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DEGREES OF PARTIAL FUNCTIONS

JAN BERGSTRA

In this paper we consider a new notion of relative recursion on partial
functions, which allows for an easy definition of the recursive infimum of
two functions.

1 Let U be the set of partial mappings: ω -* {θ, l}. We write f(x) = * if f(x)
is undefined, ϋ will be the universum for our recursion theory. Computa-
tions are introduced using Kleene brackets [l]. So we have a relation

{e} (m) ^ n

where e, mi, neω, aeU. A computation {e}a(m) is undefined if either it
never stops or it uses a(n) for an n s.t. a(ή) = *.

1.1 Definition a is recursive in β(a *z β) if for some eeω

acλx {e}β(x).

It is easy to see that ^ is a transitive relation on U. We write a = β if a ̂  β
and β ̂  a. Of course = is an equivalence relation. The equivalence classes
are called degrees. The lowest degree, 0, is the degree of the partial
recursive functions.

Motivation We see ae ί/as an object containing information (concerning its
arguments). If a c β then β contains at least as much information as a
does. Hence we insist to have a ̂  β in this case. A similar argument holds
if a = λx{e}β(x) for some e. These two requirements generate ^.

As the total functions are included in U, ϋ/= has cardinality 2 °̂, cf. [2]. On
the other hand some equivalence classes of = do have cardinality 2̂ °
themselves. It is not difficult to find a which is not equivalent to any total
function. Furthermore a straightforward spoiling construction shows that
there are no minimal degrees in U. Some motivation for considering U lies
in the following theorem.

1.2 Definition 1 - sc(α?) is the set of total functions recursive in a.

1.3 Theorem Let V c ωω be countable and closed under recursion. Then
for someae U V = 1 - sc(α).
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Proof: Straightforward construction.

Example Let nF be a type -n functional. Let a = \p {p}{nF). Then

1 - sc(α) = 1 - sc(nF).

(The following problem is open: VαG4F[l - sc(αf) = 1 - sc(F)]?)

2 In [//= we can define easily the supermum and infimum of two degrees.

2.1 Definition (i) for a, β e U, a v β is defined by

( . _ I if n = 2k then α(&)
β v W n ) " jif n= 2fe+ lthenβ(fe)

(ii) for a, βe U, a*β is defined by

2.2 Theorem v am? Λ gwe sup and inf fw C//Ξ.

Proof: v: Suppose a ^ y and β ^γ then aw β ^γ immediately.

Λ: Suppose γ ^ a and γ ^ β. Choose x, y such that

γ C Xw{Ar}a(w) and y C λw {3)f(w).

C l e a r l y γ Q λn-{x}a(n) Πλn- {y}β(n). N o w y c Xn-a*β((x, y , n ) ) . H e n c e

γ^aAβ.

An interesting problem is whether or not there exist a and β of non-zero

degree such that oihβ is of degree zero. We were unable to solve this

question. However we can solve it for an operation Δ which assigns, in a

natural way, a function a Δ β to a and β which is below a Λ β.

2.3 Definition

a Δ β allows one to compare all values of a with all values of β.

2.4 T h e o r e m There are a, βeU such that a φ. 0 , β φ 0 a n d a Δ β = 0 .

Proof: We find of and β such that

(i) a Δ j3«#, y» is defined implies a Δ J3«ΛΓ, y)) = {χ:}(;y) (hence α Δ β = 0).

(ii) for all n, a £ \x-{n}{x) and β £ \x{n}(k).

a and β are defined in an infinite construction. We, in fact, define strictly

increasing infinite sequences ln and l'n{n e ώ) and initial segments an, βn of a

and β with lengths ln, l'n-10 = ll = 0, a09 β0 are the empty sequence. At step

2n we extend a2n-i to ensure a2n <£ λx -{n\(x). And at step 2n + 1 we extend

β2n to ensure that /32«+i ^ XΛ: {W}(Λ;) (and hence β £ λx-{n}(x)). During the

construction we ensure that the following two conditions remain satisfied.

a. Whenever an(i) = q = βn(j) then q = {i}(j) (qe{θ, 1})

b. If αw(i) ^ * then for some t e ω we have: V y > {̂f}(3̂ ) = {̂ }U').
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The motivation of condition a, is clear. Condition b. helps us to do the odd
steps (and complicates the even ones). We will now describe the steps:

Step 2n. Suppose β2n-ι is defined on ^ . . . yk with values zι . . . z^. Find,
using the recursion theorem, an index xeω such that:

(i) *>l*-i

I if 3; = yj for some j ** k then Zj
else iiy ^ Z2'n-i then *
else {y}(*).

We take l2n = x + 1, lίn = ιL-i' <*2n is found as follows:

... ί if i < Zan-i then βa -iW
2 8 1 ' I else if t = Λ then p else *.

Here pe {θ, 1} is a value such that {«}(#) φ p (this ensures α? g! ΛΛΓ{W}(ΛΓ)). We
must verify conditions a. and b.

a. Suppose a^iϋ = ^ = β2w(j)(^ < hn> 3 ̂  ID then q = fta-iί j). Clearly j = yt

for some Z ^ k. Further we may assume that i = x. Thus: q = ft^-iί?/) =•

** = W(yι) = {<}0)
b. Immediate by the construction of x.

Step In + 1. Let a2n be defined on xx . . . xι with values ^ . . . z\. Choose
t > ϊ2n such that for i* I and tr > t:

{xMf) s {ί'}(^)

Using the recursion theorem we find an y > t such that: {y}(#f) = zι for
i ^ I. We extend β2» to β2n+i by giving it a value q on y which ensures that
β2n <t λx{n}(x). Again we must check conditions a. and b. (We have l2n+1 =

hn, I'zn+i = y + 1).

b. Immediate (no change).
a. Suppose a2n+ι(i) = # = β2»+i0)> (^^ {θ, l}). We may assume that j = 3; and
i = Λ^ for some m < I. q = a2n+1(xm) = zm = {y}(xOT) = {ΛΓW}(^) = {(K?). This
completes the proof of 2.4.
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