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MODEL THEORY OF ALTERNATIVE RINGS

BRUCE I. ROSE

Introduction Recently much work has been done in applying various
techniques developed in logic to the study of associative rings [4, 6, 9,
18, 42]. As a result of this inquiry we have a better understanding of what
certain general model theoretic properties mean in well-known mathemati-
cal contexts. In this paper*, although we continue this program of examin-
ing logic in the context of ring theory, we are concerned with a larger class
of rings- alternative rings. The class of alternative rings is axiomatizable
by the standard axioms of ring theory with the associative axiom replaced
by the sentence:

VxVy((xx)y = x(xy) Λ (yx)x = y(xx)).

Note that an alternative ring may be associative. A very useful characteri-
zation of alternative rings which shows their relationship to associative
rings is Artin's Theorem [29]:

A ring is alternative if and only if all of its subrings generated by two
elements are associative.

The canonical examples of alternative rings are the Cayley-Dickson
algebras. Section 1 contains a brief introduction to Cayley-Dickson
algebras.

We begin the mathematics of this paper in section 2 with a model
theoretic exploration of split Cayley-Dickson algebras. We first show that
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this class of structures is finitely axiomatizable. We then axiomatize split
Cayley-Dickson algebras over algebraically closed fields and show that this
theory is fc^-categorical, model complete, and the model completion of the
theory of Cayley-Dickson algebras. We then use these results to prove a
Hubert Nullstellenstatz-like theorem for Cayley-Dickson algebras. No
algebraic proof of this result is known.

Our primary concern in section 3 is with stability in alternative rings.
Stability is a model theoretic concept which was developed by Morley [23]
and Shelah [30, 31] in attempting to determine the number of models of a
first order theory. Understanding the properties of stable theories is a
major occupation of model theorists. To this end we restrict our attention
to alternative rings. In particular we show that if R is a stable ring and
J(R) is the Jacobson radical of R, then R/J(R) has the descending chain
condition on right ideals. This and the information obtained in section 2
enable us to deduce theorems on the structure of stable, ω-stable and
fr^-categorical rings.

Section 4 is concerned with tf0-categorical alternative rings. In it we
generalize many of the theorems of [4] on N0-categoricity in associative
rings to N0~categoricity in alternative rings. For example, we show that an
^0-categorical alternative ring of arbitrary infinite cardinality can have
neither the ascending nor the descending chain condition on right ideals.

This paper was written to be accessible to anyone familiar with the
Wedderburn-Artin structure theory for associative rings and model theory
as contained in the first half of [28]. For ring theoretic concepts or
notation see [11]. For further information on alternative rings see [21] or
[29]. For further model theoretic information see [5] or [28]. In this paper
we will take the term nonassociative to mean not associative. All rings,
unless stated otherwise, are assumed to be alternative. At times this will
be emphasized by our using the phrase "alternative ring" rather than just
"ring". Recall that an alternative ring may be associative. Fields are
assumed to be both associative and commutative. Many ring theoretic
concepts do not involve associativity and have the same definition for
alternative rings as they do for associative rings (e.g., right ideals). One
ring theoretic property central to this paper is that of a ring satisfying the
ascending (descending) chain condition on right ideals. A ring has the
ascending {descending) chain condition on right ideals if it contains no
infinite properly ascending (descending) chain of right ideals.

A first order formula of ring theory is a formula built up in the
natural way using only logical connectives Ί (not), Λ (and), v (or), —*
(implies), V, 3 (quantifiers over elements of the ring), = (equality), the ring
theoretic function symbols +, , 0, and variables x, y, z, xl9 . . ., xn. We let
R denote ambiguously the set of members of a ring and the structure
(R, +, , 0). For a finite sequence al9 . . ., θn(xu . . ., xn) of elements
(variables) we write a(x). If φ is a formula of ring theory (possibly with
names for ring elements al9 . . ., <z») we write R\=φ(a) to mean φ is true in
R of the elements aγ, . . ., an. A subset B of R is first order definable or
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definable in first order logic if there is a first order formula of ring
theory with one variable, φ(x), such that aeB if and only if R\=φ(a).
Frequently we denote the subset B of elements of the ring R which satisfy a
formula φ, by φ(R). A theory is any set of sentences (formulas without free
variables). The theory of a ring R, Th(R), is the set of all first order
sentences of ring theory which are true in R. Two rings are elementarily
equivalent if they satisfy exactly the same sentences of ring theory. If
A c B are rings then B is an elementary extension of A if any sentence of
ring theory with parameters from A that is true in A is also true in B.
A ring R is Nα-categorical if, up to isomorphism, Th(R) has at most one
model of cardinality tfα. Note that any finite ring is tfα-categorical.

Let T be a complete consistent theory and let F ι(T) be the set of
formulas in the language of T that contain at most x as a free variable. Let
p be a maximal subset of Fi(T) such that any finite subset of p is consistent
with T (i.e., satisfiable in some model of T). The set p is called a type of
T. Let S(Γ) denote the set of types of T. If A is a model of T, let Th(A, A)
denote the set of sentences, in the language of T together with names for all
elements of A, that are true in A. A theory T is said to be /c-stable if for
any model A of T of cardinality κ9 S(Th(A, A)) has cardinality K. A theory
is stable if it is κ-stable in some cardinality K. A ring R is stable
(/c-stable) if Th(R) is stable (K-stable).

1 Cayley-Dickson algebras In this section we will present a development
of the construction of Cayley-Dickson algebras over an arbitrary field. As
a result of the work of Kleinfeld [15] and others, one could simply define
Cayley-Dickson algebras as the class of simple (having no proper two-
sided ideals) alternative, nonassociative rings. It is hoped that the
following exposition will promote a more concrete understanding of what
Cayley-Dickson algebras are than does the preceeding statement. A
complete and detailed development of Cayley-Dickson algebras may be
found in [21] or [29]. The proofs of any assertions that we make in what
follows may also be found there. The adjective "Cayley-Dickson" in the
phrase "Cayley-Dickson algebra" refers to a procedure for constructing
algebras. By Cayley-Dickson algebras (hence-forth CD algebras) we will
mean the alternative, not associative algebras constructed over any given
field by this process.

Some CD algebras are division algebras; that is, their multiplicative
structure is a group (not necessarily associative). For alternative alge-
bras, being a division algebra is equivalent to having an identity element
and each non-zero element having an inverse. It is also equivalent to being
a simple algebra with no zero divisors. CD algebras with zero divisors
are called split Cayley-Dickson algebras. Split CD algebras may be
constructed over any field. The construction of a CD division algebra over
a given field depends, as we shall see, on the elementary properties of the
given field.

Fix a field F. We show how to construct CD algebras over F. Let
Zi = F Φ F and Z2 = F(s) be a separable quadratic field over F. We may
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assume that s satisfies an equation of the form x2 - x - a for some a in F

such that -4a Φ 1 and x2 - x - a is irreducible over F. From Zι we will

eventually construct a split CD algebra over F. Constructions on Z2 will

sometimes give us CD division algebras.

An involution on an algebra A over F is a linear operator x —• x on A

satisfying (xy) = yx and x = x for all x and y in A. Let an involution on Zx

be given by (x,y) = (y,x) and an involution on Z2 be given by fλs + f2 =

/Ί(l - s) + f2 for /i and f2 in F. Let Qt be the set of ordered pairs (xl9 x2)

where xx and x2 are in Z, . We put an algebra structure on Q, by defining

addition and multiplication by scalars in F componentwise and multiplica-

tion by

(1.1) <#i, ΛΓ2><*3, xύ = (*i*3 + bxx4x2, ~xxxA + x3x2)

for all xl9 x2, x3, and x4 in Zf and some δi * 0 in F. The element (1,0) i s an

identity element for Q, and the set {(x,ti): xeZ;} is a subalgebra of Q,

isomorphic to Zf and hence we may identify Zf with its image. Let

v = (0,1), then v2 = bγ and Q2 may be written as the vector space direct sum

Zi + vZ, and given the multiplication:

(1.2) (#! + vx2)(x3 + VΛΓJ = <^!^3 + biX&ύ + v(^!^4 + ΛΓ3X2).

Qί has an involution given by AT + v y = x-vy. Each Q, is a simple associa-

tive algebra which i s 4-dimensional over its center F. By the c lass ical

theorem of Wedderburn [11], Q, i s a division ring or a complete 2 x 2

matrix ring over F. Qi i s never a division ring since Zx has zero divisors.

Necessary and sufficient conditions may be found for Q2 to be a division

ring. These are that there exist no elements c and d in F such that

61 = d2 + cd - ac2.

Our goal is near. To construct CD algebras d, repeat this entire

process again. That is, let C* be the set of ordered pairs (xl9 x2) where xγ

and x2 are elements of Qt . Choose a nonzero element b2eF. Extend

addition and multiplication by scalars of F componentwise. Define multipli-

cation in C, by (1.1) using b2 instead of δ lβ Ci and C2 are CD algebras.

