Notre Dame Journal of Formal Logic Volume XIX, Number 1, January 1978 NDJFAM

ISOMORPHISM TYPES OF THE HYPERARITHMETIC SETS H_a

GEORGE C. NELSON

Introduction Historically, this paper originates from M. Davis' result [1] that for $|a| = |b| < \omega^2$ $(a, b \in O)$, H_a and H_b are recursively isomorphic. Spector, in [10], showed that H_a and H_b for |a| = |b| have the same Turing degree. Y. Moschovakis in [6], had shown that these results are best possible in that the sets H_a for $|a| = \alpha$, $\omega^2 < \alpha$ a principal number for addition, have well-ordered sequences of type ω_1 under one-one reducibility and, also, incomparable one-one degrees. The author in his thesis [8] showed that any countable ordered set can be embedded in the one-one degrees below any H_a , if $|a| = \alpha \ge \omega^3$. Moschovakis also has shown that if $\beta = \xi + \alpha$, α principle for addition, that $\{H_b: |b| = \beta\}$ has the same structure under one-one reducibility as does $\{H_a: |a| = \alpha\}$. This carries over to this paper after Theorem 1.1 and we restrict ourselves to those H_a such that |a| is principle for addition, i.e., $|a| = \omega^\beta$ for some $\beta \ge 1$.

In this paper we introduce a general notion of one-one reducibility applicable to the hyperarithmetic sets (since these sets are cylinders, [9], pp. 89-90, we need only to discuss one-one reducibility). The notion is simply the following; suppose a, $b \in O$ and |a| = |b|, when is there a one-one function f(x) recursive in H_c such that $x \in H_a$ iff $f(x) \in H_b$? Since H_a and H_b have the same Turing degree, clearly any $c \in O$, $|c| \ge |a|$ is sufficient. The question we try to answer is how small can |c| be chosen in general, so that H_a and H_b are one-one reducible to each other by functions recursive in H_c , i.e., H_a and H_b are isomorphic via a permutation of \mathcal{N} recursive in H_c . Alternatively, for |c| < |a|, H_c can be viewed as a constructive subset of both H_a and H_b and using only an oracle for H_c can one show a question of membership in H_a is equivalent to a question of membership in H_b (this is similar to a "bounded truth-table" reduction except that the bound is H_c). We will give a necessary and sufficient condition on the size of |c| in order to show H_a , H_b are isomorphic by a permutation of \mathcal{N} recursive in H_c when $|a| < \omega^{\omega^2}$. That this condition is sufficient for all $a, b \in O$ is demonstrated. However, the necessity of this condition for $|a| \le \varepsilon_0$ is not proven and

contrary to as announced in [7] is an open question. The author hopes that the techniques introduced here will eventually demonstrate this necessity. Basically these results depend upon constructing ordinal notations $a \\in O$ with very fast growth toward its limit |a| as in [5] and [8]. Consequences about ordinal notations will follow immediately from these results. For example, there exist recursive well-orderings of order type ω^{ω} which are not isomorphic via any function recursive in $O^{(n)}$, i.e., via any arithmetic permutation of N.

1 One-one reducibility in H_c The notation used in this paper will be that found in [2], [4], and [10]. Familiarity with the results and techniques of recursion theory are assumed as in [9]. Frequent use is made of Post's Theorem which is taken to refer to the results listed on pp. 314-15 of [9].

Definition 1.1 We say that a set A is one-one reducible in C to B and write $A \leq_{1}^{C} B$ if there is a function f (one-one) recursive in C such that $x \in A$ iff $f(x) \in B$.

These definitions are natural generalizations of the usual notion of one-one reducibility and become particularly relevant in the study of the one-one degrees in C of the hyperarithmetic sets $H_{a'}$ where $a' = 3 \cdot 5^a \epsilon O$. The following definition and theorem generalizes the notion and results introduced by Y. Moschovakis in [6] in studying the one-one degrees of $H_{a'}$.

Definition 1.2 Let $a' = 3 \cdot 5^a$ and $b' = 3 \cdot 5^b$ be two Kleene notations for ordinals such that |a'| = |b'|. We say that a' is recursively majorized in C by b' and write $a' \prec {}^{C} b'$ if there is a function f recursive in C such that $|a_n| \leq |b_{f(n)}|$ for all n.

Theorem 1.1 For $c \in O$, |c| < |a'| = |b'|

$$\mathbf{H}_{a'} \leq \mathbf{H}_{c} \mathbf{H}_{b'} \text{ iff } a' \prec \mathbf{H}_{c} b'.$$

Proof: The proof of this result is essentially as in [6] except that in Lemma 2b, p. 330, one asserts instead that there is a primitive recursive $\sigma_3(e)$ such that if $t = \sigma_3(e)$ and $(Ez)(T_1^P(e, t, z) \wedge U(z) = k)$, then $P'(t) \neq P(k)$; which is just an effective way of saying P' is not many-one reducible in P to P.

By Myhill's Theorem [9], the following is evident:

Corollary 1.1 $H_{a'}$ and $H_{b'}$ are isomorphic using a permutation recursive in $H_c |c| < |a'| = |b'|$ iff $a' \prec {}^{H_c} b'$ and $b' \prec {}^{H_c} a'$.

It follows automatically from Moschovakis' work that we need only study one-one reducibility in H_c of $H_{a'}$ such that |a'| is a principle number for addition. The following definition and lemmas generalize the notion of "limit point of order *n*," see p. 51 of [5], to any order α (α constructive). We use the predicate C(b) of [3], §12 and §13, in order to express $z <_0 x$ as an r.e. predicate noting that for $a, b \in O, a \in C(b)$ iff $a <_0 b$, and there is a primitive recursive predicate V(a, b, x) such that for any numbers $a, b, a \in C(b)$ iff (Ex) V(a, b, x). Definition 1.3 We define predicates $L_b(x)$ for each $b \in O$, $b \neq 1$ inductively as follows:

 $\begin{array}{ll} L_{2^{1}}(x) & \text{if } x = 3 \cdot 5^{\gamma} \\ L_{2^{b}}(x) & \text{if } L_{b}(x) \wedge (z)(z \in C(x) \rightarrow (Ew)(z \in C(w) \wedge w \in C(x) \wedge L_{b}(w))) \\ L_{3 \cdot 5^{\gamma}}(x) & \text{if } (n)(L_{y_{n}}(x)). \end{array}$

Below $A^{(n)}$ refers to the jump operator applied n times to A.

Lemma 1.1 (a) If $b \in O$, $|2^b| = k > 0$ is finite, then $L_{2b}(x)$ is one-one reducible to $O^{(2(k-1))}$ (for k = 1, $L_{21}(x)$ is recursive).

(b) There is a primitive recursive function f(a, x) such that for $a = 3 \cdot 5^{\gamma} \in O$,

 $L_a(x)$ iff $f(a, x) \in \overline{\mathbf{H}'_a}$.

(c) If $b = 3 \cdot 5^{y} + c \in O$, $|c| = k \neq O$, then $L_{b}(x)$ is 1-1 reducible to $\overline{H}_{3 \cdot 5^{y}}^{(2k+1)}$.

Proof: Clearly, $L_{21}(x)$ is recursive. Consider $L_{22}(x) \equiv L_{21}(x) \land (z)((Ex_1)V(z, x, x_1) \rightarrow Ew(Ex_2 V(z, w, x_2) \land Ex_3 V(w, x, x_3) \land L_2(w))$ which is equivalent to a predicate of $\forall E$ -form and consequently is 1-1 reducible to $\overline{O''}$. Let e_0 be a primitive recursive index of this reduction of $L_{22}(x)$ to $\overline{O''}$. Part (a) follows inductively by Post's Theorem as in [9].

We complete the proof by defining a primitive recursive function f(y, x)such that for y in O, $y \neq 1, 2, L_y(x)$ iff $f(y, x) \in \overline{H_{\gamma(y)}}$, where $\gamma(y)$ is as specified in the result, i.e., $\gamma(a) = b$ such that |b| = 2(k - 1) if |a| = k finite, $a \neq 1, 2$, and $\gamma(a) = 3 \cdot 5^{y} +_{0} b$ if $a = 3 \cdot 5^{y} +_{0} c$ for some finite c in O and $|b| = 2 \cdot |c| + 1$. By Post's Theorem let g(u, x) be a 1-1 primitive recursive function such that uniformly for A, $g(u, x) \in A^{\overline{(3)}}$ iff $\{u\}(x) \notin A' \land (r)(r \in C(x) \rightarrow$ $(Ew)(r \in C(w) \land w \in C(x) \land \{u\}(w) \notin A'))$. Now define $\phi(z, y, x)$ primitive recursively as follows:

 $\begin{array}{ll} \phi(z,y,x) &= 0 \text{ if } y = 1 \lor y = 2 \lor (y \neq 2^{(y)_0} \land y \neq 3 \cdot 5^{(y)_2}), \\ \phi(z,2^2,x) &= \{e_0\}(x) \text{ where } e_0 \text{ is obtained in Part (a)}, \\ \phi(z,2^b,x) &= g((\lambda x) \{z\}(b,x),x) \text{ if } b \neq 2, \\ \phi(z,3 \cdot 5^y,x) = \phi_1(z,y,x), \text{ where } \phi_1 \text{ is the primitive recursive function defined as follows:} \end{array}$

Consider $\neg(n)(\{z\}(y_n, x) \in \overline{H_{\gamma(y_n)}}) \equiv (En)(\{z\}(y_n, x) \in H_{\gamma(y_n)}) \equiv (En) \rho(\gamma(y_n), 3 \cdot 5^{\gamma}, \{z\}(y_n, x)) \in H_{3 \cdot 5^{\gamma}}$, where ρ is the partial recursive function of Lemma 3, p. 326 of [4], $\equiv En(T_1^{H_3 \cdot 5^{\gamma}}(\phi_1(z, y, x), \phi_1(z, y, x), n))$, by Lemma 1, p. 325 of [4] where ϕ_1 is primitive recursive. Consequently,

$$(n)(\{z\}(y_n, x) \in \overline{\mathbf{H}_{\gamma(y_n)}}) \equiv (n)(\overline{\mathsf{T}}_1^{\mathbf{H}_{3} \cdot 5^{y}}(\phi_1(z, y, x), \phi_1(z, y, x), n)).$$

By the Recursion Theorem, p. 352-3 of [2], there is an e such that $\phi_e(y, x) \cong \phi(e, y, x)$. Define $f(y, x) = \phi(e, y, x)$ and by the construction of f, it follows for all $y \in O$, $y \neq 1$, 2, $L_y(x)$ iff $f(y, x) \in \overline{H_{\gamma(y)}}$, by induction on |y| in O. Q.E.D.

As is well known, every ordinal α has a unique Cantor Normal Form, i.e., $\alpha = \omega^{\beta_n} \cdot k_n + \ldots + \omega^{\beta_0} \cdot k_0$ such that $\beta_i > \beta_{i-1}$, for $1 \le i \le n$, and $0 \ne k_i \le \omega$ for $0 \le i \le n$ with n, β_i, k_i uniquely determined by α . Lemma 1.2 For a', $b \in O$, $b \neq 1$, $L_b(a')$ iff the Cantor Normal Form of $|a'| = \omega^{\beta_n} \cdot k_n + \ldots + \omega^{\beta_0} \cdot k_0$ is such that $\beta_0 \ge |b|$.

