ISOMORPHISM TYPES OF THE HYPERARITHMETIC SETS Ha

GEORGE C. NELSON

Introduction Historically, this paper originates from M. Davis' result [1] that for $|a|=|b|<\omega^{2}(a, b \in O), H_{a}$ and H_{b} are recursively isomorphic. Spector, in [10], showed that H_{a} and H_{b} for $|a|=|b|$ have the same Turing degree. Y. Moschovakis in [6], had shown that these results are best possible in that the sets H_{a} for $|a|=\alpha, \omega^{2} \leqslant \alpha$ a principal number for addition, have well-ordered sequences of type ω_{1} under one-one reducibility and, also, incomparable one-one degrees. The author in his thesis [8] showed that any countable ordered set can be embedded in the one-one ordering of $\mathrm{H}_{a},|a|=\alpha$ as above and that there are incomparable one-one degrees below any H_{a}, if $|a|=\alpha \geqslant \omega^{3}$. Moschovakis also has shown that if $\beta=\xi+\alpha, \alpha$ principle for addition, that $\left\{\mathbf{H}_{b}:|b|=\beta\right\}$ has the same structure under one-one reducibility as does $\left\{\mathrm{H}_{a}:|a|=\alpha\right\}$. This carries over to this paper after Theorem 1.1 and we restrict ourselves to those H_{a} such that $|a|$ is principle for addition, i.e., $|a|=\omega^{\beta}$ for some $\beta \geqslant 1$.

In this paper we introduce a general notion of one-one reducibility applicable to the hyperarithmetic sets (since these sets are cylinders, [9], pp. 89-90, we need only to discuss one-one reducibility). The notion is simply the following; suppose $a, b \in O$ and $|a|=|b|$, when is there a one-one function $f(x)$ recursive in \mathbf{H}_{c} such that $x \in \mathbf{H}_{a}$ iff $f(x) \in \mathbf{H}_{b}$? Since \mathbf{H}_{a} and \mathbf{H}_{b} have the same Turing degree, clearly any $c \in O,|c| \geqslant|a|$ is sufficient. The question we try to answer is how small can $|c|$ be chosen in general, so that H_{a} and H_{b} are one-one reducible to each other by functions recursive in H_{c}, i.e., H_{a} and H_{b} are isomorphic via a permutation of \mathcal{N} recursive in H_{c}. Alternatively, for $|c|<|a|, \mathrm{H}_{c}$ can be viewed as a constructive subset of both H_{a} and H_{b} and using only an oracle for H_{c} can one show a question of membership in H_{a} is equivalent to a question of membership in H_{b} (this is similar to a "bounded truth-table" reduction except that the bound is H_{c}). We will give a necessary and sufficient condition on the size of $|c|$ in order to show $\mathrm{H}_{a}, \mathrm{H}_{b}$ are isomorphic by a permutation of \mathcal{N} recursive in H_{c} when $|a|<\omega^{\omega^{2}}$. That this condition is sufficient for all $a, b \in O$ is demonstrated. However, the necessity of this condition for $|a| \leqslant \varepsilon_{0}$ is not proven and
contrary to as announced in [7] is an open question. The author hopes that the techniques introduced here will eventually demonstrate this necessity. Basically these results depend upon constructing ordinal notations $a \in O$ with very fast growth toward its limit $|a|$ as in [5] and [8]. Consequences about ordinal notations will follow immediately from these results. For example, there exist recursive well-orderings of order type ω^{ω} which are not isomorphic via any function recursive in $\mathrm{O}^{(n)}$, i.e., via any arithmetic permutation of \mathcal{N}.

1 One-one reducibility in $H_{c} \quad$ The notation used in this paper will be that found in [2], [4], and [10]. Familiarity with the results and techniques of recursion theory are assumed as in [9]. Frequent use is made of Post's Theorem which is taken to refer to the results listed on pp. 314-15 of [9].

Definition 1.1 We say that a set A is one-one reducible in C to B and write $A \leqslant_{1}^{C} B$ if there is a function f (one-one) recursive in C such that $x \in A$ iff $f(x) \in B$.

These definitions are natural generalizations of the usual notion of one-one reducibility and become particularly relevant in the study of the one-one degrees in C of the hyperarithmetic sets $\mathrm{H}_{a^{\prime}}$ where $a^{\prime}=3 \cdot 5^{a} \in \boldsymbol{O}$. The following definition and theorem generalizes the notion and results introduced by Y . Moschovakis in [6] in studying the one-one degrees of $\mathrm{H}_{a^{\prime}}$.
Definition 1.2 Let $a^{\prime}=3 \cdot 5^{a}$ and $b^{\prime}=3 \cdot 5^{b}$ be two Kleene notations for ordinals such that $\left|a^{\prime}\right|=\left|b^{\prime}\right|$. We say that a^{\prime} is recursively majorized in C by b^{\prime} and write $a^{\prime} \prec^{C} b^{\prime}$ if there is a function f recursive in C such that $\left|a_{n}\right| \leqslant\left|b_{f(n)}\right|$ for all n.
Theorem 1.1 For $c \in O,|c|<\left|a^{\prime}\right|=\left|b^{\prime}\right|$

$$
\mathbf{H}_{a^{\prime}} \leqslant{ }_{1}^{\mathbf{H}_{c}} \mathbf{H}_{b^{\prime}} \text { iff } a^{\prime}{ }^{\mathbf{H}_{c}} b^{\prime} .
$$

Proof: The proof of this result is essentially as in [6] except that in Lemma $2 \mathrm{~b}, \mathrm{p} .330$, one asserts instead that there is a primitive recursive $\sigma_{3}(e)$ such that if $t=\sigma_{3}(e)$ and $(\mathrm{E} z)\left(T_{1}^{P}(e, t, z) \wedge U(z)=k\right)$, then $P^{\prime}(t) \not \equiv P(k)$; which is just an effective way of saying P^{\prime} is not many-one reducible in P to P.