Each C{ is a simple algebra which is 8-dimensional over F. The noncom-

mutativity of Q, entails the nonassociativity of Ci. However, C, is

alternative. Were we to repeat this process again, the resulting algebra

would not be alternative.

C2 is a division ring if and only if Q2 is a division ring and there do not

exist elements c, d, e, and/in F, such that

b2 = c2 + cd - ad2 - bxe
2 - bγef + abλf

2'.

We again emphasize that whether or not a CD division algebra exists over a

particular field depends on whether or not a certain first order sentence

does or does not hold in that field. Further, two CD division algebras over

elementarily equivalent fields are elementarily equivalent if the set of

formulas of ring theory satisfied in a given field by the three elements

chosen to define the other CD algebra is the same as the set of formulas

satisfied by the three elements used to define the other CD algebra (i.e.,

the defining coefficients realize the same 3-type).
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Ci, for any choice of multiplication constants, is always a split CD
algebra and can be constructed from any field. An amazing and useful fact
about split CD algebras is that the split CD algebra over any field is unique
[27; 52]. Hence we may think of a split CD algebra as having a standard
construction. Let F2 be the complete 2 x 2 matrix ring over F with

involution given by ί J = ( j . Any split CD algebra over F is

isomorphic to F2 + vF2 where v is a new formal element and multiplication
is given by (1.2). Another important property of CD algebras is that the
only elements of a CD algebra, R over F, which associate with all pairs of
elements of R, are the elements of F. F is also the set of elements which
commutes with all elements of R.

2 Model theory of split Cayley-Dicks on algebras We begin this section
by showing that the theory of Cayley-Dickson algebras is finitely axioma-
tizable in the language of ring theory. Using this axiomatization we may
axiomatize the theory of split CD algebras over fields modeling a given
theory. This axiomatizable construction preserves many model theoretic
properties. As an example, we show that it preserves completeness of
theories. In the later part of this section we restrict our attention to the
theory of split CD algebras over an algebraically closed field. We show
that this theory is tti-categorical (fixed characteristic), model complete,
the model completion of the theory of CD algebras, but does not admit
elimination of quantifiers. From the model completeness of this theory we
deduce a Nullstellensatz-like theorem for Cayley-Dickson algebras. We
have been unable to find in the literature an algebraic proof of this same
result.

Presently we will present an axiom system for Cayley-Dickson
algebras. We are aided in our attempt by the very strong theorems that
have been proved about alternative rings. In particular, we know that the
only simple alternative nonassociative rings are CD algebras. Unfortu-
nately, in general the property of being a simple ring is not axiomatizable
[3].

In the axiomatization to follow, we are guided by the above characteri-
zation of CD algebras and we replace the property of being simple by other
axiomatizable properties that imply simplicity in this case. More specif-
cally, we require our ring to be semisimple (that isy its Jacobson radical
is zero. The Jacobson radical of an alternative ring is that ring's maximal
quasi-regular ideal. A detailed discussion of the Jacobson radical may be
found in section 3), and an algebra no more than 8-dimensional over its
center. We also require its center to be a field. In [32] Slater proved that
any semisimple ring satisfying the descending chain condition on right
ideals is a finite direct sum of simple associative rings and Cayley-
Dickson algebras. Since any finite dimensional algebra satisfies the
descending chain condition on right ideals, our ring has this property.
By requiring our ring to be nonassociative, it forces at least one summand
to be a CD algebra. By dimension counting, since a CD algebra is exactly



220 BRUCE I. ROSE

8-dimensional over its center and its center is contained in the center of
our ring, our ring is a CD algebra.

Another difficulty that we have is that the radical of an alternative ring
is not a priori definable. (We discuss this problem in section 3.) However,
in a finite dimensional algebra, the radical is nilpotent [29]. (An ideal is
nilpotent if there exists an integer n such that the product of any n
elements, associated in any manner, is zero.) In a non-zero nilpotent ideal
there exists a non-zero element, say x, such that for any element y of the
ring (xy)2 = 0 (Artin's Theorem is used here). Since CD algebras contain
no non-zero elements with this property, we may require that such bad
elements do not exist and thus force our ring to be semisimple. These
ideas can be put together to axiomatize the class of CD algebras. To obtain
axioms for split CD algebras, we require the existence of non-zero
elements whose product is zero. More concretely, consider the following
sentences.

Let φγ be the conjunction of axioms for the theory of rings (except for
the associative law). (We note that this may be written as a universal-
existential sentence.) Let φ2 be the sentence

^xι

λix23xz3xA3xb{{xιxι)x2 = x^x^) Λ {xιx2)x2 = ̂ 1(̂ 2^2) * (#3*4)^5 * #3(^4*5))

φ2 forces a ring to be alternative but not associative. Let ψ(x) be the
formula Vy(xy = yx). The center of an arbitrary alternative ring is defined
to be the set of elements which both commutes and associates (left, middle,
and right) with every element of the ring. However, the properties
postulated for the set ψ(x) are sufficient to force R to be a CD algebra.
This in turn justifies our referring to the set ψ(R) as the center of
R [27:48]. Let φ3 be the sentence

VxVz3y(lψ(x) vlψ(z) VΛΓ = 0 v xy = z).

φ3 enables us to deduce that the center of our ring is a field.
Let φA be the sentence: 3X(Ψ(X)Λ X Φ 0). The sentence φ4 states that

the center of our ring is not zero. Let φ5 be the sentence

Vx,Vx2 . . . Vx93yi . . . 33>9[( A ψ ^ J A [^V y . Φ o j A | ^ έ yiXi = Oj j .

φ5 states that the ring has dimension at most eight over its center. Let φ6

be the sentence

Vx3y{x = 0v(#;y)2 Φ 0).

As explained above, the role of φ6 is to ensure semisimplicity. Let φr be
the conjunction of the φi9 i = 1, . . ., 6. Let φΊ be the sentence

3x3y(x i0*yi0*xy=0).

φ7 keeps a ring from being a division algebra.
Finally, let φ be φr Aψ7. We have already argued,

Theorem 2.1 If R is a structure in the language of rings, then R\=φ if and
only ifR is a split Cayley-Dickson algebra over its center. Further R \=φf

if and only ifR is a Cayley-Dickson algebra over its center.
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The notion of the relatiυization of one formula by another is well-
known [5]. Relativization by a formula ψ(x) with one free variable is
defined on all formulas in the following recursive way. If ψ is atomic then
the relativization of φ by ψ, φΦ, is <p; (φvθ)φ = φφvθφ\ {φ*θf = φΦ ΛΘ Ψ ;
(ηφf = iφ*; (Vxφf = Vx(ψ(x) - φΦ); and (3xφf = 3x(ψ(x)AφΦ).

Let ψ(x) be the formula Vy{xy = yx). If T is a theory of fields, let Tφ

denote the collection of sentences in T relativized by ψ. φr u TΦ (φ U TΦ) is
a theory whose models are (split) Cayley-Dickson algebras over fields that
satisfy the axiom set T.

As the split Cayley-Dickson algebra construction preserves various
model theoretic properties, this approach to axiomatizing theories of split
CD algebras enables us to find new "natural" theories that are axiomatiz-
able and have desirable model theoretic properties. As an example, we
will show that if T is a complete theory of fields, then ψ U Tφ is a complete
theory of split CD algebras. (A theory T is complete if for any A and B,
models of T, A is elementarily equivalent to B.) We require the following
results: Let SCD(F) denote the split CD algebra over the field F. Recall
that the split CD algebra over any field is unique to within isomorphism
[29; 52]. See [5] for the definition of an ultrapower.

Lemma 2.1 The functor SCD commutes with taking ultrapowers, i.e., if D
is an ultrafilter on I, then SCD(FVD)^ SCD(F)VD.

Proof: Let R= SCD(FVD) and S= SCD(F)VD. By Los's Theorem [5] and
Theorem 2.1, S is a split CD algebra. Los's Theorem may also be used to
show that the center of both R and S is the field F !/D. By the uniqueness of
a split CD algebra over a given field we have the desired isomorphism.

Theorem 2.A (Keisler and Shelah [5]) Two structures are elementarily
equivalent if and only if they have isomorphic ultrapowers.

Theorem 2.2 Let T be a theory of fields. T is complete if and only if
φ U TΦ is complete.

Proof: Since any model F of T may be extended to a model R of φ U TΦ

such that F is the center of R, if φ U TΦ is a complete theory, then so is T.
Conversely, if T is complete, let R and S be models of φ U TΦ. The

centers of R and S, say F and G respectively, as models of T are
elementarily equivalent. By Theorem 2.A there is some ultrafilter D such
that F !/D ̂  GVD. This isomorphism may be extended so that SCD(F!/D) «
SCD(GVD). An application of Lemma 2.1 allows us to conclude that
SCD(F)VD C* SCD(G)7D. Theorem 2.A implies that SCD(F) is elementarily
equivalent to SCD(G). Since split CD algebras over a given field are unique
we have R ^ SCD(F) and S=* SCD(G). In particular, R is elementarily
equivalent to S, entailing the completeness of the theory φ U TΦ.

