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DEGREES OF PARTIAL FUNCTIONS

JAN BERGSTRA

In this paper we consider a new notion of relative recursion on partial
functions, which allows for an easy definition of the recursive infimum of
two functions.

1 Let U be the set of partial mappings: w — {0,1}. We write f(x) = * if f(x)
is undefined. U will be the universum for our recursion theory. Computa-
tions are introduced using Kleene brackets [1]. So we have a relation

{f(m) = n

where e, m;, new, ae U. A computation {e}a(‘n-;) is undefined if either it
never stops or it uses a(n) for an n s.t. a(n) = *,

1.1 Definition «a is recursive in B(a < B) if for some eew
acax-{el’(x).

It is easy to see that < is a transitive relation on U. We writea=8ifa <8
and 8 < a. Of course = is an equivalence relation. The equivalence classes
are called degrees. The lowest degree, 0, is the degree of the partial
recursive functions.

Motivation We see @€ U as an object containing information (concerning its
arguments). If o C 8 then B contains at least as much information as a
does. Hence we insist to have @ < $ in this case. A similar argument holds
if @ = xx{e}?(x) for some e. These two requirements generate <.

As the total functions are included in U, U/= has cardinality 2"°, cf. [2]. On
the other hand some equivalence classes of = do have cardinality 2o
themselves. It is not difficult to find @ which is not equivalent to any total
function. Furthermore a straightforward spoiling construction shows that
there are no minimal degrees in U. Some motivation for considering U lies
in the following theorem.

1.2 Definition 1 - sc(a) is the set of fotal functions recursive in a.
1.3 Theorem Let V C w® be countable and closed undev vecuvsion. Then

for someae UV =1- sc(a).
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Proof: Straightforward construction.

Example Let "F be a type -n functional. Let a=2xp-{p}("F). Then
1-sc(a)=1- sc("F).

(The following problem is open: Va3*F[1 - sc(a) = 1 - sc(F)]?)
2 In U/= we can define easily the supermum and infimum of two degrees.
2.1 Definition (i) for a, Be U, av B is defined by

if n = 2k then a(k)

avp(n) = [if n= 2k + 1 then B(k)

(ii) for a, Be U, a A B is defined by
if {x}°(2) = p = {y}’(2) then p(pe (0, 1))

* otherwise.

anB(n =anrplx,y, 2)) = {

2.2 Theorem v and A give sup and inf in U/=.

Proof: v: Suppose a <y and B8 <y then av B <y immediately.
A: Suppose y < a and y < 3. Choose x, ¥ such that

y C An{x}%(n) and y C an-{p}* ().

Clearly y C an-{x}*(n) N xn- {y}¥(n). Now y C rAn-anaB((x, y, ). Hence
vy<aap.

An interesting problem is whether or not there exist a and S of non-zero
degree such that aafB is of degree zero. We were unable to solve this
question. However we can solve it for an operation A which assigns, in a
natural way, a function @ A 8 to @ and 8 which is below a4 .

2.3 Definition

if a(x) = B(y) = p then p
else *,

a A B(x, y) = {

a A B allows one to compare all values of a with all values of f3.
2.4 Theorem Theve are a, BeU suchthata # 0, 3#0and a A B =0.
Proof: We find a and B8 such that

(i) a A B(x, y)) is defined implies a A B({x, y)) = {x}(y) (hence a A 8 =0).
(ii) for all #, @ & A x - {n}(x) and B & rx{n}(%).

a and B are defined in an infinite construction. We, in fact, define strictly
increasing infinite sequences I, and l;(n€w) and initial segments a,, B, of @
and B with lengths I,, I-1l,= I§ = 0, @, B, are the empty sequence. At step
2n we extend @,,., to ensure a,, € Ax-{n}(x). And at step 2n + 1 we extend
Bs, to ensure that By, & Ax-{n}(x) (and hence 8 & Ax-{n}(x)). During the
construction we ensure that the following two conditions remain satisfied.

a. Whenever a,(7) = g = B,(j) then ¢q = {i}(j) (g€ {0, 1}
b. If a,(i) # * then for some e w we have: Vy > t{i}(y) = {y}(3).
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The motivation of condition.a. is clear. Condition b. helps us to do the odd .
steps (and complicates the even ones). We will now describe the steps:

Step 2n. Suppose B,,-, is defined on y, ... y, with values 2, . . . 2;. Find,
using the recursion theorem, an index x € w such that:
i) x> 1,

if y = y; for some j < k& then z;
(ii) {x}(y) =1 else if y <1I;,-, then *
else {y}(x).

We take L, = x + 1, I, = 1J,-1 * @y, is found as follows:

if ¢ < I,,-, then a,,-,(f)
else if 7 = x then p else x.

Qy,(d) = {

Here pe {0, 1} is a value such that {u}(x) # p (this ensures a ¢ xx{n}(x)). We
must verify conditions a. and b.

a. Suppose z(8) = ¢ = Boy(§)( < Ly, j < 13;) then g = Bo,-y(j). Clearly j=y,
for some ! <k. Further we may assume that i = x. Thus: g = B,,-,(y;) =

z; = {x}(v) = {}(5).

b. Immediate by the construction of x.

Step 2n + 1. Let a,, be defined on x; ... x; with values 2, . . . 2;. Choose
t > 13, such that for i < and ¢' > ¢
{eHt") = {7} (x)).

Using the recursion theorem we find an y > ¢ such that: {y}(x;) = z; for
i<l. We extend fB;, to B:,+1 by giving it a value ¢ on y which ensures that
Ban € Ax{n}(x). Again we must check conditions a. and b. (We have lp,4; =
sz l£n+l =y + 1)-

b. Immediate (no change).
a. Suppose @y,11(4) = g = Bonsa(4), (9€{0,1)). We may assume that j =y and
i=%n for some m<1l. q=Qu(Xn) = 2n = {¥}(%s) = {xa}(») = {i}(y). This
completes the proof of 2.4.
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