Proof: By induction on |b| for all a' in O, for |b| = 1 the result is clear. Suppose the result is true for all $b \in O$ such that $\beta = |b| \ge 1$, consider $b = 2^{(b)_0}$ such that $|b| = \beta + 1$ and suppose $L_b(a')$. By definition, $L_b(a') \equiv (z)(Ew)(z <_0 a' \to z <_0 w <_0 a' \land L_{(b)_0}(w)) \land L_{(b)_0}(a')$. Thus, $\beta_0 \ge |(b)_0| = \beta \ge 1$ and, by the inductive hypothesis, $a' = 3 \cdot 5^a$. $|a'| = \lim |a_n|$ and, clearly, since $L_b(a')$ there exist a sequence $w_i <_0 w_{i+1} <_0 a'$ such that $L_{(b)_0}(w_i)$ and $\lim |w_i| = |a'|n$. For some k, i > k implies $|w_i| = \omega^{\beta_0} \cdot k_n + \ldots + \omega^{\beta_1} \cdot k_1 + \omega^{|(b)_0|+a_i} \cdot k_0^i$. Either for some j, $|(b)_0| + a_i = |(b)_0|$ for all $i \ge j$ or $|(b)_0| + a_i > |(b)_0| + a_i \le |(b)_0|^{-1+a_i} \ge \omega^{|(b)_0|+1}$. Conversely, suppose $\beta_0 \ge |(b)_0| + 1$, if $\beta_0 = \gamma + 1$, then $\omega^{\beta_0} \cdot k_0 = \lim (\omega^{\beta_0} \cdot (k_0 - 1) + \omega^{\gamma} \cdot n)$ and there exists a sequence $w_i <_0 a'$ such that $|w_i| = \omega^{\beta_n} \cdot k_n + \ldots + (\omega^{\beta_0} \cdot (k_0 - 1) + \omega^{\gamma} \cdot i)$ and $\lim |w_i| = |a'|$. If β_0 is a limit, then there is a sequence γ_n such that $|(b)_0| < \gamma_n$ and $\lim \gamma_n = \beta_0$ and consequently we can find $w_i <_0 a'$ such that $\lim |w_i| = a'$ and $|w_i| = \omega^{\beta_n} \cdot k_n + \ldots + \omega^{\beta_0} \cdot k_0^i$. Thus, $L_b(a')$ follows.

Suppose $b' = 3 \cdot 5^b$ and $L_{b'}(a')$ is true. Thus, $(n)(L_{b_n}(a'))$ is true. Consequently, by inductive hypothesis, $\beta_0 \ge |b_n|$, hence, $\beta_0 \ge \lim |b_n| = |b'|$. Conversely, suppose $\beta_0 \ge |b'|$, then $\beta_0 \ge |b_n|$ for every *n* and consequently $L_{b_n}(a')$ holds for all *n*.

Now we prove one of the main results of this paper.

Theorem 1.2 (a) If $|a'| = |b'| = \omega^{\beta}$, β a limit, then $H_{a'}$ is isomorphic to $H_{b'}$ by a permutation of N recursive in H_c such that $|c| = \beta$.

(b) If $|a'| = |b'| = \omega^k$, $2 \le k$ finite, then $H_{a'}$ is isomorphic to $H_{b'}$ by a permutation of \mathcal{N} recursive in $O^{(2 \cdot (k-2)+1)}$.

(c) If $|a'| = |b'| = \omega^{\gamma+k}$, $1 \le k$ finite, and γ a limit ordinal, then $\mathbf{H}_{a'}$ is isomorphic to $\mathbf{H}_{b'}$ by a permutation of \mathcal{N} recursive in \mathbf{H}_c where $|c| = \gamma + 2k$.

Proof: Suppose the hypothesis of part (a) and that $c \in O$ and $|c| = \beta$. By Theorem 1.1, it is sufficient to show $a' \prec {}^{\mathsf{H}_c} b'$ and $b' \prec {}^{\mathsf{H}_c} a'$. Thus, we shall define a function g recursive in H_c such that $|a_i| \leq |b_{g(i)}|$ for all i. For each *i*, let n_i be the smallest number *n* such that $(z)(z \leq_0 a_i \rightarrow L_{c_n}(z))$ where L_{c_n} is the predicate of the definition before Lemma 1.1. Consequently, by Lemma 1.2, the Cantor Normal Form for $|a_i|$ and any $\alpha < |a_i|$ is such that $\beta_0 < |c_{n_i}|$ and, hence, $|a_i| < \omega^{|c_{n_i}|}$. By Lemma 1.1, n_i is the smallest number n such that $(z)(z \leq_0 a_i \rightarrow f(c_n, z) \in \overline{H_{\gamma(c_n)}})$ for the primitive recursive f(y, x) which is equivalent to $\phi(e, a_i, c_n) \in \overline{H'_{V(c_n)}}$, where e is a g.n. of f and $\phi(e, a_i, c_n)$ is primitive recursive. Consequently, $n_i = \mu n \phi(e, a_i, c_n) \epsilon$ $\overline{\mathsf{H}}'_{\gamma(c_n)}$, and clearly n_i as a function of *i* is recursive in H_c . Given n_i , start enumerating the elements $\leq_0 b'$ until one finds the first element z_i in this enumeration such that $L_{c_{n_i}}(z_i)$, i.e., $f(c_{n_i}, z_i) \in \overline{H_{\gamma(c_{n_i})}}$. Define $g(i) = \mu j z_i \leq 0$ b_j. Thus, for each i, $|a_i| < \omega^{|c_{n_i}|} \le |z_i| \le |b_{g(i)}|$, where g is recursive in H_c . Consequently, $a' \prec {}^{\mathsf{H}_c} b'$ and by the analogous argument, $b' \prec {}^{\mathsf{H}_c} a'$. Thus, (a) holds by Corollary 1.1.

Suppose the hypothesis of (b) as in (a) we show that for arbitrary $a', b' \in \overline{O}, |a'| = |b'| = \omega^k$ implies $a' \prec {}^{\mathsf{H}_c} b'$ where $c \in O$ and |c| = 2(k-2) + 1. Note that k = 1 implies $H_{a'}$ and $H_{b'}$ have the same one-one degree by [1]. Let $c \in O$ such that |c| = k - 1, then by Lemma 1.1 $L_c(z)$ is one-one reducible to $\overline{H_{\gamma(c)}} = \overline{O^{(2(k-2))}}$ (recursive if |c| = 1) and by Lemma 1.2, for $z <_0 a', L_c(z)$ is true iff $|z| = \omega^{(k-1)} \cdot n$ for some $n \neq 0$, since $|a'| = \omega^k$. For each i, let n_i be the number of z's, $z \leq_0 a_i$ such that $L_c(z)$. We compute n_i recursively in $O^{(2(k-2)+1)}$ as follows: First, consider $Ez(z \leq_0 a_i \land L_c(z))$ (this is equivalent to $Ez(z \leq_0 a_i \wedge f(c, z) \notin O^{(2(k-2))})$ which is equivalent to $\phi(c, a_i) \in O^{(2(k-2))}$ $O^{(2\cdot (\hat{k}-2))+1}$ for a primitive recursive function ϕ . If the answer is $\phi(c, a_i) \notin C$ $O^{(2 \cdot (k-2)+1)}$, then $n_i = O$ if $\neg L_c(a_i)$ and $n_i = 1$ if $L_c(a_i)$. If the answer is $\phi(c, a_i) \in O^{(2 \cdot (k-2)+1)}$, then let z_1 be the first element in the enumeration of $z \leq_0 a_i$ such that $L_c(z_1)$. Suppose now we have defined z_1, \ldots, z_k by this procedure $k \ge 1$. Consider $Ez(z \ne z_1 \land \ldots \land z \ne z_k \land z <_0 a_i \land L_c(z))$, if true, then take z_{k+1} to be the first element of the enumeration of all $z \leq_0 a_i$ different from z_1, \ldots, z_k such that $L_c(z_{k+1})$, otherwise, $n_i = k$, if $\exists L_c(a_i)$, or $n_i = k + 1$ if $L_c(a_i)$. Clearly, n_i is defined recursively in $O^{(2 \cdot (k-2))+1}$ and $|a_i| \leq \omega^{n_i}$. Given n_i find the first $n_i + 1$ numbers x_1, \ldots, x_{n_i+1} in the enumeration of $x \leq_0 b'$ such that $L_c(x_k)$, $k = 1, \ldots, n_i + 1$, (this computation is recursive in $O^{2 \cdot (k-2)}$ given that $|b'| = \omega^k$. Define $g(i) = \mu j$ such that $x_k \leq_0 b_j$ for $k = 1, \ldots, n_i + 1$. Clearly, g is recursive in $O^{(2 \cdot (k-2))+1}$ and $|a_i| \leq \omega^{n_i} \leq \omega^{n_i+1} \leq |b_{g(i)}|$. Thus, $a' \prec H_d b'$ where $|d| = 2 \cdot (k-2) + 1$, and analogously $b' \prec {}^{\mathsf{H}_d} a'$. Consequently, by Corollary 1.1, $\mathsf{H}_{a'}$ and $\mathsf{H}_{b'}$ are isomorphic by a permutation of \mathcal{N} recursive in \mathbf{H}_d , $|d| = 2 \cdot (k - 2) + 1$.

The proof of (c) is completely analogous to the proof of (b). Noting that for $|c| = \omega^{\beta + (k-1)}$, $L_c(z)$ is 1-1 reducible to $\overline{H_{\gamma(c)}}$, i.e., $H_{\beta}^{2(k-1)+1} = H_{\beta}^{2k-1}$. Q.E.D.

Moschovakis notes in [6] that with respect to 1-1 reducibility there is a minimum one-one degree of the form $H'_{a'} |a'| = \omega^2$, in the Turing degree. The following shows this to be a rather general phenomenon.

Corollary 1.2 If $|a'| = |b'| = \omega^{\beta+k}$, β a limit and $k \neq 0$ or $\beta = 0$ and $k \ge 2$, then there is a minimal 1-1 degree $\mathbf{H}_{a'}$ in \mathbf{H}_c in the Turing degree of $\{\mathbf{H}_{b'}: |b'| = \omega^{\beta+k}\}$ where $|c| = 2 \cdot (k-2)$ if $\beta = 0$ and $k \ge 2$ and where $|c| = \beta + 2k - 1$ if $\beta \neq 0$.

Proof: As noted in the proof of Theorem 1.2 (b), once one had found n_i for each i, the rest of the computation can be carried out at the next lower level. Consequently, let $d \in O$ such that $|d| = \omega^{\beta+(k-1)}$ and $a_i = (d +_0 d) +_0 \dots +_0 d$ with i summands d and consequently for any $e \in O$, $|e| = \beta + (k - 1)$, the number n_i of elements $z \leq_0 a_i$ such that $L_e(z)$ equals i. Consequently, $a' \prec b'$ via a function recursive in $L_e(z)$ and the result follows by Theorem 1.1 and Lemma 1.1.

2 Natural well-orderings In this section we define from predicates $R(x_1, y_1, \ldots, x_k, y_k)$ recursive in a set A sets e_k^A of k-tuples of \mathcal{N} recursive in A ordered by first difference such that the size of these well-orderings depends upon whether or not $(x_1)(Ey_1) \ldots (x_k)(Ey_k) R(x_1, y_1, \ldots, x_k, y_k)$ is

true or false. Instead of working with the quantifier (Uz) of [5], we require uniqueness on existential quantifiers which will lead to analogous results. However, Lemma 4 of [5], which is quite sufficient to obtain the results in section 3 for arithmetic predicates up through H_{ω} , we know of no way of generalizing to obtain all the results of section 3 below.

Lemma 2.1 Given a predicate R(y, z) we can effectively find predicates $S_1(y, z)$ and $S_2(y, z)$ recursive uniformly in R(y, z) such that

(a)
$$(Ey)(z) R(y, z)$$
 iff $(E!y)(z) S_1(y, z)$

and

(b) $(y)(Ez) R(y, z) iff (y)(E!z) S_2(y, z)$.