In the remainder of this section we will be concerned with split CD
algebras over algebraically closed fields. Let ACF denote the theory of
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algebraically closed fields and let ACFn denote ACF of characteristic n.
Since ACFn is complete and recursively axiomatizable [28], by Theorem 2.2
we know that the theory of split CD algebras over models of ACFn is
complete and we have a recursive axiomatization of it. It is also well-
known that ACFn is Ni-categorical. The following Theorem is central to
our interest in split CD algebras and will play a role in the results of
section 3.

Theorem 2.3 The theory- of split Cayley-Dickson algebras over an alge-
braically closed field of characteristic n is ^-categorical.

Proof: Let R and S be models of φ U ACF% of cardinality tf1# The centers
of R and S are algebraically closed fields of cardinality Nx and hence
isomorphic. As split CD algebras over a given field are unique, this
isomorphism may be extended to one between R and S.

A theory T is model complete if whenever R and S are models of T and
R c S, then S is an elementary extension of R. We next prove that the
theory of split CD algebras over a model of ACF is model complete. A
formula is universal-existential if it is of the form—V#i . . . Vx^yγ . . .
^ymψ, where ψ is quantifier-free. A theory T is universal-existential if
each of its sentences is equivalent in T to a universal-existential sentence.
In [16] Lindstrδm proved that an fc^-categorical universal-existential theory
is model complete. Thus to show that Tr = φ u ACFφ is model complete, it
suffices to find a universal-existential axiomatization for Tr.

We will use the following notion in obtaining our universal-existential
axiomatization. Let R be a split CD algebra. Consider the subset of R,
C = {e{j, βij v: i, j = 1, 2}. We will call C an SCD set if the elements of C
are distinct and have the following multiplication in R, where δjk is the
Kronecker delta:

eijCki = δjkeu

(veif)ekι = δu\ιek] .

ί
-δβveu ,ifiΦ j

δ2feve2/, if i = j = 1

διkyeu, if i = j = 2.

I -δijβki, Hi *3
δ/2^2, if i = j = 1
δnekl, if i = j = 2.

We will see that if C is any SCD set contained in R, then C generates R
as a vector space over the center of R, F. By computation that is built into
the multiplication table that C satisfies, the subalgebra generated by C over
F is isomorphic in the obvious way to F2 + vF2 (as in section 1) where F2 is
the 2 x 2 matrix ring over F and multiplication in F2 + vF2 is given by (1.2).
In particular, C is linearly independent over F. Thus since C contains
8 elements and R is 8-dimensional over F, C generates R as a vector space
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over F. As this is true for any SCD set, an element is in the center of R if
and only if it commutes with all of the elements in some SCD set.

We use this fact to get a universal-existential axiomatization of split
CD algebras. Let ψ'(y; "y^ , w) be a quantifier-free formula which says that
{y{j, uiyij} is a Cayley-Dickson set and that y commutes with each element
in it. Let φ{ be the sentence

/ 9 \

BxΞβij ΞviAψr(x; i ί ; , υ) A X Φ O) .
\κ-l /

φ[ is equivalent to φ4 in a split CD algebra but is universal-existential.
Similarly let φ[ be the sentence

Vxk3yk3e{j 3v\^β ψ<(yk; *.., z;)J A |^V yk Φ Oj A ̂ έ yk*k = Oj J .

The sentences φ{, i = 1, . . ., 7 with φ{ and φ[ replacing φ4 and φ5 are a
universal-existential axiomatization of split CD algebras. These sentences
together with the sentences:

Vy,... VytBxΞeijBυ^λψHyn eiJ9 v) - ψ'(x; eίJ9 v) A (xn + y^sΓ1^... +yn = O)J

for each n> 0, are a universal-existential axiomatization for the theory of
split CD algebras over an algebraically closed field. We have shown

Theorem 2.4 The theory of split Cayley-Dickson algebras over an alge-
braically closed field is model complete.

We could have initially developed the idea of a SCD set to axiomatize
split CD algebras. The major disadvantage to this approach is that our
proof of the model completeness of φ U ACF^ would not work.

A notable application of model theory to algebra has been to use the
model completeness of algebraically closed fields to prove Hubert's
Nullstellensatz. We prove a similar theorem here. In this situation,
however, we know of no algebraic proof of the same result. We first
require the following lemma.

Lemma 2.2 If R is a CD algebra over an algebraically closed field then R
is a split CD algebra.

Proof: Let F be the algebraically closed field which is the center of R. If
R is not a split CD algebra then R is a CD division algebra. Consider the
subalgebra G of R generated by any non-central element over F. By
Artin's Theorem, G is associative. Since R is finite dimensional over F
and since R is a division ring, G is a division ring. As G was generated
over R by one element, G is commutative. In summary, G is a finite
dimensional field extension of F. Since F is algebraically closed, this
implies that R = F - a contradiction.

Lemma 2.3 TfR and S are Cayley-Dickson algebras and R is contained in
S, then the center of R is contained in the center of S.
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Proof: If R is a split CD algebra then R contains a SCD set C. The center
of a split CD algebra is the subset which commutes with any SCD set
contained in it. The set C is also a SCD set for S. Thus the center of R is
contained in the center of S.

Suppose now that R is a CD division algebra. Let F be the center of R
and G be the center of S. Let x and y be elements of R which do not
commute. Let D be the subalgebra of S generated by F, G, x, and y. By
Artin's Theorem, D is an associative noncommutative subring of S. Since
x and y are elements of R and R is a finite-dimensional division algebra, D
contains no zero-divisors and all non-zero elements of D have inverses in
D. Necessarily, D is an associative division ring. The center of D is the
subfield of S generated by F and G, FG. The dimension of a finite-
dimensional division algebra over its center is a square [11; 96]. Since the
dimension of S over G is 8, the dimension of D over FG must be 4. By
similar dimension counting, FG = G. That is, the center of R is contained
in the center of S.

Corollary 1 Let R be a Cay ley-Dicks on algebra over F. Let P be a finite
set of polynomial equations and inequations over R in d variables. P has a
solution in some Cay ley-Dicks on algebra containing R if and only if P has a
solution in the split Cayley-Dicks on algebra over the algebraic closure
ofY.

Proof: The property of P having a solution is expressible by some
sentence θ of the form 3xγ . . . 3xdψ, where ψ is a quantifier-free formula
in the language of ring theory. Suppose that θ holds in some CD algebra S
containing R. Let G be the center of S and let G be the algebraic closure of
the field G. Let Sf be the tensor product of S and G over G. Sf is an
8-dimensional algebra over its center G. Since Sf is an alternative ring but
is not associative, Sf must be a CD algebra [32]. By Lemma 2.2 we
conclude that Sf is a split CD algebra since G is an algebraically closed
field. Further, by the construction of Sf, S is naturally contained in Sf.

Let R' be the split CD algebra over F, the algebraic closure of F.
ACFn has the joint embedding property since it is a complete theory; that
is, if A and B are algebraically closed fields of characteristic n, then there
is an algebraically closed field of characteristic n containing both of them.
Since RC S are CD algebras and hence simple rings, R and S have the
same characteristic. In particular, F and G are algebraically closed fields
of the same characteristic. Let H be an algebraically closed field con-
taining both F and G. Let T be the split CD algebra over H. Construct
maps from Rf and S; into Tf by mapping a basis for Rr and a basis for Sf

onto a basis for T\
Since θ is an existential sentence holding in S, θ also holds in Tf since

T ' ^ S ' ^ S . Since the theory of split CD algebras over an algebraically
closed field is model complete (by Theorem 2.4), R', under the mapping
above, is an elementary substructure of T f. In particular, θ must hold in
R'. Thus P has a solution in the split CD algebra over the algebraic
closure of F.
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By a result of Slater's [34] we may weaken the hypothesis of Corollary
1 to consider polynomials over prime alternative nonassociative rings
(characteristic Φ 3). (Also see [46].) Our conclusion would then be that P
has a solution in some prime alternative not associative ring containing R
if and only if it has a solution in the split CD algebra over the algebraic
closure of the field of quotients of the center of R.

Let T and T* be theories in the same language. 7" is called the model
completion of T if the following conditions are satisfied:

(1) Any model of T' is a model of T.
(2) Any model of T may be extended to a model of Tτ.
(3) If A is a model of T, and B and C are models of Tf containing A, then
there exists a model D of T", elementary monomorphisms / andg* such that
the following diagram commutes:

(2.1) A ^ D

Corollary 2 The theory of split Cay ley -Dick son algebras over an alge-
braically closed field is the model completion of the theory of Cayley-
Dickson algebras.

Proof: Condition (1) follows since any split CD algebra over an alge-
braically closed field is, a fortiori, a CD algebra. Condition (2) follows
since, as shown in the proof of Corollary 1, the tensor product*of any CD
algebra with the algebraic closure of its center is a split CD algebra over
an algebraically closed field.