By Myhill's Theorem [9], the following is evident:
Corollary $1.1 \quad \mathbf{H}_{a^{\prime}}$ and $\mathrm{H}_{b^{\prime}}$ are isomorphic using a permutation recursive in $\mathbf{H}_{c}|c|<\left|a^{\prime}\right|=\left|b^{\prime}\right|$ iff $a^{\prime}{ }_{\alpha} \mathbf{H}_{c} b^{\prime}$ and $b^{\prime}{ }^{2}{ }^{H_{c}} a^{\prime}$.

It follows automatically from Moschovakis' work that we need only study one-one reducibility in H_{c} of $\mathrm{H}_{a^{\prime}}$ such that $\left|a^{\prime}\right|$ is a principle number for addition. The following definition and lemmas generalize the notion of "limit point of order n," see p. 51 of [5], to any order α (α constructive). We use the predicate $C(b)$ of [3], $\S 12$ and $\S 13$, in order to express $z<_{0} x$ as an r.e. predicate noting that for $a, b \in O, a \in C(b)$ iff $a<_{0} b$, and there is a primitive recursive predicate $V(a, b, x)$ such that for any numbers a, b, $a \in C(b)$ iff ($\mathrm{E} x) V(a, b, x)$.

Definition 1.3 We define predicates $L_{b}(x)$ for each $b \in O, b \neq 1$ inductively as follows:
$L_{2^{1}}(x) \quad$ if $x=3 \cdot 5^{y}$
$L_{2^{b}}(x)$ if $L_{b}(x) \wedge(z)\left(z \in C(x) \rightarrow(\mathrm{E} w)\left(z \in C(w) \wedge w \in C(x) \wedge L_{b}(w)\right)\right)$
$L_{3.5} y(x)$ if $(n)\left(L_{y_{n}}(x)\right)$.
Below $A^{(n)}$ refers to the jump operator applied n times to A.
Lemma $1.1 \frac{(\mathrm{a}) \text { If }}{\mathrm{D}^{(2(k-1))}} \in \dot{O},\left|2^{b}\right|=k>0$ is finite, then $L_{2^{b}}(x)$ is one-one reducible to $\overline{\mathrm{O}^{(2(k-1))}}$ (for $k=1, L_{2^{1}}(x)$ is recursive).
(b) There is a primitive recursive function $f(a, x)$ such that for $a=3 \cdot 5^{y} \in O$,

$$
L_{a}(x) \text { iff } f(a, x) \in \overline{\mathbf{H}_{a}^{\prime}}
$$

(c) If $b=3 \cdot 5^{y}$ +o $c \in \boldsymbol{O},|c|=k \neq \mathrm{O}$, then $L_{b}(x)$ is $1-1$ reducible to $\overline{\mathrm{H}_{3.5}^{(2 k+1)}}$.

Proof: Clearly, $L_{21}(x)$ is recursive. Consider $L_{22}(x) \equiv L_{21}(x) \wedge(z)\left(\left(E x_{1}\right) V(z\right.$, $\left.x, x_{1}\right) \rightarrow \mathrm{E} w\left(\mathrm{E} x_{2} V\left(z, w, x_{2}\right) \wedge \mathrm{E} x_{3} V\left(w, x, x_{3}\right) \wedge L_{2}(w)\right)$ which is equivalent to a predicate of $\forall E$-form and consequently is $1-1$ reducible to $\overline{\mathrm{O}^{\prime \prime}}$. Let e_{0} be a primitive recursive index of this reduction of $L_{22}(x)$ to $\overline{\mathrm{O}^{\prime \prime}}$. Part (a) follows inductively by Post's Theorem as in [9].

We complete the proof by defining a primitive recursive function $f(y, x)$ such that for y in $O, y \neq 1,2, L_{y}(x)$ iff $f(y, x) \in \overline{\mathbf{H}_{\gamma(y)}}$, where $\gamma(y)$ is as specified in the result, i.e., $\gamma(a)=b$ such that $|b|=2(k-1)$ if $|a|=k$ finite, $a \neq 1,2$, and $\gamma(a)=3 \cdot 5^{y}+{ }_{0} b$ if $a=3 \cdot 5^{y}+_{0} c$ for some finite c in O and $|b|=2 \cdot|c|+1$. By Post's Theorem let $g(u, x)$ be a $1-1$ primitive recursive function such that uniformly for $A, g(u, x) \in A^{(3)}$ iff $\{u\}(x) \notin A^{\prime} \wedge(r)(r \in C(x) \rightarrow$ $\left.(\mathrm{E} w)\left(r \in C(w) \wedge w \in C(x) \wedge\{u\}(w) \notin A^{\prime}\right)\right)$. Now define $\phi(z, y, x)$ primitive recursively as follows:

$$
\begin{aligned}
& \phi(z, y, x) \quad=\mathrm{O} \text { if } y=1 \vee y=2 \vee\left(y \neq 2^{(y) 0} \wedge y \neq 3 \cdot 5^{(y) 2}\right) . \\
& \phi\left(z, 2^{2}, x\right)=\left\{e_{0}\right\}(x) \text { where } e_{0} \text { is obtained in Part (a). } \\
& \phi\left(z, 2^{b}, x\right)=g((\lambda x)\{z\}(b, x), x) \text { if } b \neq 2 . \\
& \phi\left(z, 3 \cdot 5^{y}, x\right)=\phi_{1}(z, y, x), \text { where } \phi_{1} \text { is the primitive } \\
& \text { recursive function defined as follows: }
\end{aligned}
$$

Consider $\urcorner(n)\left(\{z\}\left(y_{n}, x\right) \in \overline{\mathbf{H}_{\gamma\left(y_{n}\right)}}\right) \equiv(\mathrm{E} n)\left(\{z\}\left(y_{n}, x\right) \in \mathbf{H}_{\gamma\left(y_{n}\right)} \equiv(\mathrm{E} n) \rho\left(\gamma\left(y_{n}\right)\right.\right.$, $\left.3 \cdot 5^{y},\{z\}\left(y_{n}, x\right)\right) \in \mathrm{H}_{3 \cdot 5} y$, where ρ is the partial recursive function of Lemma 3 , p. 326 of [4], $\equiv \operatorname{En}\left(\mathrm{T}_{1}^{\mathrm{H}_{3} \cdot 5 y}\left(\phi_{1}(z, y, x), \phi_{1}(z, y, x), n\right)\right.$, by Lemma 1 , p. 325 of [4] where ϕ_{1} is primitive recursive. Consequently,

$$
(n)\left(\{z\}\left(y_{n}, x\right) \in \overline{\mathrm{H}_{\gamma\left(y_{n}\right)}}\right) \equiv(n)\left(\overline{\mathrm{T}_{1}}{ }_{3 \cdot 5}{ }^{y}\left(\phi_{1}(z, y, x), \phi_{1}(z, y, x), n\right)\right) .
$$

By the Recursion Theorem, p. 352-3 of [2], there is an e such that $\phi_{e}(y, x) \cong \phi(e, y, x)$. Define $f(y, x)=\phi(e, y, x)$ and by the construction of f, it follows for all $y \in O, y \neq 1,2, L_{y}(x)$ iff $f(y, x) \in \overline{\mathbf{H}_{\gamma(y)}}$, by induction on $|y|$ in \boldsymbol{O}. Q.E.D.

As is well known, every ordinal α has a unique Cantor Normal Form, i.e., $\alpha=\omega^{\beta_{n}} \cdot k_{n}+\ldots+\omega^{\beta_{0}} \cdot k_{0}$ such that $\beta_{i}>\beta_{i-1}$, for $1 \leqslant i \leqslant n$, and $\mathrm{O} \neq k_{i}<$ ω for $\mathrm{O} \leqslant i \leqslant n$ with n, β_{i}, k_{2} uniquely determined by α.

Lemma 1.2 For $a^{\prime}, b \in \boldsymbol{O}, b \neq 1, L_{b}\left(a^{\prime}\right)$ iff the Cantor Normal Form of $\left|a^{\prime}\right|=\omega^{\beta_{n}} \cdot k_{n}+\ldots+\omega^{\beta_{0}} \cdot k_{0}$ is such that $\beta_{0} \geqslant|b|$.
Proof: By induction on $|b|$ for all a^{\prime} in O, for $|b|=1$ the result is clear. Suppose the result is true for all $b \in O$ such that $\beta=|b| \geqslant 1$, consider $b=2^{(b)_{0}}$ such that $|b|=\beta+1$ and suppose $L_{b}\left(a^{\prime}\right)$. By definition, $L_{b}\left(a^{\prime}\right) \equiv$ $(z)(\mathrm{E} w)\left(z<_{0} a^{\prime} \rightarrow z<_{0} w<_{0} a^{\prime} \wedge L_{(b)_{0}}(w)\right) \wedge L_{(b)_{0}}\left(a^{\prime}\right)$. Thus, $\beta_{0} \geqslant\left|(b)_{0}\right|=\beta \geqslant 1$ and, by the inductive hypothesis, $a^{\prime}=3 \cdot 5^{a} .\left|a^{\prime}\right|=\lim \left|a_{n}\right|$ and, clearly, since $L_{b}\left(a^{\prime}\right)$ there exist a sequence $w_{i}<_{0} w_{i+1}<_{0} a^{\prime}$ such that $L_{(b)_{0}}\left(w_{i}\right)$ and $\lim \left|w_{i}\right|=\left|a^{\prime}\right| n$. For some $k, i>k$ implies $\left|w_{i}\right|=\omega^{\beta_{0}} \cdot k_{n}+\ldots+\omega^{\beta_{1}} \cdot k_{1}+$ $\omega^{\left|(b)_{0}\right|+\alpha_{i}} . k_{0}^{i}$. Either for some $j,\left|(b)_{0}\right|+\alpha_{i}=\left|(b)_{0}\right|$ for all $i \geqslant j$ or $\left|(b)_{0}\right|+$ $\alpha_{i}>\left|(b)_{0}\right|$ for all $i \geqslant j$ and, hence, $\omega^{\beta_{0}}=\lim \omega^{\left|(b)_{0}\right|} \cdot k_{0}^{i}=\omega^{\left|(b)_{0}\right|+1}$ or $\omega^{\beta_{0}} \geqslant$ sup $\omega^{\left|(b)_{0}\right|+\alpha_{i}} \geqslant \omega^{\left|(b)_{0}\right|+1}$. Conversely, suppose $\beta_{0} \geqslant\left|(b)_{0}\right|+1$, if $\beta_{0}=\gamma+1$, then $\omega^{\beta_{0}} \cdot k_{0}=\lim \left(\omega^{\beta_{0}} \cdot\left(k_{0}-1\right)+\omega^{\gamma} \cdot n\right)$ and there exists a sequence $w_{i}<_{0} a^{\prime}$ such that $\left|w_{i}\right|=\omega^{\beta_{n}} \cdot k_{n}+\ldots+\left(\omega^{\beta_{0}} \cdot\left(k_{0}-1\right)+\omega^{\gamma} \cdot i\right)$ and $\lim \left|w_{i}\right|=\left|a^{\prime}\right|$. If β_{0} is a limit, then there is a sequence γ_{n} such that $\left|(b)_{0}\right|<\gamma_{n}$ and $\lim \gamma_{n}=\beta_{0}$ and consequently we can find $w_{i}<_{0} a^{\prime}$ such that $\lim \left|w_{i}\right|=a^{\prime}$ and $\left|w_{i}\right|=\omega^{\beta_{n}} \cdot k_{n}+$ $\ldots+\omega^{\beta_{0}} \cdot\left(k_{0}-1\right)+\omega^{\gamma_{i}} \cdot k_{0}^{i}$. Thus, $L_{b}\left(a^{\prime}\right)$ follows.