Proof: Define $S_1(y, z)$ to be $y = 2^{(y)_0} \cdot 3^{(y)_1} \wedge (w)(w \leq \max((y)_1, z) \rightarrow R((y)_0, w)) \wedge (t)(Ew) (t < (y)_0 \rightarrow w \leq (y)_1 \wedge \neg R(t, w)) \wedge \neg (t) (Ew) (t < (y)_0 \rightarrow w < (y)_1 \wedge \neg R(t, w)).$ Define $S_2(y, z)$ to be $R(y, z) \wedge (w)(w < z \rightarrow \neg R(y, w)).$

Lemma 2.2 Given a predicate of the form $R(x_1, y_1, \ldots, x_n, y_n)$ we can effectively find a predicate $S(x_1, y_1, \ldots, x_n, y_n)$ recursive uniformly in R such that

$$(x_1)(\mathbf{E}y_1) \ldots (x_n)(\mathbf{E}y_n)R \ iff \ (x_1)(\mathbf{E}!y_1) \ldots (x_n)(\mathbf{E}!y_n)S.$$

Proof: By induction on $n \ge 1$ with n = 1 by Lemma 2.1 (b), consider $((Ey_2)(x_3) \ldots (x_n)(Ey_n) R(x_1, y_1, \ldots, x_n, y_n))$. By Lemma 2.1 (a), there is predicate $S_1(x_1, y_1, x_2)$ recursive uniformly in $(Ey_2)(x_3) \ldots (x_n)(Ey_n) R(x_1, y_1, x_2, y_2, \ldots, x_n, y_n)$ such that $E!y_1(x_2) S_1(x_1, y_1, x_2)$ iff $(Ey_1)(x_2) \ldots (x_n)(Ey_n) R(x_1, y_1, x_2, y_1, \ldots, x_n, y_n)$ and, hence, $(x_1)(E!y_1)(x_2) S_1(x_1, y_1, x_2)$ iff $(x_1)(Ey_1) \ldots (x_n)(Ey_n) R(x_1, y_1, \ldots, x_n, y_n)$. Since $S_1(x_1, y_1, x_2)$ is recursive uniformly in $(Ey_2)(x_3) \ldots (x_n)(Ey_n)R$, then by Post's Theorem,

$$S_1(x_1, y_1, x_2) \equiv (x_2')(Ey_2) \dots (x_n)(Ey_n) R_1(x_1, y_1, x_2, x_2', y_2, \dots, x_n, y_n)$$

with R_1 recursive uniformly in R. By inductive hypothesis, there is a predicate $S_2(x_1, y_1, x_2, x'_2, y_2, \ldots, x_n, y_n)$ recursive uniformly in R_1 and, hence, in R such that

$$S_1(x_1, y_1, x_2) \equiv (x_2')(E \mid y_2) \dots (x_n)(E \mid y_n) S_2(x_1, y_1, x_2, x_2', y_2, \dots, x_n, y_n)$$

Define $S(x_1, y_1, \ldots, x_n, y_n)$ to be $S_2(x_1, y_1, (x_2)_0, (x_2)_1, y_2, \ldots, x_n, y_n)$ and, consequently,

$$(x_2) S_1(x_1, y_1, x_2) \equiv (x_2)(\mathbf{E} \mid y_2) \dots (x_n)(\mathbf{E} \mid y_n) S(x_1, y_1, x_2, y_2, \dots, x_n, y_n).$$

Thus,

$$(\mathbf{E} y_1)(x_2) \dots (\mathbf{E} y_n)(x_n) R(x_1, y_1, \dots, x_n) \equiv \mathbf{E} ! y_1(x_2) S_1(x_1, y_1, x_2) \equiv (\mathbf{E} ! y_1)(x_2) (\mathbf{E} ! y_2) \dots (x_n) (\mathbf{E} ! y_n) S.$$

Thus, the result follows easily.

Definition 2.1 A subset e of $\overline{N^k}$ belongs to W_k^R if e is recursive in R and the following four conditions hold:

(i) $(z_1, \ldots, z_k) \in e$ implies for all $i \leq k$, $z_i = 2^x \cdot 3^y$ for some x and y.

(ii) For every x, there is at most one y such that $|\{(2^x \cdot 3^y, z_2, \ldots, z_k) \in e\}| = \omega^{k-1}$, here || means order type by first difference.

(iii) For every x and y $\{(z_2, \ldots, z_k): (2^x \cdot 3^y, z_2, \ldots, z_k) \in e\} \in W_{k-1}^R$.

(iv) If for x and y $|\{(2^x \cdot 3^y, z_2, \ldots, z_k) \in e\}| = \omega^{k-1}$, then for every z < x, there is a $y_z < y$ such that

$$|\{(2^{z}\cdot 3^{y_{z}}, z_{2}, \ldots, z_{k}) \in e\}| = \omega^{k-1}.$$

Definition 2.2 For $e_1, e_2, \ldots, e_k \in W_n^R$, define $\circledast(e_1, \ldots, e_k) = \{(2^{x_1} \cdot 3^{y_1}, \ldots, 2^{x_n} \cdot 3^{y_n}): \operatorname{seq}(y_i) \land \operatorname{lh}(y_i) = k \land \text{ for all } i \le k - 1 (2^{x_1} \cdot 3^{(y_1)_i}, \ldots, 2^{x_n} \cdot 3^{(y_n)_i}) \in e_{i+1}\}.$

Lemma 2.3 (1) For any $k \ge 1$ and $e_1, \ldots, e_k \in W_n^R \circledast (e_1, \ldots, e_k) \in W_n^R$.

(2) If for some $i \le k |e_i| \le \omega^n$, then $| \circledast (e_1, \ldots, e_k) | \le \min(|e_1|, \ldots, |e_k|) + \omega^{n-1}$.

(3)
$$| \circledast (e_1, \ldots, e_k) | = \omega^n \text{ iff for all } i \leq k, |e_i| = \omega^n.$$

Proof: By induction on n. For n = 1, the result is clear. Consider $e_1, \ldots, e_k \in W_n^R$, to show $\circledast(e_1, \ldots, e_k) \in W_n^R$. (i) is immediate. For a fixed x and y such that $seq(y) \land lh(y) = k$, then

$$\begin{array}{l} (*) \ \left\{ \left(2^{x} \cdot 3^{y}, \ 2^{x_{2}} \cdot 3^{y_{2}}, \ \ldots, \ 2^{x_{n}} \cdot 3^{y_{n}}\right) \epsilon \circledast \left(e_{1}, \ \ldots, \ e_{k}\right) \right\} \\ &= \left\{ \left(2^{x} \cdot 3^{y}, \ 2^{x_{2}} \cdot 3^{y_{2}}, \ \ldots, \ 2^{x_{n}} \cdot 3^{y_{n}}\right) \colon \left(2^{x_{2}} \cdot 3^{y_{2}}, \ \ldots, \ 2^{x_{n}} \cdot 3^{y_{n}}\right) \\ &\quad \epsilon \circledast \left(\left\{\left(z_{2}, \ \ldots, \ z_{n}\right) \colon \left(2^{x} \cdot 3^{(y)_{0}}, \ z_{2}, \ \ldots, \ z_{n}\right) \in e_{1}\right\}, \ \ldots, \\ &\quad \left\{\left(z_{2}, \ \ldots, \ z_{n}\right) \colon \left(2^{x} \cdot 3^{(y)_{k-1}}, \ z_{2}, \ \ldots, \ z_{n}\right) \in e_{k}\right\}\right\}. \end{array}$$

By (*) and our inductive hypothesis (1), it follows that $\circledast(e_1, \ldots, e_k)$ satisfies (iii). (ii) holds for $\circledast(e_1, \ldots, e_k)$ since (ii) holds for e_1, \ldots, e_k and apply the inductive hypothesis (3) to the right-hand side of (*). Suppose for fixed x and y,

$$\{(2^{x} \cdot 3^{y}, 2^{x_{2}} \cdot 3^{y_{2}}, \ldots, 2^{x_{n}} \cdot 3^{y_{n}}) \in \circledast(e_{1}, \ldots, e_{k})\}| = \omega^{n-1},$$

then by (*) and (3) for $i \leq k - 1$,

$$|\{(2^{x}\cdot 3^{(y)_{i}}, z_{2}, \ldots, z_{n}) \in e_{i+1}\}| = \omega^{n-1}.$$

Since $e_{i+1} \in W_n^R$ and by (iv), for each z < x there is a $y_{z,i+1} < (y)_i$ such that $|\{(2^x \cdot 3^{y_{z,i+1}}, z_2, \ldots, z_n) \in e_{i+1}\}| = \omega^{n-1}$. Thus,

$$|\{(2^{z}\cdot 3^{2^{y_{z,1}}}\ldots p_{k-1}^{y_{z,k}}, z_2, \ldots, z_n)\in \circledast(e_1, \ldots, e_k)\}| = \omega^{n-1}$$

by (*) and (3). Clearly, $2^{y_{z,1}} \ldots p_{k-1}^{y_{z,k}} \le y$ and thus (iv) holds for $\circledast(e_1, \ldots, e_k)$. Thus, $\circledast(e_1, \ldots, e_k) \in W_n^R$.

Suppose $e_1 \in W_n^R$ and $|e_1| < \omega^n$. By (ii) and (iv), there is a unique x such that for all z < x there is exactly one y_z such that $|\{(2^z \cdot 3^{y_z}, z_2, \ldots, z_n) \in e_1\}| = \omega^{n-1}$ and for any $z \ge x$ and any y, $|\{2^z \cdot 3^y, z_2, \ldots, z_n\} \in e_1\}| < \omega^{n-1}$. Consequently, by (*), (2), and (3), noting the choice of y_z for e_2, \ldots, e_n given z < x must also be correct, we have at most x numbers of the form $2^z \cdot 3^y$ such that $|\{(2^z \cdot 3^y, z_2, \ldots, z_n) \in \oplus (e_1, \ldots, e_n)\}| = \omega^{n-1}$. From this (2) follows readily.

By (2), $| \circledast (e_1, \ldots, e_k) | = \omega^n$ implies for all $i \le k$, $|e_i| = \omega^n$. Conversely, suppose $|e_{i+1}| = \omega^n$ for $i+1 \le k$. It is easy to verify that for every x, there is a unique $y_{x,i}$ such that for all $i \le k - 1$, $|\{(2^x \cdot 3^{y_{x,i+1}}, z_2, \ldots, z_n) \in e_{i+1}| = \omega^{n-1}$. Hence,

$$|\{(2^{x}\cdot 3^{2^{y_{x,1}}}\ldots p_{k-1}^{y_{k,k}}, z_{2}, \ldots, z_{n})\in \circledast(e_{1}, \ldots, e_{k})\}| = \omega^{n-1}$$

by (*) and inductive hypothesis (3). Clearly, then $|\circledast(e_1, \ldots, e_k)| = \omega^n$. Q.E.D.

We define by induction on n a well-ordering $e_{S_n} \in W_n^R$ recursive in R for each predicate of the form $(x_1)(Ey_1) \ldots (x_n)(Ey_n) S_n(x_1, y_1, \ldots, x_n, y_n)$ with S_n recursive in R. Moreover, for each n the above operator \circledast maps any k + 1-tuple of well-orderings of the form $e_{S_{i,n}}$, $S_{i,n}$ recursive in R for $i \leq k$, to $\circledast(e_{S_{0,n}}, \ldots, e_{S_{k,n}})$ a well-ordering recursive in R. We can always assume by the above Lemma 2.2 that if $(Ey_1) \ldots (x_n)(Ey_n) S_n(x_1, y_1, \ldots, x_n, y_n)$, then

$$(E ! y_1) \ldots (x_n) (E ! y_n) S_n(x_1, y_1, \ldots, x_n, y_n).$$

Suppose n = 1: Let $e_{S_1} = \{2^x \cdot 3^y : seq(y) \land lh(y) = x + 1 \land (z)_{z \leq x} S_1(z, (y)_z - 1)\}.$

Suppose n = j + 1:

$$e_{S_{j+1}} = \{ (2^{x} \cdot 3^{y}, z_{1}, \ldots, z_{j}) \colon seq(y) \land lh(y) \\ = x + 1 \land (z_{1}, \ldots, z_{j}) \in \circledast(e_{S_{0,j}}, \ldots, e_{S_{x,j}}) \}$$

where

$$S_{z,j} = (x_2)(Ey_2) \dots (x_{j+1})(Ey_{j+1}) S_{j+1}(z, (y)_z - 1, x_2, y_2, \dots, x_{j+1}, y_{j+1}).$$

 $e_{S_{j+1}}$ is ordered by first differences and <, i.e., it is a subordering of the natural ordering of \mathcal{N}^{j+1} . It is obvious that e_{S_n} and $\circledast(e_{S_{0,n}}, \ldots, e_{S_{k,n}})$ are well-orderings and their order types are less than or equal to ω^n .

Lemma 2.4 (a) $e_{S_n} \in W_n^R$ for all n and S_n .

(b) For all $x_1 \le j$, $(Ey_1) \ldots (x_n)(Ey_n) S_n(x_1, y_1, \ldots, x_n, y_n)$ iff there is a y such that $|\{(2^j \cdot 3^y, z_2, \ldots, z_n) \in e_{S_n}\}| = \omega^{n-1}$.