To see that condition (3) is satisfied, let T be the theory of CD
algebras and let T* be the theory of split CD algebras over an algebraically
closed field. By Lemma 2.3, if A is a model of T and B and C are models
of Tr containing A, then the center of A is contained in the centers of B and
C. Let F, G, and H be the centers of A, B, and C respectively. As models
of T', B, and C have centers that are algebraically closed fields. Since the
theory of algebraically closed fields is the model completion of the theory
of fields and F is a field contained in the algebraically closed fields G and
H, there exists an algebraically closed field and elementary mono-
morphisms / and g such that the diagram as in (2.1) commutes.

Let R = K2 + vK2 be the standard split CD algebras over K. The
matrix units of K2 and v give us a SCD set for R. Pick any SCD set in A.
The image of this SCD set in B and C is an SCD set and generates B and C
over their centers. Extend the maps / and g from G and H into K to maps
/ ' , g' from B and C into R by mapping a SCD set of A contained in B and C
to the given SCD set in R. The maps / ' and g1 are then monomorphisms
from B and C into R. Since, B, C, and R models of the theory of split CD
algebras over an algebraically closed field and this theory is model
complete by Theorem 2.4, / ' andg*' are elementary monomorphisms.
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A theory T admits elimination of quantifiers if in T every formula in
the language of T is equivalent to a formula without quantifiers. At times,
being a model completion can be used to show that a theory admits elimina-
tion of quantifiers [28]. We will show that the theory T of split CD algebras
over an algebraically closed field does not admit elimination of quantifiers.
We will do this by showing that T is not substructure complete, a property
equivalent to admitting elimination of quantifiers [28]. A theory T of rings
is substructure complete if whenever B and C are models of T and A is a
subring contained in both B and C, then there exists a model D of T, a
monomorphism /, and an elementary monomorphism g such that the
following diagram commutes.

(2.2) A ^ J^D

We proceed by showing that the theory of 2 x 2 matrix rings over an
algebraically closed field is not substructure complete. Since any split CD
algebra over F is isomorphic to F2 + vF2 as in section 1, our proof may be
easily adapted to show that the theory of split CD algebras over an
algebraically closed field is not substructure complete. Let A be the
algebraically closed field F. Let B and C be 2 x 2 matrix rings over F.
Consider A contained in B in standard way as the set of scalar matrices
over F. Consider A contained in C as the subring generated over F by the
matrix unit e11# For no ring D can we obtain a commuting diagram as in
(2.2). We have:

Theorem 2.5 The theory of split Cay ley-Dicks on algebras over an
algebraically closed field does not admit elimination of quantifiers.

A theory T is called universal if every sentence in T is equivalent in T
to a sentence of the form Vxi . . . Vxnφ where φ is quantifier-free. A
result due to Los and Tarski is that a theory is universal if and only if all
substructures of models of T are models of T [28]. From this it is
immediate that the theory of split CD algebras is not universal. We may
also obtain this result as a corollary of Theorems 2.4 and 2.5 without using
the Los-Tarski result. Instead, we apply a theorem due to Robinson
[28; 67]:

The model completion of a universal theory admits elimination of quanti-

fiers.

To conclude this section we remark that many of the results proved
here are also true for the theory of matrix rings over fields. In particular,
the theory of an «xw matrix ring over an algebraically closed field is
complete (characteristic m), Ni-categorical (characteristic m), model
complete, the model completion of the theory of wx w matrices over a field,
and does not admit elimination of quantifiers (n> 1). The proof of these
facts is somewhat easier than for split Cayley-Dickson algebras since one
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can prove the model completeness of this theory using algebraic facts
without resorting to Lindstr'όm's Theorem.

3 Structure theory for stable rings The core of this section is our
proof of the following two results.

(1) If R is stable and J(R) is the Jacobson radical of R, then J(R) is
definable in first order logic.
(2) If R is stable, then R/J(R) has the descending chain condition on right
and left ideals.

The nonassociativity of R adds considerable difficulties to the proof of
(2) not present in the associative case [4, 6, 9, and 41]. Unlike the
associative case in which principal right ideals are definable by a first
order formula, in an alternative ring it is difficult to construct right ideals.
(For example, in the split Cayley-Dickson algebra R = F 2 + v F 2 , the
principal right ideal generated by any non-zero element of R equals R.
However, if e i 2 is a matrix unit in F2, then ve12/e12R.) In order to
construct the right ideals that we will need, we require much algebra.
Also, our approach in examining the Jacobson radical involves showing that
a stable alternative ring is a Zorn ring. We use this algebraic consequence
of stability in defining the Jacobson radical of a stable ring (the defining
formula is dependent on the ring). Our proof of the fact that a stable ring
is a Zorn ring (and hence of statement [l]) is intertwined with our proof of
statement (2). Together statements (1) and (2) yield a structure theorem
for stable alternative rings. We then proceed to explore Ni-categorical and
co-stable rings. We deduce that any infinite ^i-categorical alternative
division ring is an algebraically closed field. This extends the result of
Macintyre and Shelah that an infinite Ni-categorical associative division
ring is an algebraically closed field.

Continuing in this vein we then show that an infinite nonassociative
simple ring is fc^-categorical if and only if it is ω -stable if and only if it is
a split Cayley-Dickson algebra over an algebraically closed field. This fact
and statement (2) enable us to completely describe the class of semisimple
tfi-categorical rings. In this section we will use the following characteriza-
tion of stability, due to Shelah [31].

Theorem 3.A A first order theory T is unstable (i.e., T is not stable) if
and only if there is a formula φ(x; yu . . ., yk), a model A of T, elements
b0, & ! , . . . of A, and k-ary sequences ά0, aΊ, . . . of Ak such that

A f= φ(bn; aj) if and only if j > n.

We will begin the work of this section by deducing some information
about the Jacobson radical of a stable ring. Before doing this we present
some relevant definitions and show how the Jacobson radical of an alterna-
tive ring differs from the Jacobson radical of an associative ring.

Let r(β) denote the principal right ideal generated by an element a
in R. We note that r(α) consists of the totality of elements of R of the form
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ia +Σ)αU/, where i is a non-negative integer and each U7 is a product of a
product of a finite number of right multiplications, Rx: a N> ax. Because of
the nonassociativity of R, x{a) is generally not definable by a formula in
first order logic. An element a in R is called right quasi-regular, if there
is an element b in R (its right quasi-inverse) such that a + b + ab = 0. We
define the Jacobson (Jacobson-Kleinfeld-Smiley) radical of an alternative
ring R to be the maximal ideal, J(R), such that ae J(R) implies that each
element of r(a) is right quasi-regular. J(R) exists for any ring R and
contains all of the elements of R that generate right quasi-regular right
ideals [36]. A ring is semisimple if J(R) = (0). By the work of Zhevlakov
[38, 40, and 41], it is equivalent to define J(R) as the intersection of the
regular maximal right ideals of R. (A right ideal I of R is regular if there
exists an element e in R such that x - ex el for all x in R. In a ring with
identity every right ideal is regular.)

Thus, the definitions of the Jacobson radical of associative and
alternative rings are identical—in English (or higher order logic). In
contrast, although the Jacobson radical of an associative ring is easily
seen to be definable by the simple first order formula: Vy3z(xy + z +
xyz = 0), the radical of an alternative ring is not a priori first order
definable. From the definition of the radical of an alternative ring we can
however, describe a countable set of formulas that is satisfied only by
elements in the radical. This set consists of all formulas Ψi,j,ni,...,nk(%)'

k

VyVxu . . . V#1W1V#21 . . .Vxknk 3z (y = x + . . . + x + Σ ((xxuj . . .)xini

—* y + z + yz = 0).

As we will refer to this result in a later section, we label it as a theorem.

Theorem 3.1 There is a countable set of formulas of first order logic
{Ψi}i€ωsuch that given any alternative ringR and ae R: ae J(R) if and only if
R f= ψi {a) for all i e ω.

We require additional definitions. A right ideal I is nil provided each
element a el is nilpotent) that is, there is an integer n = n(a) such that
an - 0. A right ideal I is nilpotent provided there is an integer n such that
any product of n elements of I in any association is equal to zero. A
nilpotent right ideal is nil, but the converse is not true. J(R) contains all
nil and hence nilpotent right ideals of R [36]. A ring is locally nilpotent
provided any finite subset of the ring generates a nilpotent subring. An
element aeR is (right) properly nilpotent provided for all reR, ar is
nilpotent. It is an open question due to Zorn (equivalent to the Kδthe
conjecture) as to whether the set of properly nilpotent elements of a ring is
an ideal of that ring. (Later in this section we settle this question for the
class of stable rings.) We may now prove:

Theorem 3.2 IfR is stable, then J(R) is nil of bounded index, that is, there
is an integer n such that for all x in J(R), xn= 0. J(R) is also locally
nilpotent.
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Proof: Let xe J(R). Let en = x*, i = 1, 2, . . ., and let φ(z; y) be the formula
3w(y = zwΛy Φ z). Clearly R\=φ(an; cij) if j < n. Since R is stable, by
Theorem 3.A, the converse to this statement is false. Hence there exist
j < n such that R h ψ(an\ aj). That is for some w in R, we have

(3.1) xj = xnw = (xjxn'j)w.