Suppose $b^{\prime}=3 \cdot 5^{b}$ and $L_{b^{\prime}}\left(a^{\prime}\right)$ is true. Thus, $(n)\left(L_{b_{n}}\left(a^{\prime}\right)\right)$ is true. Consequently, by inductive hypothesis, $\beta_{0} \geqslant\left|b_{n}\right|$, hence, $\beta_{0} \geqslant \lim \left|b_{n}\right|=\left|b^{\prime}\right|$. Conversely, suppose $\beta_{0} \geqslant\left|b^{\prime}\right|$, then $\beta_{0}>\left|b_{n}\right|$ for every n and consequently $L_{b_{n}}\left(a^{\prime}\right)$ holds for all n.

Now we prove one of the main results of this paper.
Theorem 1.2 (a) If $\left|a^{\prime}\right|=\left|b^{\prime}\right|=\omega^{\beta}$, β a limit, then $\mathbf{H}_{a^{\prime}}$ is isomorphic to $\mathbf{H}_{b^{\prime}}$ by a permutation of \mathcal{N} recursive in \mathbf{H}_{c} such that $|c|=\beta$.
(b) If $\left|a^{\prime}\right|=\left|b^{\prime}\right|=\omega^{k}, 2 \leqslant k$ finite, then $\mathbf{H}_{a^{\prime}}$ is isomorphic to $\mathbf{H}_{b^{\prime}}$ by a permutation of \mathcal{N} recursive in $\mathrm{O}^{(2 \cdot(k-2)+1)}$.
(c) If $\left|a^{\prime}\right|=\left|b^{\prime}\right|=\omega^{\gamma+k}, 1 \leqslant k$ finite, and γ a limit ordinal, then $\mathbf{H}_{a^{\prime}}$ is isomorphic to H_{b}, by a permutation of \mathcal{N} recursive in \mathbf{H}_{c} where $|c|=\gamma+2 k$.

Proof: Suppose the hypothesis of part (a) and that $c \in O$ and $|c|=\beta$. By Theorem 1.1, it is sufficient to show $a^{\prime} \prec^{H_{c}} b^{\prime}$ and $b^{\prime} \prec{ }^{H_{c}} a^{\prime}$. Thus, we shall define a function g recursive in H_{c} such that $\left|a_{i}\right| \leqslant\left|b_{g(i)}\right|$ for all i. For each i, let n_{i} be the smallest number n such that $(z)\left(z \leqslant_{0} a_{i} \rightarrow \neg L_{c_{n}}(z)\right)$ where $L_{c_{n}}$ is the predicate of the definition before Lemma 1.1. Consequently, by Lemma 1.2, the Cantor Normal Form for $\left|a_{i}\right|$ and any $\alpha<\left|a_{i}\right|$
 smallest number n such that $(z)\left(z \leqslant_{0} a_{i} \rightarrow f\left(c_{n}, z\right) \epsilon \overline{\left.\mathrm{H}_{\gamma\left(c_{n}\right)}\right)}\right.$ for the primitive recursive $f(y, x)$ which is equivalent to $\phi\left(e, a_{i}, c_{n}\right) \in \widehat{\mathbf{H}_{\gamma\left(c_{n}\right)}^{\prime}}$, where e is a g.n. of f and $\phi\left(e, a_{i}, c_{n}\right)$ is primitive recursive. Consequently, $n_{i}=\mu n \phi\left(e, a_{i}, c_{n}\right) \epsilon$ $\overline{\mathbf{H}_{\gamma}^{\prime}}\left(c_{n}\right)$, and clearly n_{i} as a function of i is recursive in H_{c}. Given n_{i}, start enumerating the elements $<_{0} b^{\prime}$ until one finds the first element z_{i} in this enumeration such that $L_{c_{n_{i}}}\left(z_{i}\right)$, i.e., $f\left(c_{n_{i}}, z_{i}\right) \in \overline{\mathrm{H}_{\gamma\left(c_{n_{i}}\right)}}$. Define $g(i)=\mu j z_{i} \leqslant{ }_{0} b_{j}$.
 Consequently, $a^{\prime} \prec^{H_{c}} b^{\prime}$ and by the analogous argument, $b^{\prime} \prec^{H_{c}} a^{\prime}$. Thus, (a) holds by Corollary 1.1.