(c)
$$|e_{S_n}| = \omega^n iff(x_1)(\mathbf{E}y_1) \dots (x_n)(\mathbf{E}y_n)S_n$$

Proof: By induction on *n*, the result is immediate for n = 1. Consider S_n for n > 1, assuming the result is true for n - 1. By the previous lemma and definition it is clear that (i) and (iii) hold for e_{S_n} . Suppose that $|\{(2^x \cdot 3^y, z_2, \ldots, z_n) \in e_{S_n}\}| = \omega^{n-1}$, then seq(y), lh(y) = x + 1, and for $i \le x$, $|e_{S_{i,n}}| = \omega^{n-1}$ by Lemma 2.3, (3), where

$$(x_2)(\mathbf{E}y_2) \ldots (x_n)(\mathbf{E}y_n)S_{i,n} = (x_2)(\mathbf{E}y_2) \ldots (x_n)(\mathbf{E}y_n)S_n(i, (y)_i - 1, x_2, y_2, \ldots, x_n, y_n).$$

Hence, by our inductive hypothesis (c),

$$(x_2)(\mathbf{E}y_2) \ldots (x_n)(\mathbf{E}y_n) S_n(i, (y)_i - 1, x_2, y_2, \ldots, x_n, y_n)$$

is true, but then $(y)_i - 1$ is uniquely determined by *i*. Hence, y is unique and (ii) holds for e_{S_n} . Moreover, for z < x, take $y_z = 2^{y_0} \dots p_z^{y_z}$ and by the definition of S_n and the previous Lemma, it is clear that $|\{(2^z \cdot 3^{yz}, z_2, \ldots,$ z_n) $\in e_{S_n}$ = ω^{n-1} and $y_z < y$. Thus, (iv) holds for e_{S_n} and $e_{S_n} \in W_n^R$. (b) is clear and (c) follows from (b) and properties (ii) and (iv) of elements of W_n^R . Q.E.D.

We now define mappings \mathfrak{B}_k : $W_k^R \times W_n^R \to W_n^R$ for n = k, k + 1 whose definitions are motivated by the notion of relativization of quantifiers as follows.

Definition 2.3
$$e_1 \circledast_1 e'_1 = \{(2^x \cdot 3^{2^y \cdot 3^{y'}}): 2^x \cdot 3^y \in e'_1 \text{ and } 2^{2^x \cdot 3^y} \cdot 3^{y'} \in e_1\}$$

 $e_1 \circledast_1 e_2 = \{(2^x \cdot 3^{2^y \cdot 3^{y'}}, 2^z \cdot 3^{2^{w} \cdot 3^{w'}}):$
 $(2^x \cdot 3^y, 2^z \cdot 3^w) \in e_2, 2^{2^x \cdot 3^y} \cdot 3^{y'} \in e_1, \text{ and } 2^{2^z \cdot 3^w} \cdot 3^{w'} \in e_1\}$.

Below we let $e_n(z) = \{(z_2, \ldots, z_n): (z, z_2, \ldots, z_n) \in e_n\}$. Now suppose \circledast_i has been defined for all $j \le k$ where $k \ge 2$. Let

$$e_{k} \circledast_{k} e'_{k} = \{ (2^{x} \cdot 3^{2^{y} \cdot 3^{y'}}, z_{2}, \ldots, z_{k}) : (z_{2}, \ldots, z_{k}) \in (e_{k}(2^{2^{x} \cdot 3^{y}} \cdot 3^{y'}) \circledast_{k-1} e'_{k}(2^{x} \cdot 3^{y})) \}$$

and define

$$e_k \circledast_k e_{k+1} = \{ (2^x \cdot 3^{2^x \cdot 3^{y'}}, z_2, \ldots, z_{k+1}) : (z_2, \ldots, z_{k+1}) \in (e_k (2^{2x \cdot 3y} \cdot 3^{y'}) \circledast_{k-1} (e_k \circledast_k e_{k+1} (2^x \cdot 3^y))) \}$$

The following result establishes that \circledast_k is well-defined and its fundamental properties:

Lemma 2.5 Let $e_k \in W_k^R$, $e_n \in W_n^R$ for n = k or n = k + 1, then

(a) $e_k \circledast_k e_n \in W_n^R$ (b) If $|e_k| \leq \omega^k$, then $|e_k \circledast_k e_n| < \omega^k$, (c) If $|e_k| = \omega^k$ and $|e_n| < \omega^n$, then $|e_k \circledast_k e_n| \le |e_n| + \omega^{n-1}$

for n = k or n = k + 1,

and

(d)
$$|e_k \circledast_k e_n| = \omega^n$$
 iff $|e_k| = \omega^k$ and $|e_n| = \omega^n$.

Proof: By induction on k, consider k = n = 1. It is clear that if $2^x \cdot 3^{2^y \cdot 3^{y'}} \epsilon$ $e_1 \circledast_1 e'_1$, then y is unique for x since $2^x \cdot 3^y \epsilon e'_1$ and y' is unique for $2^x \cdot 3^y$ since $2^{2^{x}\cdot 3^{y}}\cdot 3^{y'} \epsilon e_1$; thus, $2^{y}\cdot 3^{y'}$ is unique for x. Thus, (i), (ii), and (iii) of the definition of W_1^R hold. Suppose $2^{x} \cdot 3^{2^{y} \cdot 3^{y'}} \epsilon e_1 \circledast_1 e_1'$ and let z < x, then there is a $y_z < y$ such that $2^{z} \cdot 3^{y_z} \epsilon e_1'$ and then, since $2^z \cdot 3^{y_z} < 2^x \cdot 3^y$, there is a $y'_z < y'$ such that $2^{2^z \cdot 3^{y_z}} \cdot 3^{y'_z} \epsilon e_1$. Thus, $2^x \cdot 3^{2^y \cdot 3^{y'}} > 2^z \cdot 3^{2^{y_z} \cdot 3^{y'_z}} \epsilon e_1 \circledast_1 e_1'$ and $e_1 \circledast_1 e'_1 \in W_1^R$. Clearly, $|e_1 \circledast_1 e'_1| \leq |e'_1|$ and $|e_1| \leq \omega$ implies $|e_1 \circledast_1 e'_1| \leq \omega$ $|e_1| < \omega$ and from these (c), (b), and (d) follow.

Now for k = 1 consider n = 2. Note first that

$$e_1 \circledast_1 e_2 = \{ (2^x \cdot 3^{2^y \cdot 3^{y'}}, z) \colon z \in (e_1 \circledast_1 e_2(2^x \cdot 3^y)) \text{ and } (2^{2^x \cdot 3^y} \cdot 3^{y'} \in e_1) \}$$

* *

and thus (i) and (iii) hold. Suppose now $|\{(2^x \cdot 3^{2^{y} \cdot 3^{y'}}, z) \in e_1 \circledast_1 e_2\}| = \omega$, i.e.,

 $|e_1 \circledast_1 e_2(2^x \cdot 3^y)| = \omega$, and thus, by (d) for k = n = 1, we have $|e_1| = |e_2(2^x \cdot 3^y)| = \omega$. Since $e_2 \in W_2^R$, we have that y is unique for x, but $2^{2^{x} \cdot 3^y} \cdot 3^{y'} \in e_1$ and hence y' is unique for $2^x \cdot 3^y$. Thus, $2^y \cdot 3^{y'}$ is the unique number such that $|(e_1 \circledast_1 e_2)(2^x \cdot 3^{2^y \cdot 3^{y'}})| = \omega$, and (ii) holds for $e_1 \circledast_1 e_2$. By a similar type argument, as above, (iv) holds for $e_1 \circledast_1 e_2$ and $e_1 \circledast_1 e_2 \notin W_2^R$. Suppose now $|e_1| < \omega$, then by the inductive hypothesis (b) for all $z |e_1 \circledast_1 e_2(z)| < \omega$, and it follows that $(e_1 \circledast_1 e_2)(z) = \emptyset$ for all but finitely many z. Thus, $|e_1 \circledast_1 e_2| < \omega$ and (b) holds. Suppose $|e_1| = \omega$ and $|e_2| < \omega^2$, there is some j such that for i < j there is a unique y_i such that $|e_2(2^i \cdot 3^{y_i})| = \omega$ and for any $2^x \cdot 3^y \neq 2^i \cdot 3^{y_i}$ for all i < j, $|e_2(2^x \cdot 3^y)| < \omega$. It follows readily that there are exactly j numbers z of the form $z = 2^i \cdot 3^{2^{y_i \cdot 3^{y_i}}}$ for some i < j and y_i^i such that $|(e_1 \circledast_1 e_2)(z)| = \omega$, using inductive hypothesis (d), and for all other z, $|(e_1 \circledast_1 e_2)(z)| < \omega$. Clearly, then,

$$|e_1 \circledast_1 e_2| \leq \omega \cdot (j) + \omega \leq |e_2| + \omega,$$

since $\omega \cdot (j) \leq |e_2|$, and (c) holds. If $|e_1| = \omega$ and $|e_2| = \omega^2$, then $|e_1 \circledast_1 e_2| = \omega^2$. Conversely, suppose $|e_1 \circledast_1 e_2| = \omega^2$, then for some y, y',

$$|(e_1 \circledast_1 e_2)(2^0 \cdot 3^{2^{\gamma} \cdot 3^{\gamma'}})| = \omega = |e_1 \circledast_1 e_2(2^0 \cdot 3^{\gamma})|$$

and by inductive hypothesis (d) $|e_1| = \omega$. If $|e_2| \le \omega^2$, then $|e_1 \circledast_1 e_2| \le |e_2| + \omega \le \omega^2$ by (c), contrary to hypothesis, and thus (d) holds.

Suppose the result is true for k-1 and n=k-1, k where $k \ge 2$. Consider now k and n=k,

$$e_k \circledast_k e'_k = \{ (2^x \cdot 3^{2^{y} \cdot 3^{y'}}, z_2, \ldots, z_k) : (z_2, \ldots, z_k) \in (e_k (2^{2^x \cdot 3^y} \cdot 3^{y'}) \circledast_{k-1} e'_k (2^x \cdot 3^y)) \}.$$

Clearly, (i) and (iii) hold by the inductive hypothesis. Suppose $|(e_k \circledast_k e'_k)(2^x \cdot 3^{2^y \cdot 3^{y'}})| = \omega^{k-1}$, then by definition and (d), $|e_k(2^{2^x \cdot 3^y} \cdot 3^{y'})| = \omega^{k-1}$ and $|e'_k(2^x \cdot 3^y)| = \omega^{k-1}$. Consequently, by definition of W_k^R , y is unique for x and y' is unique for $2^x \cdot 3^y$; thus $2^y \cdot 3^{y'}$ is uniquely determined by x. Likewise, (iv) holds and $e_k \circledast_k e'_k \in W_k^R$. Suppose $|e_k| < \omega^k$, then for at most finitely many numbers of the form $2^{2^x \cdot 3^y} \cdot 3^{y'} |e_k(2^{2^x \cdot 3^y} \cdot 3^{y'})| = \omega^{k-1}$, and corresponding to each of these,

$$|(e_k \circledast_k e'_k)(2^x \cdot 3^{2^{y} \cdot 3^{y'}})| = |e_k(2^{2^x \cdot 3^y} \cdot 3^{y'}) \circledast_{k-1} e'_k(2^x \cdot 3^y)| \leq |e'_k(2^x \cdot 3^y)| + \omega^{k-2}$$

by (c) if $|e_k'(2^x \cdot 3^y)| < \omega^{k-1}$ or, otherwise,

$$|(e_k \circledast_k e'_k)(2^x \cdot 3^{2^{y} \cdot 3^{y'}})| = \omega^{k-1} \text{ if } |e'_k(2^x \cdot 3^y)| = \omega^{k-1}.$$

For all but finitely many of the numbers of the form $2^x \cdot 3^{2^y \cdot 3^{y'}}$, $|e_k(2^{2^{x} \cdot 3^y} \cdot 3^{y'})| < \omega^{k-1}$ and consequently by (b) it follows that $|(e_k \circledast_k e'_k)(2^x \cdot 3^{2^y \cdot 3^{y'}})| < \omega^{k-1}$. Thus, $|e_k \circledast_k e'_k| < \omega^k$ and (b) holds. Suppose now that $|e_k| = \omega^k$ and $|e'_k| < \omega^k$, we wish to establish (c).