By Artin's Theorem any two elements of an alternative ring generate
an associative subring. This and the fact that J(R) is a right ideal enable
us to rewrite (3.1) as xj =x*y, where ye J(R). In an alternative ring this
situation is impossible unless xJ = 0. To see this, assume that R has a
unity element. (If R has no unity, we may adjoin one in the standard
manner since this construction preserves Jacobson radicals [20; 8].) Let
v be the right quasi-inverse of -y, i.e., -y + υ - yυ = 0. Observe that in an
alternative ring with unity, the identity (xy)y~ι = x{yy~ι) holds [29, 38].
Then 0 = xj{\ - y) = [x\\ - y)] (1 + v) = xj[{l - y)(l + v)] = xK We have shown
that any element in the radical of a stable ring must be nilpotent.

To see that elements of J(R) are nilpotent of bounded index, assume
that this is not the case. Our argument here goes back to [6]. For each
integer n there exists an element xe J(R) such that xn Φ 0. Let a be a new
constant symbol. Let B be the infinite set of sentences that say that every
element in the principal right ideal generated by a, r(a), is right quasi-
regular. Let T be set of sentences Th(R) u B U {an Φ θ\n = 1, 2, . . .}. T is
a consistent set of sentences since it is finitely satisfiable in R. Thus by
the Compactness Theorem, T has a model, S. S, restricted to the language
of ring theory, is elementarily equivalent to R, and thus is a stable ring.
By construction, J(S) contains an element which is not nilpotent, contra-
dicting the first part of this theorem. Thus J(R) is nil of bounded index.
J(R) is locally nilpotent by a theorem [22] which says that an alternative nil
ring of bounded index is locally nilpotent. Using compactness arguments
like the above we could further conclude that there is a function, /, on the
natural numbers such that any n elements of J(R) generate a nilpotent
subring with index of nilpotence bounded by f(n).

Eventually we will demonstrate that in a stable ring the radical is
definable. More specifically, we will show that given a stable ring R, there
exists an integer n such that J(R) is the set of elements picked out by the
formula Vy((xy)n = 0). We will do this by showing that a stable ring is a
Zorn ring and then applying a theorem about the radical of a Zorn ring.
A Zorn ring is a ring in which every element is either nilpotent or divides
an idempotent. (An element e is idempotent if e2 = e.) As alluded to in the
introduction to this section, we obtain this information through (or with) our
proof of the fact that a semisimple stable ring has the descending chain
condition.

We now move closer to the proofs of these theorems as we prove the
following lemma which enables us to make algebraic applications of the
model theoretic concept—stability. We need a definition to make the lemma
understandable. We will say that a theory T has the ascending [descending}
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chain condition on uniformly definable subsets: if given any formula
Ψ(#;3>u . ,yn) and any model R of T, there does not exist an infinite
sequence of n-tuples of R, ά,-, such that for all i:

(3.2) R\=Vx(ψ(x; Έ{) - ψ(x; ai+ι)) A 3y(lψ(y; άi)*Ψ(y; «, +i))
(3.3) [RhV*(ψ(#; α, ) — ψ(*; άi+1) A 3y(ψ(y; a^Alψiy; άi+1))].

This merely says that in a model of such a theory there are no properly
infinite chains of uniformly definable subsets. For example, in an
associative ring whose theory has this property there are no infinitely
descending chains of principal right ideals since a principal right ideal, αR,
is definable by the formula 3y(x = ay).

Lemma 3.1 If R is a stable ring, then Th(R) has both the ascending and
descending chain condition on uniformly definable subsets.

Proof: Assume to the contrary that there is some formula ψ(x; y), some
ring S N Th(R) and tuples ai9 i = 1, 2, . . . in S such that for all i, (3.2) with
S replacing R, holds. Let ψ(S; a~ϊ) denote the set of b e S such that
S\=ψ(b; aϊ). By assumption we have the infinite properly ascending chain
ψ(S; a~i) c ψ(S; a2) c . . .. Let b> e ψ(S; ai+ιf\ψ(S; a{). Combining this in-
formation, Sf=ψ(δ;, α; ) if and only if i > j . By Theorem 3.A this contradicts
the fact that R is a stable ring.

From this argument we may also conclude that Th(R) satisfies the
descending chain condition on uniformly definable subsets. This is because
one can show by a standard compactness argument that if a structure R
does not have the descending chain condition on uniformly definable
subsets, then there is a structure elementarily equivalent to it that does not
have the ascending chain condition on uniformly definable subsets. Since
this lemma will be applied frequently, some further comments on it will be
useful. In the course of this paper we will be concerned with right ideals
defined by the formulas,

Ψi(#; 3>i> 3*2): 3z(x = {ytfz - y2yό4z),
ψ2(x; y): 3z(x = yz),

Ψ3(χ; y): (yχ= 0).

Usually we will be concerned with the right ideals picked out by ψ{ (x; ~y)
when the parameters y are restricted to some subset of our ring (for
example, we might only be concerned with parameters chosen from some
given right ideal). We will want to know that in this situation, for example,
minimal subsets of this form exist. Since chains of uniformly definable
subsets with parameters chosen freely from the ring in question can only
be of finite length, a fortiori chains of subsets obtained by that formula with
parameters restricted to some subset of the ring can only be finite in
length. In this way we conclude that minimal elements of our set of
uniformly defined subsets with restricted parameters, exist. We also need
the following algebraic lemmas. The proofs involve primitive rings. As in
the associative case, a ring is primitive if it contains a maximal regular
right ideal containing no non-zero two-sided ideal [14].
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Lemma 3.2 Let R be a semisimple ring. If {xy - xy)4 = 0 for all x and y in
R, then R is associative.

Proof: We first show that this condition forces R to be commutative and
then show that any commutative semisimple ring is associative. By
Theorem 4.1 (a result of Herstein, Kaplansky, and Kleinfeld) of [15], in an
alternative ring R in which (xy - yx)4 = 0 for all x and y, the nilpotent
elements form an ideal. Since any nil ideal is contained in the radical of R
which is (0) and since xy - yx is nilpotent for all x and y in R, xy = yx for
all x and 3; in R. Thus R is commutative. Since R is semisimple, R is a
subdirect sum of primitive rings each of which is a homomorphic image of
R [14]. As an homomorphic image of R, each subdirect summand is com-
mutative. By [14], a primitive nonassociative alternative ring is a Cayley-
Dickson algebra. Since CD algebras are not commutative, each subdirect
summand of R must be associative. As a subdirect sum of associative
rings, R is associative.

We require a few new definitions. The nucleus of a ring R, N(R), is the
set of elements of R which associate with all pairs of elements of R: N(R) =
{x: VyVz((xy)z = x(yz))}. A nuclear element of R is an element in the
nucleus of R. Because of identities true in alternative rings [29], if
αeN(R), then (ya)z = y(ax) and (yz)a = y(za) for all y and z in R. The
following lemma is essentially Lemma 6.7 of [34].

Lemma 3.3 If R is an alternative semisimple ring and A is a non-zero
right ideal of R, then either A contains a non-zero right ideal B of R such
that B c N(R) or A contains a non-zero two-sided ideal of R.

Theorem 3.3 Let R be a stable alternative ring. Let R = R/J(R). If A is a
right ideal of R and is not nil, then A, the image of A in R, contains a
nuclear idempotent.

Proof: Let (x, y) denote the commutator of the elements x and 3;: (x, y) =
xy - yz. In an alternative ring, the fourth power of any commutator lies in
the nucleus of that ring [15]. Thus the subsets of R defined by the formula
ψi(x; aί9 a2): (aγa2 - a2aι)4x, for aγ and a2 parameters from R, are right
ideals of R. Let V = {(al9 a2)

AR\ au a2e A and (al9 ά2)
4R Φ (0)}. If V is non-

empty, then V is a collection of right ideals contained in A and not
contained in J(R). By Lemma 3.1 and the discussion following it, V has
minimal elements. Let B be a minimal element of V if V is non-empty and
let B = A otherwise. By construction, B Φ (0). If B is a minimal right ideal
of R, then Έ contains a nuclear idempotent [35; 449]. Since B c A, in this
case we are done.

Consider the remaining case in which B is not a minimal right ideal of
R. Then there exists a right ideal Bf Φ (0), properly contained in B. Our
objective will be to find a non-zero righ^ ideal B" which is contained both in
Bf and in N(R). By Lemma 3.3, either Bf contains a non-zero right ideal of
R which is contained in N(R); this is a suitable B", or Bf contains a
non-zero two-sided ideal of R. Let B'f denote this two-sided ideal. We
proceed to show that B" is nuclear. By our choice of B, for any al9 a2 in
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B", (aly a2)
4R = (0). This implies that (al9 a2)* generates a nil right ideal in

R. The semisimplicity of R forces (al9 a2Ϋ = 0 for all aγ and a2 in B". As a
two-sided ideal in a semisimple ring, B" is semisimple [40]. These
conditions on B" imply that B" is an associative ring by Lemma 3.2. Recall
that N(S) is the nucleus of the ring S. Slater [33] proved that if S is a
two-sided ideal_of a_semisimple ring R, then N(S) = S Π N(R). Since B" is
associative, N(B") = B". Slater's result then implies that B" c N(R). We
have shown that if B is not a minimal right ideal of R, then there exists a
right ideal B" contained in the nucleus of R. These nuclear elements of B"
will provide a plentiful source of definable right ideals contained in A.