Suppose the hypothesis of (b) as in (a) we show that for arbitrary $a^{\prime}, b^{\prime} \in \bar{O},\left|a^{\prime}\right|=\left|b^{\prime}\right|=\omega^{k}$ implies $a^{\prime} \prec^{H_{c}} b^{\prime}$ where $c \in O$ and $|c|=2(k-2)+1$. Note that $k=1$ implies $\mathbf{H}_{a^{\prime}}$ and $\mathbf{H}_{b^{\prime}}$ have the same one-one degree by [1]. Let $c \in O$ such that $|c|=k-1$, then by Lemma $1.1 L_{c}(z)$ is one-one reducible to $\overline{\mathrm{H}_{\gamma(c)}}=\overline{\mathrm{O}^{(2(k-2))}}$ (recursive if $|c|=1$) and by Lemma 1.2, for $z<_{0} a^{\prime}, L_{c}(z)$ is true iff $|z|=\omega^{(k-1)} \cdot n$ for some $n \neq 0$, since $\left|a^{\prime}\right|=\omega^{k}$. For each i, let n_{i} be the number of z 's, $z \leqslant_{0} a_{i}$ such that $L_{c}(z)$. We compute n_{i} recursively in $\mathrm{O}^{(2(k-2)+1)}$ as follows: First, consider $\mathrm{Ez}\left(z<_{0} a_{i} \wedge L_{c}(z)\right)$ (this is equivalent to $\left.\mathrm{Ez}\left(z<_{0} a_{i} \wedge f(c, z) \notin \mathrm{O}^{(2(k-2))}\right)\right)$ which is equivalent to $\phi\left(c, a_{i}\right) \epsilon$ $\mathrm{O}^{(2 \cdot(k-2))+1}$ for a primitive recursive function ϕ. If the answer is $\phi\left(c, a_{i}\right) \notin$ $\mathrm{O}^{(2 \cdot(k-2)+1)}$, then $n_{i}=\mathrm{O}$ if $\urcorner L_{c}\left(a_{i}\right)$ and $n_{i}=1$ if $L_{c}\left(a_{i}\right)$. If the answer is $\phi\left(c, a_{i}\right) \in \mathrm{O}^{(2 \cdot(k-2)+1)}$, then let z_{1} be the first element in the enumeration of $z<_{0} a_{i}$ such that $L_{c}\left(z_{1}\right)$. Suppose now we have defined z_{1}, \ldots, z_{k} by this procedure $k \geqslant 1$. Consider $\operatorname{Ez}\left(z \neq z_{1} \wedge \ldots \wedge z \neq z_{k} \wedge z<_{0} a_{i} \wedge L_{c}(z)\right)$, if true, then take z_{k+1} to be the first element of the enumeration of all $z<_{0} a_{i}$ different from z_{1}, \ldots, z_{k} such that $L_{c}\left(z_{k+1}\right)$, otherwise, $n_{i}=k$, if $\urcorner L_{c}\left(a_{i}\right)$, or $n_{i}=k+1$ if $L_{\mathrm{c}}\left(a_{i}\right)$. Clearly, n_{i} is defined recursively in $\mathrm{O}^{(2 \cdot(k-2))+1}$ and $\left|a_{i}\right| \leqslant \omega^{n_{i}}$. Given n_{i} find the first $n_{i}+1$ numbers $x_{1}, \ldots, x_{n_{i}+1}$ in the enumeration of $x<_{0} b^{\prime}$ such that $L_{c}\left(x_{k}\right), k=1, \ldots, n_{i}+1$, (this computation is recursive in $\mathrm{O}^{2 \cdot(k-2)}$ given that $\left|b^{\prime}\right|=\omega^{k}$). Define $g(i)=\mu j$ such that $x_{k} \leqslant_{0} b_{j}$ for $k=1$, . ., $n_{i}+1$. Clearly, g is recursive in $\mathrm{O}^{(2 \cdot(k-2))+1}$ and $\left|a_{i}\right| \leqslant \omega^{n_{i}}<\omega^{n_{i}+1} \leqslant\left|b_{g(i)}\right|$. Thus, $a^{\prime} \prec^{{ }^{H}}{ }_{d} b^{\prime}$ where $|d|=2 \cdot(k-2)+1$, and analogously $b^{\prime} \prec^{H_{d}} a^{\prime}$. Consequently, by Corollary 1.1, $\mathbf{H}_{a^{\prime}}$ and $H_{b^{\prime}}$ are isomorphic by a permutation of \mathcal{N} recursive in $\mathrm{H}_{d},|d|=2 \cdot(k-2)+1$.

