Notre Dame Journal of Formal Logic Volume XIX, Number 1, January 1978 NDJFAM

DEGREES OF PARTIAL FUNCTIONS

JAN BERGSTRA

In this paper we consider a new notion of relative recursion on partial functions, which allows for an easy definition of the recursive infimum of two functions.

1 Let U be the set of partial mappings: $\omega \rightarrow\{0,1\}$. We write $f(x)=*$ if $f(x)$ is undefined. U will be the universum for our recursion theory. Computations are introduced using Kleene brackets [1]. So we have a relation

$$
\{e\}^{\alpha}(\vec{m}) \cong n
$$

where $e, m_{i}, n \in \omega, \alpha \in U$. A computation $\{e\}^{\alpha}(\vec{m})$ is undefined if either it never stops or it uses $\alpha(n)$ for an n s.t. $\alpha(n)=*$.
1.1 Definition α is recursive in $\beta(\alpha \leqslant \beta)$ if for some $e \in \omega$

$$
\alpha \subseteq \lambda x \cdot\{e\}^{\beta}(x) .
$$

It is easy to see that \leqslant is a transitive relation on U. We write $\alpha \equiv \beta$ if $\alpha \leqslant \beta$ and $\beta \leqslant \alpha$. Of course \equiv is an equivalence relation. The equivalence classes are called degrees. The lowest degree, 0 , is the degree of the partial recursive functions.

Motivation We see $\alpha \in U$ as an object containing information (concerning its arguments). If $\alpha \subseteq \beta$ then β contains at least as much information as α does. Hence we insist to have $\alpha \leqslant \beta$ in this case. A similar argument holds if $\alpha=\lambda x\{e\}^{\beta}(x)$ for some e. These two requirements generate \leqslant.
As the total functions are included in $U, U / \equiv$ has cardinality $2^{N_{0}}, c f$. [2]. On the other hand some equivalence classes of \equiv do have cardinality $2^{\pi_{0}}$ themselves. It is not difficult to find α which is not equivalent to any total function. Furthermore a straightforward spoiling construction shows that there are no minimal degrees in U. Some motivation for considering U lies in the following theorem.
1.2 Definition $1-\mathrm{sc}(\alpha)$ is the set of total functions recursive in α.
1.3 Theorem Let $V \subseteq \omega^{\omega}$ be countable and closed under recursion. Then for some $\alpha \in U V=1-\mathrm{sc}(\alpha)$.

Proof: Straightforward construction.
Example Let ${ }^{n} F$ be a type $-n$ functional. Let $\alpha=\lambda p \cdot\{p\}\left({ }^{n} F\right)$. Then $1-\operatorname{sc}(\alpha)=1-\operatorname{sc}\left({ }^{n} F\right)$.
(The following problem is open: $\forall \alpha \exists^{4} F[1-\mathrm{sc}(\alpha)=1-\mathrm{sc}(F)]$?)
2 In U / \equiv we can define easily the supermum and infimum of two degrees.
2.1 Definition (i) for $\alpha, \beta \in U, \alpha \vee \beta$ is defined by

$$
\alpha \vee \beta(n)=\left\{\begin{array}{l}
\text { if } n=2 k \text { then } \alpha(k) \\
\text { if } n=2 k+1 \text { then } \beta(k)
\end{array}\right.
$$

(ii) for $\alpha, \beta \in U, \alpha \wedge \beta$ is defined by

$$
\alpha \wedge \beta(n)=\alpha \wedge \beta(\langle x, y, z\rangle)=\left\{\begin{array}{l}
\text { if }\{x\}^{\alpha}(z)=p=\{y\}^{\beta}(z) \text { then } p(p \in(0,1)) \\
* \text { otherwise } .
\end{array}\right.
$$

2.2 Theorem v and \wedge give sup and inf in U / \equiv.

Proof: v: Suppose $\alpha \leqslant \gamma$ and $\beta \leqslant \gamma$ then $\alpha \vee \beta \leqslant \gamma$ immediately.
\wedge : Suppose $\gamma \leqslant \alpha$ and $\gamma \leqslant \beta$. Choose x, y such that

$$
\gamma \subseteq \lambda n\{x\}^{\alpha}(n) \text { and } \gamma \subseteq \lambda n \cdot\{y\}^{\beta}(n)
$$

Clearly $\gamma \subseteq \lambda n \cdot\{x\}^{\alpha}(n) \cap \lambda n \cdot\{y\}^{\beta}(n)$. Now $\gamma \subseteq \lambda n \cdot \alpha \wedge \beta(\langle x, y, n\rangle)$. Hence $\gamma \leqslant \alpha \wedge \beta$.

An interesting problem is whether or not there exist α and β of non-zero degree such that $\alpha \wedge \beta$ is of degree zero. We were unable to solve this question. However we can solve it for an operation Δ which assigns, in a natural way, a function $\alpha \Delta \beta$ to α and β which is below $\alpha \wedge \beta$.

2.3 Definition

$$
\alpha \Delta \beta(\langle x, y\rangle)=\left\{\begin{array}{l}
\text { if } \alpha(x)=\beta(y)=p \text { then } p \\
\text { else } * .
\end{array}\right.
$$

$\alpha \Delta \beta$ allows one to compare all values of α with all values of β.
2.4 Theorem There are $\alpha, \beta \in U$ such that $\alpha \not \equiv 0, \beta \not \equiv 0$ and $\alpha \Delta \beta \equiv 0$.