Let V = {bR: be B" and bR Φ (0)}. The elements of V' are uniformly
defined by the formula ψ2(x; b): 3z(x = bz). By Lemma 3.1 since R is
stable, Vf has minimal elements. Let b0R be such a minimal element.
Since δoeN(R), b0R is a_non-zero right ideal of R. To see that_δ0R is a
minimal right ideal of_R, let C be a right ideal contained in b0R and let
~c Φ 0 be an element of C. By our choice of b0R, since c is an element of B"
and since c R C C C b0R, either cR = (0) or cR = b0R. By arguments similar
to ones given earlier, since R contains no non-zero nil right ideals,
cR*(0). Thus cR = b0R which implies that C = δ0R. Hence b0R is a
minimal right ideal of R. As before, we resort to [35; 449] in order to find
a nuclear idempotent in b0R

 c A.

Theorem 3.4 Let R be a stable ring and A be a right ideal ofR. Let A
denote the image of A in R = R/J(R). A is generated as a principal right
ideal in R by a nuclear idempotent.

Proof: The proof of this theorem mirrors that of 1.4.2 in [11]. If A is nil
then A = (0) and there is nothing to prove. If A is not nil, then by Theorem
3.3, A contains a non-zero nuclear idempotent, e. Let Ann(β) be the set
{xeR: ex - θ}. Let V be the collection of sets-{Ann(^): ~e is a non-zero
nuclear idempotent contained in A}.

Elements of V are definable by the formula ψ3(x; e): ex = 0. Since R is
stable, by Lemma 3.1, V has minimal elements. Let Ann(e0) be a minimal
element of V. If Ann( 0̂) Π A = Ann(e0) Π A = (0), then since for any xe A;
eo(x - eox) = 0, x - eQxe Ann( 0̂) Π A= (0). We then have x = eox for all x in
A. This implies that A = e0A c e0R c A or A = e0R as desired. If Ann(e0) Π
A Φ (0), then Ann(^0)ίΊA is not a nil right ideal and by Theorem 3.3
contains a non-zero nuclear idempotent, eγ. As in the proof of Theorem
1.4.2 in [11] one can show that ~e* = ~e0 + ~ex - ~e^eQ is a non-zero nuclear
idempotent in A such that Ann(#*) is properly contained in Ann(^0),
contradicting the minimality of Ann(β0).

Corollary Let R be a stable ring and let R = R/J(R).

(a) If A is a two-sided ideal of R, then A = eR = Re where e is a nuclear
idempotent in the center of R.
(b) If R Φ (0), then R has a unity element.

Proof: The proof of these statements is identical to the standard proof for
associative semisimple Artinian rings [11; 30].
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We now arrive at the main theorem of this section.

Theorem 3.5 Let R be a stable ring. R = R/J(R) satisfies the ascending
and descending chain condition on left and right ideals.

Proof: By Theorem 3.4, each right ideal of R is of the form eR, where e is
a nuclear idempotent of R. By Lemma 3.1, R satisfies the ascending and
descending chain condition on uniformly defined subsets of R. In particular
R satisfies the ascending and descending chain condition on the set
\/= {eR\e is a non-zero nuclear idempotent}. Thus any ascending or
descending chain of right ideals of R must be finite. The corresponding
chain conditions on left ideals follow mutatis mutandis.

Before stating the various corollaries to this theorem, we will now
show that the radical of a given stable ring is definable in first order logic.
We do this here as it will permit us to derive significantly stronger
corollaries than otherwise possible. We need the following lemma.

Lemma 3.4 Let R be an alternative ring and suppose for some ae R, a2-a
is nilpotent. If a is not nilpotent y then there is some polynomial q(x) with
integer coefficients such that e - aq(a) is a non-zero idempotent.

Proof: For associative rings this is Lemma 1.3.2 of [11]. The proof in [11]
uses only the power associativity of R and thus by Artin's Theorem holds
for alternative rings.

Theorem 3.6 If R is a stable ring then J(R) is the set of properly nilpotent
elements o/R.

Proof: We will show that any stable ring is a Zorn ring. In a Zorn ring the
radical consists of the ring's properly nilpotent elements [13; 46]. Recall
that a ring is Zorn if given any xeR either x is nilpotent or there exists
ye R such that xy is an idempotent. Since R satisfies the descending chain
condition on right ideals and is semisimple, R = Rx θ . . . θ Rn is a finite
direct sum of its minimal ideals, each of which is a CD algebra over its
center or is a matrix ring over a division ring [32]. By inspection each R,
is a Zorn ring. By the corollary to Theorem 3.4, each R, is generated over
R by a nuclear idempotent in the center of R.

To see that R is Zorn, let xeR. If x is nilpotent, we have nothing to
show. Assume that x is not nilpotent. Let ~x be the image of i in R,
~x = ~xγ + . . . + ~xn where Xi e R, . Since x is not nilpotent and X{Xj = 0 for i Φ j ,
there exists an i such that Xί is not nilpotent. Let e~i be a central nuclear
idempotent generating R, . x~e~i =x~i. Since R{ is a Zorn ring and Xi is not
nilpotent, there exists an element ye Rt such that ~xϊy is an idempotent. Let
~z = e~iy, we have x~z = x(e~iy) = (x~e~i)y = Hcϊy, s ince e~i i s in the nucleus of R.

The hypothesis of Lemma 3.4 is satisfied; (xz)2 - (xz) is nilpotent since the
radical of R is nil and xz is not nilpotent since x~z is idempotent. Thus
there is a polynomial with integer coefficients q(x) such that e = (xz)q(xz) is
an idempotent. Since any two elements of R generate an associative subring
by Artin's Theorem, we may rewrite e = x(zq(xz)). Thus R is a Zorn ring.
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It is probably worth noting that being Zorn does not imply stability.
Any field is Zorn, but it is well known that the field of real numbers is
unstable [28].

We remark that Theorem 3.6 settles an open ring theoretic question
due to Zorn for the class of stable alternative rings. Zorn asked whether
or not the set of properly nilpotent elements of a ring was an ideal of that
ring. This question is equivalent to another famous open question in ring
theory—the Kδthe conjecture (see page 481 of [44]). The Kδthe conjecture
asks whether a ring which has a non-zero nil one-sided ideal must have a
non-zero nil two-sided ideal [11; 21]. We have:

Corollary 1 The Kδthe conjecture holds for the class of stable alternative
rings.

Corollary 2 Let R be a stable ring, then there exists a positive integer n
such that the formula Vy((xy)n = 0) defines the Jacobson radical ofR.

Proof: By Theorem 3.2, J(R) is nil of bounded index. Let n be an integer
such that xe J(R) implies that xn = 0. If xe J(R) then clearly Vx((xy)n = 0).
Conversely, if for all y in R(xy)n = 0, then x is properly nilpotent. By
Theorem 3.6, x is an element of J(R).

Theorem 3.6 together with Theorem 3.5 enable us to deduce structure
theorems for K-stable rings. We require the following lemma whose proof
is a special case of Theorem 1.1 of [6].

Lemma 3.5 Let R be a κ-stable ring and let ψ(x) be a formula with one free
variable (possibly containing parameters from R) such that ψ(R) is an ideal
o/R. Then ψ(R) and R/ψ(R) are K-stable rings.

Theorem 3.7 If R is a κ-stable alternative ring then J(R) is nil and
R = R/J(R) is a finite direct sum R = Rλφ . . . Θ Rnof minimal ideals R;.
Each R* is generated over R by a central nuclear idempotent of R and is
isomorphic to either a Cay ley-Dicks on algebra over a κ-stable field or a
complete m x ni matrix ring over a K-stable associative division ring.

Proof: We again employ Slater's generalization of the classical Wedder-
burn Theorem for Artinian rings [32]. As a semisimple ring satisfying the
descending chain condition on right ideals, R is a finite direct sum of
minimal ideals R,, each of which is a CD algebra over its center or an
associative simple Artinian ring. By the corollary to Theorem 3.4, each R*
is generated by a central nuclear idempotent over R. In particular each R;
is definable by a formula with a parameter from R (By(x=ey)). As a
definable subring of R, each R, is a κ-stable ring (Lemma 3.5). The radical
of Rj is definable, by the preceeding corollary, and thus R* is /c-stable
(again by Lemma 3.5). If R, is a CD algebra, its center is definable and
hence is also /c-stable. Finally, if R* is a matrix ring over an associative
division ring, the division ring is again definable and K-stable.