The proof of (c) is completely analogous to the proof of (b). Noting that for $|c|=\omega^{\beta+(k-1)}, L_{c}(z)$ is $1-1$ reducible to $\overline{\mathbf{H}_{\gamma(c)}}$, i.e., $\overline{\mathbf{H}_{\beta}^{2(k-1)+1}}=\overline{\mathbf{H}_{\beta}^{2 k-1}}$.

Q.E.D.

Moschovakis notes in [6] that with respect to $1-1$ reducibility there is a minimum one-one degree of the form $H_{a^{\prime}}^{\prime}\left|a^{\prime}\right|=\omega^{2}$, in the Turing degree. The following shows this to be a rather general phenomenon.

Corollary 1.2 If $\left|a^{\prime}\right|=\left|b^{\prime}\right|=\omega^{\beta+k}, \beta$ a limit and $k \neq \mathrm{O}$ or $\beta=\mathrm{O}$ and $k \geqslant 2$, then there is a minimal 1-1 degree $\mathbf{H}_{a^{\prime}}$ in \mathbf{H}_{c} in the Turing degree of $\left\{\mathrm{H}_{b^{\prime}}:\left|b^{\prime}\right|=\omega^{\beta+k}\right\}$ where $|c|=2 \cdot(k-2)$ if $\beta=0$ and $k \geqslant 2$ and where $|c|=$ $\beta+2 k-1$ if $\beta \neq 0$.

Proof: As noted in the proof of Theorem 1.2 (b), once one had found n_{i} for each i, the rest of the computation can be carried out at the next lower level. Consequently, let $d \in O$ such that $|d|=\omega^{\beta+(k-1)}$ and $a_{i}=\left(d+_{0} d\right)+_{0}$ $\ldots++_{0} d$) with i summands d and consequently for any $e \in O,|e|=\beta+(k-1)$, the number n_{i} of elements $z \leqslant_{0} a_{i}$ such that $L_{e}(z)$ equals i. Consequently, $a^{\prime} \prec b^{\prime}$ via a function recursive in $L_{e}(z)$ and the result follows by Theorem 1.1 and Lemma 1.1.

2 Natural well-orderings In this section we define from predicates $R\left(x_{1}, y_{1}, \ldots, x_{k}, y_{k}\right)$ recursive in a set A sets e_{k}^{A} of k-tuples of \mathcal{N} recursive in A ordered by first difference such that the size of these well-orderings depends upon whether or not $\left(x_{1}\right)\left(\mathrm{E} y_{1}\right) \ldots\left(x_{k}\right)\left(\mathrm{E} y_{k}\right) R\left(x_{1}, y_{1}, \ldots, x_{k}, y_{k}\right)$ is
true or false. Instead of working with the quantifier ($\mathrm{U} z$) of [5], we require uniqueness on existential quantifiers which will lead to analogous results. However, Lemma 4 of [5], which is quite sufficient to obtain the results in section 3 for arithmetic predicates up through H_{ω}, we know of no way of generalizing to obtain all the results of section 3 below.

Lemma 2.1 Given a predicate $R(y, z)$ we can effectively find predicates $S_{1}(y, z)$ and $S_{2}(y, z)$ recursive uniformly in $R(y, z)$ such that
(a) $(\mathrm{E} y)(z) R(y, z)$ iff $(\mathrm{E}!y)(z) S_{1}(y, z)$
and
(b) $(y)(\mathrm{E} z) R(y, z)$ iff $(y)(\mathrm{E}!z) S_{2}(y, z)$.

Proof: Define $S_{1}(y, z)$ to be $y=2^{(y)_{0}} \cdot 3^{(y)_{1}} \wedge(w)\left(w \leqslant \max \left((y)_{1}, z\right) \rightarrow R\left((y)_{0}, w\right)\right) \wedge$ $\left.\left.\left.(t)(\mathrm{E} w)\left(t<(y)_{0} \rightarrow w \leqslant(y)_{1} \wedge\right\urcorner R(t, w)\right) \wedge\right\urcorner(t)(\mathrm{E} w)\left(t<(y)_{0} \rightarrow w<(y)_{1} \wedge\right\urcorner R(t, w)\right)$. Define $S_{2}(y, z)$ to be $\left.R(y, z) \wedge(w)(w<z \rightarrow\urcorner R(y, w)\right)$.
Lemma 2.2 Given a predicate of the form $R\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)$ we can effectively find a predicate $S\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)$ recursive uniformly in R such that

$$
\left(x_{1}\right)\left(\mathrm{E} y_{1}\right) \ldots\left(x_{n}\right)\left(\mathrm{E} y_{n}\right) R \text { iff }\left(x_{1}\right)\left(\mathrm{E}!y_{1}\right) \ldots\left(x_{n}\right)\left(\mathrm{E}!y_{n}\right) S
$$