Case 1. Suppose for all numbers of the form $2^x \cdot 3^y$, $|e'_k(2^x \cdot 3^y)| < \omega^{k-1}$, then for any $y' |(e_k \circledast_k e'_k)(2^x \cdot 3^{2^y \cdot 3^{y'}})| < \omega^{k-1}$, since if $|e_k(2^{2^x \cdot 3^y} \cdot 3^{y'})| = \omega^{k-1}$, then

by (c) $|(e_k \circledast_k e'_k)(2^x \cdot 3^{2^{y} \cdot 3^{y'}})| \le |e'_k(2^x \cdot 3^{y})| + \omega^{k-2} \le \omega^{k-1}$ and if $|e_k(2^{2^x \cdot 3^y} \cdot 3^{y'})| \le \omega^{k-1}$, then by (b) $|(e_k \circledast_k e'_k)(2^x \cdot 3^{2^{y} \cdot 3^{y'}})| \le \omega^{k-1}$. Thus,

$$|e_k \circledast_k e'_k| \leq \omega^{k-1} \leq |e'_k| + \omega^{k-1}.$$

Case 2. Suppose for each $i \leq j$, there is a y_i such that $|e'_k(2^i \cdot 3^{y_i})| = \omega^{k-1}$ and for $2^x \cdot 3^y \neq 2^i \cdot 3^{y_i}$ for all $i \leq j$, then $|e'_k(2^x \cdot 3^y)| < \omega^{k-1}$. Thus, since $|e_k| = \omega^k$, there is for every $i \leq j$ a unique y'_i such that $|(e_k \circledast_k e'_k)(2^i \cdot 3^{2^{y_i} \cdot 3^{y'_i}})| = \omega^{k-1}$ by inductive hypothesis (d). For any number $2^x \cdot 3^{2^{y_3 \cdot 3^{y'_i}}$ different from $2^i \cdot 3^{2^{y_i} \cdot 3^{y'_i}}$ for all $i \leq j$, we have $|(e_k \circledast_k e'_k)(2^x \cdot 3^{2^{y_3 \cdot 3^{y'_i}}})| < \omega^{k-1}$ by the argument given in Case 1 above. Consequently, $|e_k \circledast_k e'_k| \leq \omega^{k-1} \cdot (j+1) + \omega^{k-1} \leq |e'_k| + \omega^{k-1}$. Thus, (c) holds. Clearly, $|e_k| = \omega^k$ and $|e'_k| = \omega^k$ implies $|e_k \circledast_k e'_k| = \omega^k$ and (d) follows from this, (b) and (c).

Suppose the result is true for k - 1 and n = k - 1, k and for k and n = k and consider n = k + 1, then

$$e_k \circledast_k e_{k+1} = \{(2^x \cdot 3^{2^y \cdot 3^{y'}}, z_2, \ldots, z_{k+1}): (z_2, \ldots, z_{k+1}) \in (e_k(2^{2^x \cdot 3^y} \cdot 3^{y'}) \circledast_{k-1}(e_k \circledast_k e_{k+1}(2^x \cdot 3^y)))\}$$

Clearly, (i) and (iii) hold by our inductive hypothesis. Suppose now $|(e_k \circledast_k e_{k+1})(2^x \cdot 3^{2^y \cdot 3^{y'}})| = \omega^k$, then we have $|e_k(2^{2^x \cdot 3^y} \cdot 3^{y'})| = \omega^{k-1}$, $|e_k \circledast_k e_{k+1}(2^x \cdot 3^y)| = \omega^k$ by our inductive hypotheses (d), and, hence also, $|e_k| = |e_{k+1}(2^x \cdot 3^y)| = \omega^k$. Hence, y is uniquely determined by x and y' is uniquely determined by $2^x \cdot 3^y$. Hence, $2^y \cdot 3^{y'}$ is uniquely determined by x, and (iii) holds. Suppose z < x, then there is a $y_z < y$ such that $|e_{k+1}(2^z \cdot 3^{y_z})| = \omega^k$, and there is a $y'_z < y'$ such that $|e_k(2^{2^z \cdot 3^y z} \cdot 3^{y'_z})| = \omega^{k-1}$. Thus,

$$|(e_k \circledast_k e_{k+1})(2^z \cdot 3^{y_z} \cdot 3^{y_z})| = |e_k(2^{2^z \cdot 3^{y_z}} \cdot 3^{y_z'}) \circledast_{k-1} (e_k \circledast_k e_{k+1})(2^z \cdot 3^{y_z})| = \omega^k$$

by our inductive hypothesis (d), and (iv) holds. Suppose $|e_k| < \omega^k$, then by our inductive hypothesis (b), for every $2^x \cdot 3^y |e_k \circledast_k e_{k+1}(2^x \cdot 3^y)| < \omega^k$. Moreover, there are at most finitely many numbers of the form $2^x \cdot 3^{2^y \cdot 3^{y'}}$ such that $|e_k(2^{2^{x} \cdot 3^y} \cdot 3^{y'})| = \omega^{k-1}$ and for each of these we have

$$|(e_k \circledast_k e_{k+1})(2^x \cdot 3^{2^y \cdot 3^{y'}})| = |e_k(2^{2^x \cdot 3^y} \cdot 3^{y'}) \circledast_{k-1}(e_k \circledast_k e_{k+1}(2^x \cdot 3^y)| \leq |e_k \circledast_k e_{k+1}(2^x \cdot 3^y)| + \omega^{k-1} < \omega^k$$

by our inductive hypotheses (c). For all other numbers of the form $2^x \cdot 3^{2^y \cdot 3^{y'}}$, we have $|e_k(2^{2^x \cdot 3^y} \cdot 3^{y'})| < \omega^{k-1}$ and thus $|(e_k \circledast_k e_{k+1})(2^x \cdot 3^{2^y \cdot 3^{y'}})| < \omega^{k-1}$ by our inductive hypothesis (b). Thus, $|e_k \circledast_{k+1} e_{k+1}| < \omega^k$. Suppose now for (c) that $|e_k| = \omega^k$ and $|e_{k+1}| < \omega^{k+1}$.

Case 1. Suppose for all $2^x \cdot 3^y |e_{k+1}(2^x \cdot 3^y)| < \omega^k$, then

$$|e_{k}(2^{2^{x}\cdot 3^{y}}\cdot 3^{y'}) \circledast_{k-1}(e_{k} \circledast_{k} e_{k+1}(2^{x}\cdot 3^{y}))| \leq |e_{k} \circledast_{k} e_{k+1}(2^{x}\cdot 3^{y})| + \omega^{k-1}$$

 $\begin{array}{l} \text{if } |e_k(2^{2^{x}\cdot 3^{y}}\cdot 3^{y'})| = \omega^{k-1} \text{ and } |e_k \circledast_k e_{k+1}(2^x\cdot 3^y)| \le |e_{k+1}(2^x\cdot 3^y)| + \omega^{k-1} \text{ by (c)} \\ \text{since } |e_k| = \omega^k. \text{ Thus, } |(e_k \circledast_k e_{k+1})(2^x\cdot 3^{2^y\cdot 3^{y'}})| \le \omega^k \text{ if } |e_k(2^{2^x\cdot 3^y}\cdot 3^{y'})| = \omega^{k-1}. \\ \text{if } |e_k(2^{2^x\cdot 3^y}\cdot 3^{y'})| \le \omega^{k-1}, \text{ then by (b) } |(e_k \circledast_k e_{k+1})(2^x\cdot 3^{2^y\cdot 3^{y'}})| \le \omega^{k-1}. \text{ Thus,} \end{array}$

$$|e_k \circledast_k e_{k+1}| \leq \omega^k \leq |e_{k+1}| + \omega^k.$$

Case 2 Suppose there is a number j such that for all $i \leq j$, there is a y_i such that $|e_{k+1}(2^i \cdot 3^{y_i})| = \omega^k$ and for $2^x \cdot 3^y \neq 2^i \cdot 3^{y_i}$ for all $i \leq j$, $|e_{k+1}(2^x \cdot 3^y)| < \omega^k$. There exists exactly (j + 1) numbers $2^i \cdot 3^{2^{y_i} \cdot 3^{y'_i}}$ such that $|e_k(2^{2^i \cdot 3^{y_i}} \cdot 3^{y'_i})| = \omega^{k-1}$ for some $i \leq j$ and, consequently, $|(e_k \circledast e_{k+1})(2^i \cdot 3^{2^{y_i} \cdot 3^{y'_i}})| = \omega^k$ for all $i \leq j$. For any number $2^x \cdot 3^{2^y \cdot 3^{y'_i}} \neq 2^{i_1} \cdot 3^{2^{y_i} \cdot 3^{y'_i}}$ for all $i \leq j e_{k+1}(2^x \cdot 3^y) < \omega^k$ and, consequently, as in Case 1, $|(e_k \circledast e_{k+1})(2^x \cdot 3^{2^{y_i} \cdot 3^{y'_i}})| < \omega^k$. Thus,

$$|e_k \circledast_k e_{k+1}| \leq \omega^k \cdot (j+1) + \omega^k \leq |e_{k+1}| + \omega^k.$$

Thus, (c) holds for $e_k \circledast_k e_{k+1}$. Suppose $|e_k| = \omega^k$ and $|e_{k+1}| = \omega^{k+1}$, then it readily follows that $|e_k \circledast_k e_{k+1}| = \omega^{k+1}$ and (d) results from this, (b) and (c). This completes the entire lemma. Q.E.D.

The above result can be used to establish the following main result concerning \circledast_k , which is fundamental to this paper.

Theorem 2.1 If $k \ge 1$ and $|e_k| \le \omega^j$ where $0 \le j \le k$, then $|e_k \circledast_k e_n| \le \omega^j$ for n = k or n = k + 1.

Proof: By induction, consider k = 1. Suppose $|e_1| < \omega$, then by the previous Lemma $|e_1 \circledast_1 e'_1| < \omega$ and $|e_1 \circledast_1 e_2| < \omega$. If $|e_1| < \omega^0 = 1$, then $|e_1| = 0$ and thus $|e_1 \circledast_1 e'_1| = 0$ and $|e_1 \circledast_1 e_2| = 0$.

Let $k \ge 2$ and suppose the result is true for all s < k and n = s or n = s + 1. Consider first n = k, i.e., $e_k \circledast_k e'_k$. Suppose $|e_k| < \omega^j$ for $j \le k$.

Case 1 Suppose j = k, then $|e_k| < \omega^k$ which implies by the preceding lemma (b) that $|e_k \circledast_k e'_n| < \omega^k = \omega^j$.

Case 2 Suppose $j \le k$, then for at most finitely many x, y, $\omega^j > |e_k(2^x \cdot 3^y)| \ge \omega^{j-1}$ and for all but finitely many x, y, $|e_k(2^x \cdot 3^y)| \le \omega^{j-1}$. Thus,

$$|(e_k \circledast_k e'_k)(2^x \cdot 3^{2^{y} \cdot 3^{y'}})| = |e_k(2^{2^x \cdot 3^y} \cdot 3^{y'}) \circledast_{k-1} e'_k(2^x \cdot 3^y)| < \omega^{j-1}$$

for all but finitely many $2^x \cdot 3^y$, y', since j - 1 < k - 1 and our inductive hypothesis. Suppose now $\omega^{j-1} \leq |e_k(2^{2^{x} \cdot 3^y} \cdot 3^{y'})| < \omega^j$, then since $j \leq k - 1$ by the inductive hypothesis,

 $|e_k(2^{2^{x}\cdot 3^{y}}\cdot 3^{y^{j}}) \circledast_{k-1} e_k'(2^{x}\cdot 3^{y})| < \omega^{j}$

where this can occur at most for finitely many $2^x \cdot 3^y$, y'. Thus, $|e_k \circledast_k e'_k| < \omega^j$.

Suppose the result is true for $e_k \oplus_k e'_k$, consider now $e_k \oplus_k e_{k+1}$ where $|e_k| < \omega^j$ for some $j \leq k$.

Case 1 Suppose j = k, then the result follows from the preceding Lemma, i.e., $|e_k \circledast_k e_{k+1}| < \omega^k$.