We will soon specialize this theorem to ω -stable and tti-categorical
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rings. Before we do this, we will obtain some additional information about
ω-stable and ̂ -categorical alternative rings. In [18] Macintyre showed
that the only ω-stable fields were the finite and algebraically closed fields.
Using this and a result of Baldwin's [2], Shelah (unpublished) was able to
show that an fc^-categorical associative division ring had to be a field. (It is
unknown as to whether or not this is also true of ω-stable associative
division rings.) The following theorem and its corollary generalize the
above result of Shelah's.

Theorem 3.8 If R is an ω-stable alternative division ring, then R is
associative.

Proof: In [15] Kleinfeld proved that any alternative division ring is either
associative or a Cayley-Dickson algebra over its center. Assume that R is
not associative, then R is a CD algebra over its center F. Since the center
of R is definable, it is ω-stable by Lemma 3.5. F is a field and thus, by
the result of Macintyre [18] mentioned above, is either finite or alge-
braically closed. F cannot be algebraically closed by Lemma 2.2.

Suppose F is finite. Let x and y be two noncommuting elements of R
(these exist by the definition of a CD algebra). By Artin's Theorem, since
F is the nucleus of R (see section 1), AT and y generate an associative
algebra Q over F. Since R is finite dimensional over F and since R is a
division ring, Q is a division ring. Since F is finite, Q is finite. However,
a finite associative division ring, by the celebrated theorem of Wedderburn
on this subject, is commutative [11]. This is a contradiction.

Corollary If R is an ^-categorical alternative division ring then R is a
finite or algebraically closed field.

It is easy to see that for alternative nonassociative primitive rings the
notions of ω-stability and fc^-categorically coincide. We have:

Theorem 3.9 Let R be an alternative not associative primitive ring. The
following are equivalent:

(1) R is ω-stable.
(2) R is tfi-categorical.
(3) R is a split Cayley-Dickson algebra over a finite or algebraically

closed field.

Proof: By Theorem 2.3 a split CD algebra over an algebraically closed
field is ^-categorical. Since any ^^categorical structure is ω-stable [28]
to prove this proposition it suffices to show that (1) implies (3). In [14]
Kleinfeld showed that an alternative nonassociative primitive ring was a CD
algebra over its center. Since R is ω-stable, so is the center of R (Lemma
3.5). The center of R, being a field, is finite or algebraically closed. By
Theorem 3.8 since R is not associative, R cannot be a division algebra.
Hence R is a split CD algebra over a finite or algegraically closed field.

Theorem 3.10 Let R be an ω-stable ring, then R/J(R) = R = Rx θ . . . φ R B

where R, is a complete m x Πj matrix ring over a ω -stable division ring or
a split Cayley-Dickson algebra over a finite or algebraically closed field.
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Proof: Immediate from Theorems 3.7, 3.8, and 3.9.

Theorem 3.11 Let R be an infinite semisimple ring. R is ^-categorical if
and only ί/R = R i θ . . . θ R « ® S where each R, is a complete matrix ring
or split CD algebra over a finite field and S is a complete matrix ring or a
split CD algebra over an algebraically closed field.

Proof: Since any *Vcategorical structure is ω-stable, by Theorem 3.10
R = Ri ® . . . θ Rβ where each Rf is a split CD algebra or matrix ring over
a field. To prove this theorem, it suffices to show that at most one R, is
infinite.

Assume to the contrary that both Rx and R2 are infinite. Also assume
that R, Ri, and R2 all have cardinality Nlβ Let Rί be a countable ring
elementarily equivalent to R1# If R' = R[ θ R2 θ . . . θ Rw, then Rf is
elementarily equivalent to R by a well-known theorem of Feferman and
Vaught [8]. Since R and Rf have cardinality tf1? they must be isomorphic.
Since the rings Rλ and R[ are matrix rings and split CD algebras over
fields, their unit elements have unique finite decompositions into sums of
primitive (i.e., not the sum of two non-zero orthogonal idempotents) central
orthogonal idempotents. The sum of the primitive central orthogonal
idempotents in the decomposition of each R; is a unique decomposition of
the unity element of R into primitive central orthogonal idempotents.
A similar statement is true for R'. R cannot be isomorphic to Rf since if e
is an idempotent in the decomposition of the unity element of R into
primitive central orthogonal idempotents, it must map to an idempotent,
say /, in the decomposition of the unity element of R' such that the
cardinality of eR is the same as the cardinality of/R.

Note: Recently Dr. Michael Slater alerted me to an article by Kevin
McCrimmon—"A characterization of the Jacobson-Smiley radical" [43]. In
this article Dr. McCrimmon shows that the Jacobson-Smiley radical is
definable by the formula Vy3z(xy +z + (xy)z = 0). (The proof involves
showing that the proper quasi-invertibility of an element is equivalent to
being quasi-invertible in all homotopes. Passage from an alternative
algebra R to the special quadratic Jordan algebra R+ is an important
technique used in the proof.) Corollary 2 to Theorem 3.6 on the definability
of the Jacobson radical of a stable ring (my reason for proving Theorem
3.6) duplicates (and is weaker than) McCrimmon's work.

4 No~categorical alternative rings In this section we obtain results on
the structure of No~categorical alternative rings. We begin by using the
Ryll-Nardzewski Theorem to quickly define and find the structure of the
radical of an No-categorical ring. We then proceed to examine the "nicer"
classes of tf0-categorical alternative rings. We show that an No-categorical
nonassociative alternative primitive ring is a split Cayley-Dickson algebra
over a finite field. Macintyre and Rosenstein categorized the class of
associative No-categorical rings (with unity) without non-zero nilpotent
elements in [19]. We show that the alternative analogue of this class of
rings is associative. We then extend a theorem of Baldwin and Rose [4] to
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alternative rings. We prove that if R is an ^0-categorical alternative ring
of infinite cardinality, then R has neither the ascending or descending chain
condition on right or left ideals. We finish this section by generalizing
another theorem in Baldwin and Rose [4]:

If R is stable and No-categorical {in particular if R is categorical in all
powers), then R/J(R) is finite and J(R) is nil of bounded index.

We begin by presenting our main logical tool in the investigation of
No-categorical rings: The Ryll-Nardzewski Theorem. Let Fn denote all
first order formulas in the language of ring theory with free variables
among xu x2, . . ., xn.

Theorem 4. A (Ryll-Nardzewski) [28] R is No- categorical if and only if for
each integer n there exists finitely many formulas ψu . . . ψkn in Fn such
that every formula of Fn is equivalent to one of them, i.e.,

IK \
R h V#! . . . Vtfn^V ψi(x) *> θ(x)J for any θ in Fw.

The following well-known (cf. [25]) application of the Ryll-Nardzewski
Theorem to associative rings is also true for alternative rings. A proof of
it may be found in [4].

Lemma 4.1 Let R be an No-categorical alternative ring. There is a
function f mapping ω to ω such that every n-generated subring of R has
less thanf{n) elements.

A reformulation of Lemma 4.1 will sometimes be quite useful to us.

Lemma 4.2 Let R be an #0-categorical alternative ring. There exist
integers m, n, and k greater than 1 such that for all x in R, mx = 0 and
xn = 0 or there is some integer 1 < j < k such that x1 = x. In particular R
satisfies the equation p(x) = x"(xh~ι - x) . . . (x2 - x) = 0.

Proof: The first contention follows by applying Lemma 4.1 to 1-generated
subrings. Since any 1-generated subring of an alternative ring is associa-
tive by Artin's Theorem, R satisfies p{x) = 0.

A succinct way of summarizing this information (as pointed out to me
by I. Herstein) is:

IfR is an $o-categorical ring, then there exists an integer q such that for
all xe R; qx = 0 and xq = 0 or xq = x.

For suppose xq = x for some j ^ k. Let r = (k - l)(k - 2) . . . (1) + 1. We
then have xr = x. Choose q to be a sufficiently large iterated (r-th) power
of r such that qx = 0 and if x is nilpotent such that xq = 0. We also note that
although Lemma 4.1 is true for an arbitrary nonassociative ring, Lemma
4.2 requires that the ring in question be power associative.

Before proceeding to the main Theorem of this section, we will use
Lemma 4.2 to characterize Nb-categorical rings as Zorn rings. From this
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we may define and characterize the Jacobson radical of an tf0-categorical
ring.

Theorem 4.1 Let R be an ^-categorical alternative ring. Then R is a Zorn
ring. J(R) consists of the set of properly nilpotent elements of R. In
particular, there exists an integer n such that J(R) is defined by- the
formula Vy((xy)n = 0).

Proof: Recall that a ring is a Zorn ring if every element is either nilpotent
or divides an idempotent. By Lemma 4.2, if an element a in R is not
nilpotent then there is an integer j such that a1 = a. By computation, α7"1 is
an idempotent. Thus R is a Zorn ring. By Theorem 8 of [13], J(R) is the
set of properly nilpotent elements of R. In particular, J(R) is nil. From
Lemma 4.2, obtain a bound, say n, for the maximum index of nilpotence of
any element of R. We conclude that the formula Vy((xy)n = 0) defines the
radical of R.