Proof: By induction on $n \geqslant 1$ with $n=1$ by Lemma 2.1 (b), consider $\left(\left(\mathrm{E} y_{2}\right)\left(x_{3}\right) \ldots\left(x_{n}\right)\left(\mathrm{E} y_{n}\right) R\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)\right)$. By Lemma 2.1 (a), there is predicate $S_{1}\left(x_{1}, y_{1}, x_{2}\right)$ recursive uniformly in ($\left.\mathrm{E} y_{2}\right)\left(x_{3}\right) \ldots\left(x_{n}\right)\left(\mathrm{E} y_{n}\right) R\left(x_{1}, y_{1}\right.$, $\left.x_{2}, y_{2}, \ldots, x_{n}, y_{n}\right)$ such that $\mathrm{E}!y_{1}\left(x_{2}\right) S_{1}\left(x_{1}, y_{1}, x_{2}\right)$ iff $\left(\mathrm{E} y_{1}\right)\left(x_{2}\right) \ldots\left(x_{n}\right)\left(\mathrm{E} y_{n}\right)$ $R\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)$ and, hence, $\left(x_{1}\right)\left(\mathrm{E}!y_{1}\right)\left(x_{2}\right) S_{1}\left(x_{1}, y_{1}, x_{2}\right)$ iff $\left(x_{1}\right)\left(\mathrm{E} y_{1}\right) \ldots$ $\left(x_{n}\right)\left(\mathrm{E} y_{n}\right) R\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)$. Since $S_{1}\left(x_{1}, y_{1}, x_{2}\right)$ is recursive uniformly in ($\left.\mathrm{E} y_{2}\right)\left(x_{3}\right) \ldots\left(x_{n}\right)\left(\mathrm{E} y_{n}^{-}\right) R$, then by Post's Theorem,

$$
S_{1}\left(x_{1}, y_{1}, x_{2}\right) \equiv\left(x_{2}^{\prime}\right)\left(\mathrm{E} y_{2}\right) \ldots\left(x_{n}\right)\left(\mathrm{E} y_{n}\right) R_{1}\left(x_{1}, y_{1}, x_{2}, x_{2}^{\prime}, y_{2}, \ldots, x_{n}, y_{n}\right)
$$

with R_{1} recursive uniformly in R. By inductive hypothesis, there is a predicate $S_{2}\left(x_{1}, y_{1}, x_{2}, x_{2}^{\prime}, y_{2}, \ldots, x_{n}, y_{n}\right)$ recursive uniformly in R_{1} and, hence, in R such that

$$
S_{1}\left(x_{1}, y_{1}, x_{2}\right) \equiv\left(x_{2}^{\prime}\right)\left(\mathrm{E}!y_{2}\right) \ldots\left(x_{n}\right)\left(\mathrm{E}!y_{n}\right) S_{2}\left(x_{1}, y_{1}, x_{2}, x_{2}^{\prime}, y_{2}, \ldots, x_{n}, y_{n}\right)
$$

Define $S\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)$ to be $S_{2}\left(x_{1}, y_{1},\left(x_{2}\right)_{0},\left(x_{2}\right)_{1}, y_{2}, \ldots, x_{n}, y_{n}\right)$ and, consequently,

$$
\left(x_{2}\right) S_{1}\left(x_{1}, y_{1}, x_{2}\right) \equiv\left(x_{2}\right)\left(\mathrm{E}!y_{2}\right) \ldots\left(x_{n}\right)\left(\mathrm{E}!y_{n}\right) S\left(x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{n}, y_{n}\right)
$$

Thus,

$$
\begin{aligned}
\left(\mathrm{E} y_{1}\right)\left(x_{2}\right) \ldots\left(\mathrm{E} y_{n}\right)\left(x_{n}\right) R\left(x_{1}, y_{1}, \ldots, x_{n}\right) & \equiv \mathrm{E}!y_{1}\left(x_{2}\right) S_{1}\left(x_{1}, y_{1}, x_{2}\right) \\
& \equiv\left(\mathrm{E}!y_{1}\right)\left(x_{2}\right)\left(\mathrm{E}!y_{2}\right) \ldots\left(x_{n}\right)\left(\mathrm{E}!y_{n}\right) S .
\end{aligned}
$$

Thus, the result follows easily.
Definition 2.1 A subset e of $\overline{\mathcal{N}^{k}}$ belongs to W_{k}^{R} if e is recursive in R and the following four conditions hold:
(i) $\left(z_{1}, \ldots, z_{k}\right) \in e$ implies for all $i \leqslant k, z_{i}=2^{x} \cdot 3^{y}$ for some x and y.
(ii) For every x, there is at most one y such that $\left|\left\{\left(2^{x} \cdot 3^{y}, z_{2}, \ldots, z_{k}\right) \in e\right\}\right|=$ ω^{k-1}, here $\|$ means order type by first difference.
(iii) For every x and $y\left\{\left(z_{2}, \ldots, z_{k}\right):\left(2^{x} \cdot 3^{y}, z_{2}, \ldots, z_{k}\right) \in e\right\} \in W_{k-1}^{R}$.
(iv) If for x and $y\left|\left\{\left(2^{x} \cdot 3^{y}, z_{2}, \ldots, z_{k}\right) \in e\right\}\right|=\omega^{k-1}$, then for every $z<x$, there is a $y_{z}<y$ such that

$$
\left|\left\{\left(2^{z} \cdot 3^{y_{z}}, z_{2}, \ldots, z_{k}\right) \in e\right\}\right|=\omega^{k-1} .
$$