Case 2 Suppose $j \le k$ and $|e_k| \le \omega^j$. For at most finitely many $x, y, \omega^{j-1} \le |e_k(2^x \cdot 3^y)| \le \omega^j$ and for all other $x, y, |e_k(2^x \cdot 3^y)| \le \omega^{j-1}$. Suppose $\omega^{j-1} \le |e_k(2^{2^x \cdot 3^y} \cdot 3^{y'})| \le \omega^j$, then

$$|(e_k \circledast_k e_{k+1})(2^x \cdot 3^{2^{y} \cdot 3^{y'}})| = |e_k(2^{2^x \cdot 3^y} \cdot 3^{y'}) \circledast_{k-1} (e_k \circledast_k e_{k+1}(2^x \cdot 3^y))| < \omega^{\frac{1}{2}}$$

by our inductive hypothesis since $j \leq k - 1$ and $e_k \circledast_k e_{k+1}(2^x \cdot 3^y) \in W_k^R$, and

this happens for at most finitely many $2^x \cdot 3^{2^y \cdot 3^{y'}}$. If $|e_k(2^{2^x \cdot 3^y} \cdot 3^{y'})| < \omega^{j-1}$. then

$$|(e_k \circledast_k e_{k+1})(2^x \cdot 3^{2^{y} \cdot 3^{y'}})| = |e_k(2^{2^{x} \cdot 3^y} \cdot 3^{y'}) \circledast_{k-1} (e_k \circledast_k e_{k+1}(2^x \cdot 3^y))| < \omega^{j-1}$$

by our inductive hypothesis since j - 1 < k - 1 and $e_k \circledast_k e_{k+1}(2^x \cdot 3^y) \in W_k^R$. Thus $|e_k \circledast_k e_{k+1}| < \omega^j$. Q.E.D.

Note that we can define $e_k \circledast_k e_n$ for any n > k + 1 by

$$e_k \circledast_k e_n = ((e_k \circledast_k e'_{k+1}) \circledast_{k+1} e'_{k+2}) \ldots \circledast_{n-1} e_n$$

where $|e'_{k+1}| = \omega^{k+1}, \ldots, |e'_{n-1}| = \omega^{n-1}$, and $e'_i \in W^R_i$ for $i = k + 1, \ldots, n - 1$.

3 The construction of well-orderings of determined type Below H_{ω} , $H_{\omega \cdot 2}, \ldots, H_{\omega \cdot n}, \ldots$ are certain fixed hyperarithmetic sets determined by $a \in O$, e.g., $H_{\omega} = H_a$ where $|a| = \omega$ and $a \in O$, chosen so that we know $|a_i|$ "effectively" (this certainly can be done up through ε_0). W refers to the set of all indices of recursive well-orderings as in [10]. W_k and W_k^A refer to sets of all indices of those well-orderings recursive and recursive in Adefined in section 2.

Lemma 3.1 For any x, we can effectively find $e_x(k) \in W_k$ such that

$$\begin{aligned} |e_x(k)| &< \omega^k \text{ if } x \in \underline{O}^{(2k)} \\ |e_x(k)| &= \omega^k \text{ if } x \in \overline{O}^{(2k)}. \end{aligned}$$

Proof: $x \in O^{(2k)} \equiv Ex_1 \forall y_1 \dots Ex_k \forall y_k R(x, x_1, y_1, \dots, x_k, y_k)$, with R recursive. Thus, $x \notin O^{(2k)} \equiv \forall x_1 \ge y_1 \dots \forall x_k \ge y_k \exists R(x, x_1, \dots, x_k, y_k)$ and, by Lemma 2.2.

 $x \notin \mathbf{O}^{(2k)} \equiv \forall x_1 \mathbf{E} \, ! \, y_1, \ldots, \forall x_k \mathbf{E} \, ! \, y_k \, S(x, x_1, \ldots, x_k, y_k).$

By Lemma 2.4, take $e_x = e_{S_k}$ where $S_k = S(x, x_1, \ldots, x_k, y_k)$, then $|e_x| \le \omega^k$ and $|e_x| = \omega^k$ iff $x \notin O^{(2k)}$.

For the following we modify Kleene's T-predicate of [2] so that $T_1^A(x, y, z, n)$ iff $T_1^A(x, y, z)$ and only questions of the form $a \in A$ for $(a)_1 \leq n$ are asked of the oracle. Then it follows that for $a' = 3 \cdot 5^a \in O \operatorname{Ez} \mathsf{T}_1^{\mathsf{H}_{a'}}(x, y, z) \equiv$ $\mathbf{E} n \mathbf{E} z \mathsf{T}_{1}^{\mathsf{H}_{a'}}(x, y, z, n) = \mathbf{E} n \mathbf{E} z \mathsf{T}_{1}^{\mathsf{H}_{a'}}(x, y, z, n) \text{ where } \mathsf{H}_{a'_{a}} = \{w: (w)_{1} \leq n \land (w)_{0} \in \mathbb{C} \}$ $H_{a(w)_1}$. Clearly $H_{a_n} \leq_1 H_{a'_n}$ and $H_{a'_n} \leq_m H_{a_n}$, using Lemma 3 [4]. Consequently, for a primitive recursive $\phi(x, n)$, (E2) $T_1^{Ha'_n}(x, y, z, n) \equiv (E2) T_1^{Ha_n}(\phi(x, n), y, z)$. Thus, $EzT_1^{H_{a'}}(x, y, z) = EnEzT_1^{H_{a_n}}(\phi(x, n), y, z)$. In particular,

$$(z) \mathsf{T}_{1}^{\mathsf{H}_{a'}}(x, y, z) \equiv (n)(z) \mathsf{T}_{1}^{\mathsf{H}_{a_n}}(\phi(x, n), y, z)$$

Lemma 3.2 For any x, $a \in O$, $|a| = \omega$, then we can effectively find $e_x(a) \in W$ such that

$$|e_x(a)| < \omega^{\omega} \text{ if } x \in \mathsf{H}'_a$$
$$|e_x(a)| = \omega^{\omega} \text{ if } x \notin \mathsf{H}'_a.$$

Proof: Choose $a \in O$ such that $H_{a_n} = O^{(2n-1)}$. For each n,

$$\mathbf{E} z \mathsf{T}_{1}^{\mathsf{H}_{a}}(\phi(x, n), x, z) \equiv (\mathbf{E} z) \mathsf{T}_{1}^{\mathsf{O}^{(2n-1)}}(\phi(x, n), x, z) \equiv g(x, n) \in \mathsf{O}^{(2n)},$$

13

for a primitive recursive g(x, n). Let $e_n = e_{g(x,n)}(n)$ of Lemma 3.1. Consequently, $x \in \mathbf{H}'_a$ iff for some n, $|e_n| \le \omega^n$. Define $s_i \in W$ inductively as follows: $s_1 = e_1, \ldots, s_{i+1} = s_i \circledast_i e_{i+1}$. Finally, let

$$e_x(a) = s_1, s_2, \ldots, s_n, \ldots = \bigcup \{\{i\} \times s_i:$$

ordered by first coordinates first and then as in $s_i\}$.

Suppose $x \in H'_a$, then let j be the smallest i such that $|e_i| < \omega^i$. By Lemma 2.5, $|s_{j-1}| = \omega^{j-1}$,

$$|s_{j}| = |s_{j-1} \circledast_{j-1} e_{j}| \le |e_{j}| + \omega^{j-1} \le \omega^{j}.$$

Thus, $|s_{j+1}| = |s_j \otimes_j e_{j+1}| < \omega^j$ and by Theorem 2.1 for all $k \ge j$, $|s_k| < \omega^j$. Thus, $|e_x(a)| = \sum_{i=0}^{\omega} |s_i| \le \omega^j$. If $x \notin H'_a$, then for all n, $|e_n| = \omega^n$. Consequently, by Lemma 2.5, $|s_n| = \omega^n$ for all n. Thus, $|e_x(a)| = \omega^{\omega}$. Q.E.D.

Let $e_i \in W_i^{\mathsf{H}_{\omega}}$, then $x \in e_i \equiv (\mathsf{E}z) \mathsf{T}_1^{\mathsf{H}_{\omega}}(e_{i,1}, x, z)$ and $x \notin e_i \equiv (\mathsf{E}z) \mathsf{T}_1^{\mathsf{H}_{\omega}}(e_{i,2}, x, z)$. Thus, $x \in e_i \equiv \forall z \neg \mathsf{T}_1^{\mathsf{H}_{\omega}}(e_{i,2}, x, z) \equiv \phi(e_{i,2}, x) \in \mathsf{H}_{\omega}^{\mathsf{I}}$. For each $n \ge 1$, let $e_n(x)$ be the elements of W_n associated with the question $\phi(e_{i,2}, x) \in \mathsf{H}_{\omega}^{\mathsf{I}}$ by Lemma 3.1 (as in the proof of Lemma 3.2), i.e., for all n, $|e_n(x)| = \omega^n$ iff $\phi(e_{i,2}, x) \in \mathsf{H}_{\omega}^{\mathsf{I}}$ iff $x \in e_i$. Consider the question $y \in \mathsf{H}_{\omega}^{\mathsf{I}}$, as above prior to Lemma 3.2, $y \in \mathsf{H}_{\omega}^{\mathsf{I}} \equiv \mathsf{E}n\mathsf{E}z \mathsf{T}_1^{\mathsf{H}_n}(\phi(y, n), y, z)$. Let $|a_n| = 2n$ for $n \ge 1$, then

$$y \in \mathbf{H}'_{\omega} \equiv EnEz \, \mathbf{T}_{1}^{\mathbf{O}^{2n}}(\phi(y, n), y, z) \equiv g(y, n) \in \mathbf{O}^{2n+1} \equiv f(y, n) \in \overline{\mathbf{O}^{2(n+1)}}.$$

Moreover, it is evident that we can assume $g(y, n) \in O^{2n+1} \to g(y, n+1) \in O^{2(n+1)+1}$. Consequently, by Lemma 2.4 we can effectively find $a_{n+1}(y) \in W_{n+1}$, $(n \ge 1)$ such that $y \in H'_{\omega}$ iff $En(|a_{n+1}(y)| = \omega^{n+1})$ iff $Ek(n)(n \ge k \to |a_{n+1}(y)| = \omega^{n+1})$, i.e., $y \notin H'_{\omega}$ iff $\forall n(|a_{n+1}(y)| < \omega^{n+1})$.

Now we define the basic construction. Given $e_1 \in W_1^{\mathsf{H}_{\omega}}$, an x and a y, we find recursively the sequences $e_n(x)$ for $n \ge 1$ and $a_{n+1}(y)$ for $n \ge 1$, as above. By $s(x)/a_{k+1}(y)$, we mean the element of W constructed as in Lemma 3.2 from the sequence

$$e_1(x), e_2(x), \ldots, a_{k+1}(y) \circledast_{k+1} e_{k+1}(x), e_{k+2}(x), \ldots$$

Hence, if for some i < k + 1, $|e_i(x)| < \omega^i$, then $|s(x)/a_{k+1}(y)| \le \omega^i$ by Theorem 2.1. If $|a_{k+1}(y)| < \omega^{k+1}$ or $|e_{k+1}(x)| < \omega^{k+1}$, then $|a_{k+1}(y) \circledast_{k+1}$ $e_{k+1}(x)| < \omega^{k+1}$ by Lemma 2.5, and by Theorem 2.1, $|s(x)/a_{k+1}(y)| \le \omega^{k+1}$. If the smallest *i* such that $|e_i(x)| < \omega^i$ is larger than k + 1 and $|a_{k+1}(y)| = \omega^{k+1}$, then $|s(x)/a_{k+1}(x)| \le \omega^i$. Define

$$\theta(x, y) = s(x)/a_2(y), \ s(x)/a_3(y), \ \ldots, \ s(x)/a_{n+1}(y), \ \ldots$$

i.e., the effective sum of these well-orderings. It has these properties:

- (1) $|\theta(x, y)| = \omega^{\omega+1}$, if $y \in H'_{\omega}$ and $x \in \overline{H'_{\omega}}$;
- (2) $|\theta(x, y)| \leq \omega^{\omega}$, if $y \notin H'_{\omega}$ and $x \in \overline{H'_{\omega}}$;
- (3) $|\theta(x, y)| \leq \omega^{i+1}$, if $x \notin \overline{H_{\omega}^{i}}$ and *i* is the smallest number such that $|e_i(x)| \leq \omega^i$.

For any $e'_k \in W_k$, $\theta(x, y)/e'_k$ is the above except that we replace $e_k(x)$

everywhere by $e'_k \circledast_k e_k(x)$. Thus, if $|e'_k| < \omega^k$, then $|\theta(x, y)/e'_k| \leq \omega^{k+1}$ as in (3) above. If $|e'_k| = \omega^k$, then (1), (2), and (3) indicate the size of $|\theta(x, y)/e'_k|$. Similarly, for $\theta(x, y)/e'_k/e'_j$ where $e'_k \in W_k$, $e'_j \in W_j$, $|e'_j| < \omega^j$ implies $|\theta(x, y)/e'_k/e'_j| \leq \omega^{j+1}$.