Observe that J(R) is locally nilpotent. This may be seen in several
ways. Probably the most direct way to make this observation is to note that
any finite set of elements of J(R) generates a finite subring of J(R)
(Lemma 4.1). This subring is nil of bounded index. A combinatorial
calculation yields that this subring must be nilpotent. Alternatively as we
did in section 3, one may cite the Theorem of McCrimmon (and Shirshov)
[22] which states that a nil ring of bounded index is locally nilpotent.

An alternate way of obtaining the definability of the Jacobson radical of
an alternative ring is by using Theorem 3.1. Theorem 3.1 gives us a
countable set of formulas {ψi} such that an element in R is in the radical of
R if and only if it satisfies all the ψ,: If R is tf0-categorical, then in R only
finitely many ψi are inequivalent. Thus there exists an n = n(R) such that

n

a e J(R) if and only if RN A ΨΛa)
i = l

We take this opportunity to mention an open question, first raised for
the associative case [4]: Does there exist an No-categorical nil ring which
is not nilpotent?

We now study the structure of tfo~ categorical rings under the con-
straints of various ring theoretic conditions.

Theorem 4.2 If R is an $0-categorical primitive ring, then R is either
isomorphic to a complete matrix ring over a finite field or a split Cay ley-
Dicks on algebra over a finite field. In particular, R is finite.

Proof: If R is associative, then since R satisfies the equation p(x) =
xn(χk - x) . . . (x2 - x) = 0, R is isomorphic to a matrix ring over a finite
field (Theorem 1.2 of [4]). If R is not associative, then as noted earlier, R
is a CD algebra over it center [14]. By Lemma 4.2 R satisfies the equation
p(x) = 0, hence a fortiori does the center of R. However, the center of R is
a field and in a field a polynomial can have no more roots than its degree.
Thus the center of R is a finite field. In the course of proving Theorem 3.8,
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we showed that CD division algebras over finite fields do not exist. Thus R
is a split CD algebra.

For our purposes, a more useful form of Theorem 4.2 is the following
corollary of its proof.

Corollary 1 If R is a primitive ring satisfying an equation of the form
p(x) = xn(xk - x) . . . (x2 - x) = 0, then R is a matrix ring over a finite field
or a split CD algebra over a finite field.

We recall the algebraic fact [14] that a semisimple ring, R, is a
subdirect sum of primitive rings each of which is a homomorphic image of
R. By the Compactness Theorem and Corollary 1, an tf0-categorical ring
cannot have primitive homomorphic images which are either matrix rings
of arbitrarily high dimension or which have centers of arbitrarily large
cardinality. We have:

Corollary 2 If R is a semisimple No- categorical ring, then R is a subdirect
product of complete matrix rings over finite fields and split CD algebras
over finite fields. Moreover, only finitely many different matrix rings and
split CD algebras occur as subdirect factors.

Macintyre and Rosenstein [19] have classified the class of associative
^0-categorical rings with identity which have no nilpotent non-zero ele-
ments. Their proof invokes the Arens-Kaplansky representation of such
rings as rings of continuous functions. Analogously, one might consider the
class of alternative No~categorical rings with identity and with no non-zero
nilpotent elements. The added generality of this class of rings is vacuous.
We have:

Theorem 4.3 If R is an No- categorical alternative ring without non-zero
nilpotent elements, thenR is associative.

Proof: An alternative ring without non-zero nilpotent elements is a
subdirect sum of rings without zero-divisors [10]. It suffices to show that
each of these subdirect summands must be associative. If some summand,
Rα, were not associative, it could be embedded in some CD division
algebra, Sa, such that the center of Sa is the quotient field of the center of
Ra [34]. As each subdirect summand is a homomorphic image of R, it
satisfies the same polynomial equation as does R,p(x) = 0. This forces the
center of Rα and hence of Sα to be finite. Since CD division algebras with
finite centers do not exist, R is associative.

The next major result is that an No-categorical alternative ring of
arbitrary infinite cardinality has neither the ascending chain condition
(a.c.c.) nor the descending chain condition (d.c.c.) on right ideals. This is
a generalization to alternative rings of a theorem of Baldwin and Rose [4],
The proof for alternative rings follows closely the account given in [4] for
associative rings. Hence in what follows, the proofs will mainly emphasize
differences from the proofs for the associative case. The reader may
refer to [4] for additional details.



240 BRUCE I. ROSE

Theorem 4.4 If R is a semisimple alternative ring with a.c.c. on right
ideals with every element periodic or nilpotent, then R is finite. In fact R
is a subring of a finite direct sum of matrix rings and split CD algebras
ov er finite fie Ids.

Proof: The proof mirrors that of Proposition 2.1 of [4]. M. Slater in [45]
showed that a semisimple alternative ring with a.c.c. is a subring of a
finite direct sum of prime rings A, , each of which is a homomorphic image
of R. Each element of A{ i§ either periodic or nilpotent and thus if Â  is
not semisimple (by an argument given previously) J(AZ ) is nil of bounded
index. As a homomorphic image of R, A{ has the a.c.c. on right ideals.
Thus by a result of Zhevlakov J(A, ) is nilpotent. Since A/ is prime, it must
therefore be semisimple.

As a semisimple ring, R is a subdirect product of primitive rings R
which are homomorphic images of it [14; 730]. Let ψ: R -> Π Ra be the

αeA

given subdirect product monomorphism. We will use the primeness of R
and this representation as a subdirect product to embed R into a primitive
ring which satisfies p(x) = 0. Let φa be the composition of φ with the
projection map onto the α-th component. Let Tr = {a: φa{r) Φ 0} Tr is the
support of φ(y). Since R is prime, the set {Tr: r Φ 0} may be extended to a
proper ultrafilter on A. By the choice of D, we can embed R in S = Π Rα/D.

As an ultraproduct of primitive rings, S is a primitive ring [5; 175].
Further by Los's Theorem [5; 170], S satisfies p(x) = 0 since each R does.
From these facts conclude by Corollary 1 to Theorem 4.2 that S is a split
CD algebra or a matrix ring over a finite field.

Theorem 4.5 IfRis an ̂ -categorical alternative ring with a.c.c, thenR is
finite.

Proof: By Theorem 4.1 J(R) is locally nilpotent. Since R has a.c.c, by a
result of Zhevlakov [42], J(R) is nilpotent. Since R is a ring with a.c.c; by
the standard argument, J(R) is finitely generated as a right R-module.
Since R is tf0-categorical, the hypothesis of Theorem 4.4 is satisfied for
R/J(R), and hence R/J(R) is finite. A combinatorial argument, as given in
Theorem 2.2 of [4] using the facts that J(R) is nilpotent, J(R) is finitely
generated over R, and R/J(R) is finite, shows that R is finite.

Theorem 4.6 If R is an ̂ -categorical alternative ring with d . c c , thenR
is finite.

Proof: As observed in Lemma 4.2, R has finite characteristic The idea of
this proof is that the standard construction for adjoining a unity element to
R preserves N0-categoricity. The new ring R' has both d . c c and a unity
element; thus by Hopkin's Theorem has a.c.c (Given a structure theorem
similar to that existing for Jacobson semisimple alternative rings with
d . c c and the nilpotence of the Jacobson radical, Hopkin's Theorem is true
for arbitrary nonassociative rings.) By Theorem 4.5, R' is finite.

We may combine the information contained in this section with that of
section 3 to obtain the following theorem.
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Theorem 4.7 Let R be an alternative ring that is both stable and NQ-
categorical. Then R/J(R) is finite.

Proof: By Theorem 3.5, since R is stable, R/J(R) has the d.c.c. on right
ideals and thus is a finite direct sum of CD algebras and simple Artinian
associative rings [32]. Since R is ^0-csLtegoricalf R satisfies a polynomial
of the form p(x) = xn(xk - x) . . . (x2 - x) = 0 and hence so does R/J(R). By
arguments given previously, this forces R/J(R) to be finite.

In particular, since ^-categorical rings are stable, and since the
radical of a stable ring is nil, the class of rings categorical in all powers
is nil by finite. Such a class of rings is a very natural class to examine.
We raise the problem of finding a structure theorem for this class of rings.
We also ask a simpler related question—if R is categorical in all powers,
is J(R) nilpotent?

Examples: Probably the easiest method of constructing No-categorical
rings with particular properties is by taking reduced powers of finite rings.
A full account of this approach to constructing examples may be found in
[4], Its mathematical basis is a theorem of Waszkiewicz and W^glorz [37].

Let D be the filter of all confinite sets in ω. Let A be a finite ring, then
R = Aω/D, the reduced power of A by D, is an #0-categorical ring. Further
any Horn sentence that is true in A is true in R. Since the identity defining
alternative rings is a Horn sentence (as are the other ring axioms) R is an
alternative ring if A is.
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