Proof: We find α and β such that
(i) $\alpha \Delta \beta(\langle x, y\rangle)$ is defined implies $\alpha \Delta \beta(\langle x, y\rangle)=\{x\}(y)$ (hence $\alpha \Delta \beta \equiv 0$).
(ii) for all $n, \alpha \nsubseteq \lambda x \cdot\{n\}(x)$ and $\beta \nsubseteq \lambda x\{n\}(k)$.
α and β are defined in an infinite construction. We, in fact, define strictly increasing infinite sequences l_{n} and $l_{n}^{\prime}(n \epsilon \omega)$ and initial segments α_{n}, β_{n} of α and β with lengths $l_{n}, l_{n}^{\prime} \cdot l_{0}=l_{0}^{\prime}=0, \alpha_{0}, \beta_{0}$ are the empty sequence. At step $2 n$ we extend $\alpha_{2 n-1}$ to ensure $\alpha_{2 n} \nsubseteq \lambda x \cdot\{n\}(x)$. And at step $2 n+1$ we extend $\beta_{2 n}$ to ensure that $\beta_{2 n+1} \nsubseteq \lambda x \cdot\{n\}(x)$ (and hence $\beta \nsubseteq \lambda x \cdot\{n\}(x)$). During the construction we ensure that the following two conditions remain satisfied.
a. Whenever $\alpha_{n}(i)=q=\beta_{n}(j)$ then $q=\{i\}(j)(q \in\{0,1\})$
b. If $\alpha_{n}(i) \neq *$ then for some $t \in \omega$ we have: $\forall y>t\{i\}(y) \cong\{y\}(i)$.

The motivation of condition a. is clear. Condition \mathbf{b}. helps us to do the odd steps (and complicates the even ones). We will now describe the steps:
Step $2 n$. Suppose $\beta_{2 n-1}$ is defined on $y_{1} \ldots y_{k}$ with values $z_{1} \ldots z_{k}$. Find, using the recursion theorem, an index $x \in \omega$ such that:
(i) $x>1_{2 n-1}$
(ii) $\{x\}(y) \cong\left\{\begin{array}{l}\text { if } y=y_{j} \text { for some } j \leqslant k \text { then } z_{j} \\ \text { else if } y \leqslant l_{2 n-1}^{\prime} \text { then } * \\ \text { else }\{y\}(x) .\end{array}\right.$

We take $l_{2 n}=x+1, l_{2 n}^{\prime}=l_{2 n-1}^{\prime} \cdot \alpha_{2 n}$ is found as follows:

$$
\alpha_{2 n}(i)=\left\{\begin{array}{l}
\text { if } i<l_{2 n-1} \text { then } \alpha_{2 n-1}(i) \\
\text { else if } i=x \text { then } p \text { else } * .
\end{array}\right.
$$

Here $p \in\{0,1\}$ is a value such that $\{n\}(x) \neq p$ (this ensures $\alpha \nsubseteq \lambda x\{n\}(x))$. We must verify conditions a. and b.
a. Suppose $\alpha_{2 n}(i)=q=\beta_{2 n}(j)\left(i \leqslant l_{2 n}, j \leqslant l_{2 n}^{\prime}\right)$ then $q=\beta_{2 n-1}(j)$. Clearly $j=y_{l}$ for some $l \leqslant k$. Further we may assume that $i=x$. Thus: $q=\beta_{2 n-1}\left(y_{l}\right)=$ $z_{l}=\{x\}\left(y_{l}\right)=\{i\}(j)$.
b. Immediate by the construction of x.

Step $2 n+1$. Let $\alpha_{2 n}$ be defined on $x_{1} \ldots x_{l}$ with values $z_{1} \ldots z_{l}$. Choose $t>l_{2 n}^{\prime}$ such that for $i \leqslant l$ and $t^{\prime}>t$:

$$
\left\{x_{i}\right\}\left(t^{\prime}\right) \cong\left\{t^{\prime}\right\}\left(x_{i}\right)
$$

Using the recursion theorem we find an $y>t$ such that: $\{y\}\left(x_{i}\right)=z_{i}$ for $i \leqslant l$. We extend $\beta_{2 n}$ to $\beta_{2 n+1}$ by giving it a value q on y which ensures that $\beta_{2 n} \nsubseteq \lambda x\{n\}(x)$. Again we must check conditions a. and b. (We have $l_{2 n+1}=$ $\left.l_{2 n}, l_{2 n+1}^{\prime}=y+1\right)$.
b. Immediate (no change).
a. Suppose $\alpha_{2 n+1}(i)=q=\beta_{2 n+1}(j),(q \in\{0,1\})$. We may assume that $j=y$ and $i=x_{m}$ for some $m \leqslant l . \quad q=\alpha_{2 n+1}\left(x_{m}\right)=z_{m}=\{y\}\left(x_{m}\right)=\left\{x_{m}\right\}(y)=\{i\}(y)$. This completes the proof of 2.4.

REFERENCES

[1] Kleene, S. C., "Recursive functionals and quantifiers of finite type," Transactions of the American Mathematical Society, vol. 91, pp. 1-52.
[2] Sacks, G. E., Degrees of Unsolvability, Princeton University Press, 1963.

Leiden, The Netherlands