Theorem 3.1 (a) For every $e_i \in W_i^{\mathsf{H}_{\omega}}$, we can effectively find $e_i^* \in W$ such that $|e_i^*| \leq \omega^{\omega+1} \cdot |e_i|$ and $|e_i| = \omega^i$ implies $|e_i^*| = \omega^{\omega+1} \cdot \omega^i = \omega^{\omega+i+1}$.

(b) For every $e_i \in W_i^{\mathsf{H}_{\omega},n}$, we can effectively find $e_i^* \in W$ such that $|e_i^*| \leq \omega^{\omega \cdot n+1} \cdot |e_i|$ and $|e_i| = \omega^i$ implies $|e_i^*| = \omega^{\omega \cdot n+1} \cdot \omega^i = \omega^{\omega \cdot n+i+1}$.

Proof: For part (a), we define e_i^* by induction on *i*. First let $\sigma(j) = j$ th element of the form $2^x \cdot 3^y$ such that $O \le x \le y$ and so that for all j, $\sigma(j) \le \sigma(j+1)$, (the range of σ is by definition the candidates for elements of any $e \in W_1^A$). Define e_1^* to be the effective sum in W of $\theta(\sigma(O), y(O)), \ldots, \theta(\sigma(n), y(n)), \ldots$ where

$$y(n) \in \mathbf{H}'_{\omega} \equiv \sigma(n) \in e_1 \land (\mathbf{E}z)(z > \sigma(n) \land z \in e_1).$$

If $|e_1| = 0$, then $|\theta(\sigma(x), y(x))| < \omega^{\omega}$ by (3) above and $|e_1^*| \leq \omega^{\omega}$. If $|e_1| = \omega$, then for each $x \in e_1$, $y(n) \in H'_{\omega}$, and $|\theta(\sigma(n), y(n))| = \omega^{\omega+1}$ by (1) where $\sigma(n) = x$. If $|e_1| \neq 0$, finite, then $|\theta(\sigma(x), y(x))| \leq \omega^{\omega}$ for the largest x such that $\sigma(x) \in e_1$ since $y(n) \notin H'_{\omega}$ and by (2), and for all k > x, $|\theta(\sigma(k), y(k))| < \omega^{\omega}$ by (3). Thus, $|e_1^*| \leq \omega^{\omega+1} \cdot |e_1|$. Suppose $a(i) \in W_{i+1}$ for each i, by $(e_1/a(i))^*$, we mean

$$\theta(f(\mathbf{O}), y(\mathbf{O}))/a(\mathbf{O}), \ldots, \theta(f(n), y(n))/a(n), \ldots$$

so that if for all i, $|a(i)| \le \omega^{i+1}$, then for each n, $|\theta(f(n), y(n))/a(n)| \le \omega^{\omega}$, and, hence, $|(e_1/a(i))*| \le \omega^{\omega}$. Similarly, for a fixed $e'_k \in W_k$,

$$(e_1/a(i)/e'_k)^* = ((\theta(f(O), y(O))/e'_k)/a(O))^*, \ldots, (\theta(f(n), y(n))/e'_k/a(n))^*, \ldots,$$

so that if $|e'_k| \leq \omega^k$, then $|(e_1/a(i)/e'_k)^*| \leq \omega^{k+2}$.

Suppose now we have defined for all $e_i \in W_i^{\mathsf{H}_{\omega}}$, e_i^* , $(e_i/a(j))^*$, $(e_i/a(j)/e_k')^*$ as above, such that the following properties are obtained:

(i) If $|e_i| = 0$, then $|e_i^*| \le \omega^{\omega}$, $|(e_i/a(j))^*| \le \omega^{\omega}$, and $|(e_i/a(j)/e_k')^*| \le \omega^{\omega}$.

(ii) If
$$|e_i| = \omega^i$$
, then $|e_i^*| = \omega^{\omega+1} \cdot \omega^i$

(iii) If, for all j, $|a(j)| < \omega^{j+1}$, then $|(e_i/a(j))^*| \le \omega^{\omega}$ and $|(e_i/a(j)/e'_k)^*| \le \omega^{\omega}$. (iv) If, for some k, $|a(k)| = \omega^{k+1}$ (and for all $j \ge k$, $|a(j)| = \omega^{j+1}$), and $|e_i| = \omega^{j+1}$.

 ω^i , then $|(e_i/a(j))^*| = \omega^{\omega+1} \cdot \omega^i$.

(v) If
$$|e'_k| \leq \omega^k$$
, then $|(e_i/a(j)/e'_k)^*| \leq \omega^{k+i+1}$.

(vi) If $|e'_k| = \omega^k$, $|e_i| = \omega^i$, for all $j \ge k$, $|a(j)| = \omega^{j+1}$ for some k, then $|(e_i/a(j)/e_k')^*| = \omega^{\omega+1} \cdot \omega^i$.

(vii) If $0 \neq |e_i| < \omega^i$, then $|e_i^*| < \omega^{\omega+1} \cdot |e_i|$, $|(e_i/a(j))^*| < \omega^{\omega+1} \cdot |e_i|$, and $|(e_i/a(j)/e_k^i)^*| < \omega^{\omega+1} \cdot |e_i|$.

Now define $(e_{i+1})^*$ for $e_{i+1} \in W_{i+1}^{H_{\omega}}$ as follows: For each *n*, let

 $y(n) \in \mathbf{H}'_{\omega} \equiv (\mathbf{E}z)(z \in e_{i+1}(\sigma(n))) \land (\mathbf{E}z)(\mathbf{E}x)(x > n \land z \in e_{i+1}(\sigma(x))).$

Let $y(n)(j) \in W_{j+1}$ such that

$$y(n) \in \mathbf{H}'_{\omega} \equiv (\mathbf{E}k)(j)(j \ge k \rightarrow |y(n)(j)| = \omega^{j+1}).$$

Let a(j) be similar except

$$(\mathbf{E}k)(j)(j \ge k \to |a(j)| = \omega^{j+1}) \equiv (\mathbf{E}z)(z \in e_{i+1}) \equiv \mathbf{E}z\mathbf{E}x(z \in e_{i+1}(\sigma(x))).$$

$$e_{i+1}^* = (e_{i+1}(\sigma(0))/y(0)(j)/a(0))^*, \ldots, (e_{i+1}(\sigma(n))/y(n)(j)/a(n))^*, \ldots.$$

$$(\text{the effective sum in } W).$$

Similarly,

$$(e_{i+1}/b(j))^* = (e_{i+1}(\sigma(O))/(y(O)(j)/a(O) \circledast_1 b(O))^*, \dots, (e_{i+1}(\sigma(n))/y(n)(j)/a(n) \circledast_{n+1} b(n))^*, \dots,$$

and

$$(e_{i+1}/b(j)/e'_k)^* = (e_{i+1}(\sigma(O))/y(O)(j)/a(n) \circledast_{n+1} b(n)/e'_k)^*, \ldots, (e_{i+1}(\sigma(n))/y(n)(j)/a(n) \circledast_{n+1} (b(n))/e'_k)^*, \ldots.$$

Suppose $|e_{i+1}| = 0$, then for each n, $|a(n)| < \omega^{n+1}$, $a(n) \in W_{n+1}$, consequently, by $(v) |e_{i+1}(\sigma(x))/y(n)(j)/a(x)| < \omega^{\omega}$ and, thus, $|e_{i+1}^*| \leq \omega^{\omega}$. Suppose now $|e_{i+1}| \neq 0$, and suppose $|e_{i+1}| = \omega^{i+1}$, then for infinitely many n, $|e_{i+1}(\sigma(n))| = \omega^i$, and given such n, $y(n) \in H_{\omega}^i$ and consequently, $|y(n)(j)| = \omega^{j+1}$ for all $j \geq k$ for some k. Hence, by (vi), if also n is sufficiently large so that $|a(n)| = \omega^{n+1}$,

$$\left|\left(e_{i+1}(\sigma(n))/y(n)(j)/a(n)\right)^*\right| = \omega^{\omega+1} \cdot \left|e_{i+1}(\sigma(n))\right| = \omega^{\omega+1} \cdot \omega^i$$

Thus,

$$|e_{i+1}^*| = (\omega^{\omega+1} \cdot \omega^i) \cdot \omega = \omega^{\omega+1} \cdot \omega^{i+1}$$

Now to show $|e_{i+1}^*| \leq \omega^{\omega+1} \cdot |e_{i+1}|$, it is clear that $|e_{i+1}| = \sum_{n \in \omega} |e_{i+1}(\sigma(n))|$. Suppose for some $k |e_{i+1}(\sigma(j))| = 0$ for all j > k. Let k_1 be the largest number such that $|e_{i+1}(\sigma(k_1))| \neq 0$, then $y(k_1) \notin H'_{\omega}$, and therefore $|y(k_1)(j)| < \omega^{j+1}$ for all j. Consequently,

 $\left| \left(e(\sigma(k_1)) / y(k_1)(j) / a(k_1) \right)^* \right| \leq \omega^{\omega}$

by (iii) and also

$$|(e(\sigma(n))/y(n)(j)/a(n))^*| \leq \omega^{-n}, \text{ for } n \geq k_1,$$

$$|e_{i+1}^*| = \sum_{j \in \omega} |(e_{i+1}(\sigma(j))/y(n)(j)/a(j))^*|$$

$$\leq \left(\sum_{j \leq k_1 - 1} \omega^{\omega + 1} \cdot |e_{i+1}(\sigma(j))|\right) + \omega^{\omega} \cdot \omega \leq \omega^{\omega + 1} \cdot \left(\sum_{j \leq k_1 - 1} |e_{i+1}(\sigma(j)|) + 1\right)$$

$$\leq \omega^{\omega + 1} \cdot |e_{i+1}|, \text{ (since } |e_{i+1}(k_1)| \neq 0).$$

If there is no k such that for all $j \ge k$, $|e_{i+1}(\sigma(j))| = 0$, then

$$\begin{aligned} |e_{i+1}^*| &= \sum_{n \in \omega} |(e_{i+1}(\sigma(n))/y(n)(j)/a(n))^*| \\ &\leq \sum_{n \in \omega} \omega^{\omega+1} \cdot (1 + |e_{i+1}(\sigma(n)|) \leq \omega^{\omega+1} \cdot \sum (1 + e_{i+1}(\sigma(n))) \\ &= \omega^{\omega+1} \cdot |e_{i+1}|. \end{aligned}$$

By similar arguments the other conditions (i)-(vii) can be checked at i + 1. This verifies part (a).

The procedure is completely analogous for $H_{\omega \cdot 2}$, $H_{\omega \cdot 3}$, For example, given a question $x \in \overline{H'_{\omega,2}}$, we find effectively $e_n(x) \in W_n^{H_{\omega+1}}$ such that for all n, $|e_n(x)| = \omega^n$ iff $x \in \mathbf{H}'_{\omega}$. Define $s_1(x) = e_1(x), \ldots, s_{i+1}(x) = s_i(x) \circledast_{i+1}$ $e_{i+1}(x), \ldots,$ and define $e_x = (s_1(x))^*, \ldots, (s_n(x))^*, \ldots$ effective sum in W of those well-orderings constructed in part (a). If $|e_i(x)| < \omega^i$ for some *i*, then $|s_n(x)| < \omega^i$ for all *n*, and, hence,

$$|e_x| = \sum_{n \in \omega} |(s_n(x))^*| \leq \sum_{n \in \omega} \omega^{\omega+1} \cdot (1 + |s_n(x)|) \leq \omega^{\omega+1} \cdot \sum_{n \in \omega} |1 + s_n(x)|$$

$$\leq \omega^{\omega+1} \cdot \omega^i = \omega^{\omega+i+1}.$$

This gives the basic construction for the $W_i^{\mathsf{H}_{\omega,2}}$ argument. Thus, (b) holds by induction. Q.E.D.

