion that (i)
excludes (ii). A direct translation would be l(Vx)A(x) ^ 1Ί(3X)ΊA(X),
which is equivalent in the intuitionist predicate calculus to Ί(Vx)A(x) ^
l(Vx)ΊlA(x), and hence to

4.3 (Vx)llA{x) D Ίi(Vx)A{x),

which is well known as an assertion which is not provable in the intuitionist
predicate calculus.

Though our discussion so far has involved formulas A(x) with only the
free variable displayed, it is clear from our definition of truth that the
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truth of 4.3 for such formulas implies its truth for all formulas. Thus in
examining the consequences of the assumption that (i) implies (ii), we shall
allow the use of 4.3 for formulas A(x) with free variables other than the one
displayed. The result which we particularly wish to note is:

4.4 For all formulas A, the formulas A D G(A) are derivable from the
axioms of the intuitionist predicate calculus, together with the scheme 4.3

To see that, one proves all instances of the equivalent scheme

1A= ΊG(A),

by induction following the definition of G(A). The proof is straightforward,
and the only place where 4.3 is used is at the stage where one wishes to
prove

l(Vx)A(x) z> ΊG((Vx)A(x))9

which is just

Ί(\fx)A(x) 3 1(V*)GW(*)).

The proof of that is as follows. Suppose i(\fx)A(x); if (Vx)G{A(x)) then
(Vx)llA(x), since lA(y) implies, by inductive hypothesis, G(iA(y))9 i.e.,
ΊG(A(y)), contradiction. Thus by 4.3, ΊΊ (V#)A(A;) , contrary to our initial
hypothesis, so we conclude as required that Ί(Vx)G(A(x)). Since the other
steps are straightforward and rely only on the axioms of the intuitionist
predicate calculus, we omit them.

5 Properties of the scheme A 3 G(A) The author has called this scheme
the subclassical axiom scheme, because any theory which includes it is
consistent if and only if the corresponding classical theory (i.e., the theory
obtained by adjoining the law of excluded third) is consistent. To see that,
we first note that:

5.1 The corresponding classical theory can be interpreted within the
original theory

To see that, we simply take the interpretation of a classical formula
A to be G(A). The subclassical axiom scheme tells us that for each axiom
A of the original theory, G(A) is a theorem of the original theory, so the
stated result follows from 3.7. Now, to reach the desired conclusion, we
show that ΊA is provable if and only if it is provable in the corresponding
classical theory. One part is trivial, since the corresponding classical
theory is an extension of the original theory; suppose then that Ί i is
classically provable. From 5.1, G(ΊA), i.e., ~\G(A)9 is provable, hence from
the axiom scheme, lA is provable.

6 Other interpretations for the subclassical axiom scheme The dis-
cussion of 4.1 should not be taken as implying that theories including the
subclassical axiom scheme cannot be subjected to constructive interpreta-
tions other than truth according to Tarski. Provided that the corresponding
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classical theory is consistent, it is reasonable to suppose that there will
be other interpretations; for some examples of realizability-type interpre-
tations see [2], p. 253, [3].
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