This technique yields the following result:

Theorem 3.2 Let $n \ge 1$, then there is an effective procedure to find $e_x \in W$ such that

$$\begin{aligned} |e_x| &= \omega^{\omega \cdot n} \text{ if } x \in \overline{\mathbf{H}'_{\omega \cdot n}} \\ |e_x| &\leq \omega^{\omega \cdot n} \text{ if } x \in \mathbf{H}'_{\omega \cdot n}. \end{aligned}$$

Corollary 3.1 Let $k \ge 1$, then there is an effective procedure to junu $e_x \in W$ such that

$$\begin{aligned} |e_x| &= \omega^{\omega \cdot n+k} \text{ if } x \in \overline{\mathbf{H}_{\omega \cdot n}^{2k+1}} \\ |e_x| &\leq \omega^{\omega \cdot n+k} \text{ if } x \in \mathbf{H}_{\omega \cdot n}^{2k+1}. \end{aligned}$$

Proof: $x \in \overline{H_{\omega,n}^{2k+1}}$ iff $(x_1) \ge y_1 \ldots (x_k) \ge y_k(z) R(x, x_1, y_1, \ldots, x_k, y_k, z)$, with R recursive in $H_{\omega \cdot n}$. By the techniques of section 2 we can find S_k a set of k-tuples of \mathcal{N} such that for recursive $f, (x_1, \ldots, x_k) \in S_k$ iff $f(x_1, \ldots, x_k) \in$ $\overline{\mathsf{H}'_{\omega\cdot n}}$, since the set $\overline{\mathsf{H}'_{\omega\cdot n}}$ is a complete set for predicates $\forall zR$ with R recursive in $H_{\omega \cdot n}$, and $|S_k| = \omega^k$ iff $x \in \overline{H_{\omega \cdot n}^{2k+1}}$. Let $e_x =$ the effective sum of $e_{f(x_1,\ldots,x_k)}$ such that $(x_1,\ldots,x_k) \in \mathcal{N}^k$ ordered first by (x_1,\ldots,x_k) and next as in $e_{f(x_1,...,x_n)}$, there $e_{f(x_1,...,x_n)}$ is obtained as in Theorem 3.1. Clearly, if $|S_k| = \omega^k$, then $|e_x| = \omega^{\omega \circ n} \cdot \omega^k = \omega^{\omega \circ n+k}$. If $|S_k| < \omega^k$, then since $\omega^{\omega \circ n}$ is a principle number for addition it follows easily that $|e_x| < \omega^{\omega \cdot n} \cdot \omega^k = \omega^{\omega \cdot n+k}$. Q.E.D.

The following result generalizes a result of [8] originally noticed by S. Tennenbaum.

Lemma 3.3 For any set A, $\{x\}^{A}(x)$ grows faster than any function recursive in A.

Proof: By grows faster we mean there is no function f recursive in A such that whenever $\{x\}^A(x)$ is defined $\{x\}^A(x) \le f(x)$. If F(x) were such a function, take e to be a Gödel number of f(x) + 1 in A, then $\{e\}^{A}(e) = f(e) + 1 \le f(e)$. a contradiction.

Now we show Theorem 1.2 (b) is best possible. Namely, we construct

17

 $a \in O$ such that $|a| = \omega^{k+2}$ such that there is no function f recursive in $O^{(2k)}$ such that $a_i \leq \omega^{k+1} \cdot f(i)$ for all i. Consider $\Gamma_1^{O^{(2k)}}(x, x, w)$ by Post's Theorem and Lemma 2.2 this is equivalent to $(E!z)(x_1)(E!y_1) \ldots (x_k)(E!y_k) R(x, w, z, x_1, \ldots, y_k)$ with R recursive. Noting that $\Gamma_1^{O^{(2k)}}(x, x, w)$ true implies w is unique, consider for each number $2^{w} \cdot 3^z$

$$(x_1)(E!y_1) \ldots (x_k)(E!y_k) R(x, w, z, x_1, \ldots, x_k).$$

By Lemma 2.4, find $e_k(2^w \cdot 3^z, x) \in W_k$ such that $|e_k(2^w \cdot 3^z, x)| = \omega^k$ iff $(x_1) (E!y_1) \dots (x_k) (E!y_k) R(x, w, z, x_1, \dots, x_k)$. Let $e(2^w \cdot 3^z, x) \in W$ be w-copies of $e_k(2^w \cdot 3^z, x)$, and let $e(x) \in W$ be the effective sum over $e(2^w \cdot 3^z, x)$ for all possible w, z ordered first by $2^w \cdot 3^z$ next as in $e(2^w \cdot 3^z, x)$. Clearly, $|e(x)| \leq \omega^k$, if $\exists (Ew) \intercal_1^{O(2k)}(x, x, w)$. However, if $Ew \intercal_1^{O(2k)}(x, x, w)$, then $\omega^k \cdot \{x\}^{O(2k)}(x) < |e(x)| < \omega^{k+1}$. Let $a(i) \in O$ be found as in [5] Theorem 1 such that $|a_i| = \omega \cdot |1 + e(i)|$. Let $a_0 = a(0), \dots, a_{i+1} = a_i + a_i(i)$, clearly, $|3 \cdot 5^a| = \omega^{k+2}$, and for all $i, \omega^{k+1} \cdot \{i\}^{O(2k)}(i) \leq |a_i|$. Consequently, by Lemma 3.3 $a' = 3 \cdot 5^a \neq O^{(2k)} b'$ where $|b_i| = \omega^{k+1} \cdot i$. Thus, by Theorem 1.1, $\mathsf{H}_{a'} \notin_1^{O(2k)} \mathsf{H}_{b'}$, but by Theorem 1.2 (b) $\mathsf{H}_{a'}$ isomorphic to $\mathsf{H}_{b'}$ by function recursive in $O^{(2k+1)}$. Thus, Theorem 1.2 (b) is the best possible result.

In order to show that Theorem 1.2 (a) at $|a'| = \omega^{\omega}$ is necessary, we first build $|a(k)'| = \omega^{\omega}$ such that $a(k)_i$ grows more rapidly to ω^{ω} than $\omega^{f(i)}$ for any function f recursive in $O^{(2k)}$. As in the previous sections, obtain for each x, $e_k(2^w \cdot 3^z, x) \in W_k$, if w > k, let $e_{k,w}(2^w \cdot 3^z, x) = e_k(2^w \cdot 3^z, x) \circledast_k e_w$ where $e_w \in W_w$ and $|e_w| = \omega^w$, and if $w \notin k$, $e_{k,w}(2^w \cdot 3^z, x) = e_k(2^w \cdot 3^z, x)$. Let $e(x) \in W$ be the effective sum of $e_{k,w}(2^w \cdot 3^z, x)$ for all w, z. If $\operatorname{EwT}_{O^{(2k)}(x, x, w)}$, then $\omega^w \leqslant |e(x)| < \omega^{\omega}$, since for all $2^w \cdot 3^z$ except one $|e_k(2^w \cdot 3^z, x)| < \omega^k$ while $|e_{k,w}(2^w \cdot 3^z, x)| = \omega^w$ for some z if $T_1^{O^{(2k)}(x, x, w)}$, by Theorem 2.1. If $\exists W T_1^{O^{(2k)}(x, x, w)}$, then $|e(x)| \leq \omega^k$ by Theorem 2.1. By Theorem 1 [5], let $c(k)_i \in O$ such that $|c(k)_i| = \omega \cdot |1 + e(i)|$. Define $a(k)' = 3 \cdot 5^{a(k)}$ so that $a(k)_O = c(k)_O$ and $a(k)_{i+1} = a(k)_i + O c(k)_{i+1}$. Clearly, a(k)' grows faster to ω^{ω} than $\omega^{f(i)}$ for any f recursive on $O^{(2k)}$. Finally, define

$$a_0 = a(1)_0, \ldots, a_{i+1} = a_i + 0(a(1)_{i+1} + 0a(2)_{i+1} + \ldots + 0a(i+1)_{i+1}).$$

Clearly, $|a'| = |3 \cdot 5^a| = \omega^{\omega}$ and $a' \notin O^{(2k)} b'$, if $b' \in O$ and $|b_i| = \omega^i$ (suppose $a' \prec b'$ via f recursive in $O^{(2k)}$ just choose an index e for f larger than k, then $\{e\}^{O(2k)}(e) < |a(k)_e| \leq \omega^{f(e)}$, a contradiction). Thus, by Theorem 1.1, $H_{a'} \notin O^{(2k)} H_{b'}$ for any k but by Theorem 1.2 (a) $H_{a'}$ and $H_{b'}$ are isomorphic by a permutation of \mathcal{N} recursive in H_{ω} .

A similar argument works for building $a' \in O$ such that $|a'| = \omega^{\omega \cdot n+k}$ $(k \neq O)$ such that a_i grows faster to |a'| than does $\omega^{\omega \cdot n+(k-1)} \cdot f(i)$ for any function f recursive in $H_{\omega \cdot n+2k-1}$. Since for k = 2,

$$\mathsf{T}_{1}^{\mathbf{n}_{\omega} \cdot n + 2k - 1}(x, x, w) \equiv \mathsf{E} \, ! \, z(x_{1})(\mathsf{E} \, ! \, y_{1})(x_{2}) \, R(x, w, z, x_{1}, y_{1}, x_{2})$$

with R recursive in $H_{\omega \cdot n}$. By Corollary 3.1 we find $e_x \in W$ such that $\omega^{\omega \cdot n+1} \cdot w \leq |e_x| \leq \omega^{\omega \cdot n+2}$ if $T_{1^{\omega \cdot n}(x, x, w)}^{\mathsf{H}(3)}$, and $|e_x| \leq \omega^{\omega \cdot n+1}$, otherwise. Let $c_i \in O$ such that $|c_i| = \omega \cdot |1 + e_i|$ by Theorem 1 in [5], then $\omega^{\omega \cdot n+1} \cdot w \leq |c_i| < \omega^{\omega \cdot n+2}$, if $T_{1^{\omega \cdot n}(i, i, w)}^{\mathsf{H}(3)}$ and $|c_i| \leq \omega^{\omega \cdot n+1}$, otherwise. Let $a_0 = c_0, \ldots, a_{i+1} =$

 $a_i + {}_0 c_{i+1}$ and $a' = 3 \cdot 5^a$. Clearly, $|a'| = \omega^{\omega \cdot n+2}$ and $a' \not\in H^{(3)}_{\omega \cdot n} b'$, if $|b_i| = \omega^{\omega \cdot n+1} \cdot i$. By Theorem 1.1 and 1.2, $H_{a'} \notin H^{(3)}_{\omega \cdot n} H_{b'}$ but $H_{a'}$ and $H_{b'}$ are isomorphic by a permutation of \mathcal{N} recursive in $H^{(4)}_{\omega \cdot n}$. Similarly, for $H_{\omega \cdot n}$ being necessary for showing $H_{a'}$ and $H_{b'}$ isomorphic if $|a'| = |b'| = \omega^{\omega \cdot n}$.

These results are summarized by the following theorem.

Theorem 3.3 For all $\beta < \omega^2$, $|a'| = |b'| = \omega^{\beta}$, the H_c determined as in Theorem 1.2 is the smallest level possible in the hyperarithmetic hierarchy in order to have all $H_{a'}$ and $H_{b'}$ isomorphic, using functions recursive in H_c .

REFERENCES

- [1] Davis, M., On the Theory of Recursive Unsolvability, Ph.D. Thesis, Princeton University (1950).
- [2] Kleene, S. C., Introduction to Metamathematics, New York, Toronto, Amsterdam, and Gronigen (1952).
- [3] Kleene, S. C., "On the forms of the predicate in the theory of constructive ordinals," *American Journal of Mathematics*, vol. 66 (1944), pp. 41-58.
- [4] Kleene, S. C., "Arithmetical predicates and function quantifiers," Transactions of the American Mathematical Society, vol. 79 (1955), pp. 312-340.
- [5] Kreisel, G., J. Shoenfield, and Hao Wang, "Number theoretic concepts and recursive wellorderings," Archiv für mathematische Logik und Grundlagen forschung, vol. 5 (1960), pp. 42-64.
- [6] Moschovakis, Y. N., "The many-one degrees of the predicates H_a(x)," Pacific Journal of Mathematics, vol. 18 (1966), pp. 329-342.
- [7] Nelson, G. C., "Isomorphism types of the hyperarithmetic sets," Abstract in *The Journal of Symbolic Logic*, vol. 36 (1971), p. 374.
- [8] Nelson, G. C., "Many-one reducibility within the Turing degrees of the hyperarithmetic sets $H_a(x)$," Transactions of the American Mathematical Society, vol. 191 (1974), pp. 1-44.
- [9] Rogers, H., Jr., Theory of Recursive Functions and Effective Computability, New York (1967).
- [10] Spector, C., "Recursive well-orderings," *The Journal of Symbolic Logic*, vol. 20 (1955), pp. 151-163.

The University of Iowa Iowa City, Iowa