Definition 2.2 For $e_{1}, e_{2}, \ldots, e_{k} \in W_{n}^{R}$, define $\circledast\left(e_{1}, \ldots, e_{k}\right)=\left\{\left(2^{x_{1}} \cdot 3^{y_{1}}, \ldots\right.\right.$, $\left.2^{x_{n}} \cdot 3^{y_{n}}\right): \operatorname{seq}\left(y_{i}\right) \wedge \operatorname{lh}\left(y_{i}\right)=k \wedge$ for all $\left.i \leqslant k-1\left(2^{x_{1}} \cdot 3^{\left(y_{1}\right)}, \ldots, 2^{x_{n}} \cdot 3^{\left(y_{n}\right)_{i}}\right) \in e_{i+1}\right\}$.
Lemma 2.3 (1) For any $k \geqslant 1$ and $e_{1}, \ldots, e_{k} \in W_{n}^{R} \circledast\left(e_{1}, \ldots, e_{k}\right) \in W_{n}^{R}$.
(2) If for some $i \leqslant k\left|e_{i}\right|<\omega^{n}$, then $\left|\circledast\left(e_{1}, \ldots, e_{k}\right)\right| \leqslant \min \left(\left|e_{1}\right|, \ldots,\left|e_{k}\right|\right)+$ ω^{n-1}.
(3) $\left|\circledast\left(e_{1}, \ldots, e_{k}\right)\right|=\omega^{n}$ iff for all $i \leqslant k,\left|e_{i}\right|=\omega^{n}$.

Proof: By induction on n. For $n=1$, the result is clear. Consider $e_{1}, \ldots, e_{k} \in W_{n}^{R}$, to show $\circledast\left(e_{1}, \ldots, e_{k}\right) \in W_{n}^{R}$. (i) is immediate. For a fixed x and $y \operatorname{such}$ that $\operatorname{seq}(y) \wedge \operatorname{lh}(y)=k$, then

$$
\text { (*) } \begin{aligned}
\{ & \left.\left(2^{x} \cdot 3^{y}, 2^{x_{2}} \cdot 3^{y_{2}}, \ldots, 2^{x_{n}} \cdot 3^{y_{n}}\right) \epsilon \circledast\left(e_{1}, \ldots, e_{k}\right)\right\} \\
= & \left\{\left(2^{x} \cdot 3^{y}, 2^{x_{2}} \cdot 3^{y_{2}}, \ldots, 2^{x_{n}} \cdot 3^{y_{n}}\right):\left(2^{x_{2}} \cdot 3^{y_{2}}, \ldots ., 2^{x_{n}} \cdot 3^{y_{n}}\right)\right. \\
& \epsilon \circledast\left(\left\{\left(z_{2}, \ldots, z_{n}\right):\left(2^{x} \cdot 3^{(y)_{0}}, z_{2}, \ldots, z_{n}\right) \in e_{1}\right\}, \ldots,\right. \\
& \left.\left.\left\{\left(z_{2}, \ldots, z_{n}\right):\left(2^{x} \cdot 3^{(y) k-1}, z_{2}, \ldots, z_{n}\right) \in e_{k}\right\}\right)\right\} .
\end{aligned}
$$

By (*) and our inductive hypothesis (1), it follows that $\circledast\left(e_{1}, \ldots, e_{k}\right)$ satisfies (iii). (ii) holds for $\circledast\left(e_{1}, \ldots, e_{k}\right)$ since (ii) holds for e_{1}, \ldots, e_{k} and apply the inductive hypothesis (3) to the right-hand side of (*). Suppose for fixed x and y,

$$
\left|\left\{\left(2^{x} \cdot 3^{y}, 2^{x_{2}} \cdot 3^{y_{2}}, \ldots, 2^{x_{n}} \cdot 3^{y_{n}}\right) \epsilon \circledast\left(e_{1}, \ldots, e_{k}\right)\right\}\right|=\omega^{n-1}
$$

then by ($*$) and (3) for $i \leqslant k-1$,

$$
\left|\left\{\left(2^{x} \cdot 3^{(y)_{i}}, z_{2}, \ldots, z_{n}\right) \in e_{i+1}\right\}\right|=\omega^{n-1}
$$

Since $e_{i+1} \epsilon W_{n}^{R}$ and by (iv), for each $z<x$ there is a $y_{z, i+1}<(y)_{i}$ such that $\left|\left\{\left(2^{z} \cdot 3^{y z, i+1}, z_{2}, \ldots, z_{n}\right) \in e_{i+1}\right\}\right|=\omega^{n-1}$. Thus,

$$
\left|\left\{\left(2^{z} \cdot 3^{2^{y z, 1}} \ldots p_{k-1}^{y z, k}, z_{2}, \ldots, z_{n}\right) \in \circledast\left(e_{1}, \ldots, e_{k}\right)\right\}\right|=\omega^{n-1}
$$

by (*) and (3). Clearly, $2^{y_{z, 1}} \ldots p_{k-1}^{y_{z, k}}<y$ and thus (iv) holds for $\circledast\left(e_{1}, \ldots\right.$, $\left.e_{k}\right)$. Thus, $\circledast\left(e_{1}, \ldots, e_{k}\right) \in W_{n}^{R}$.

Suppose $e_{1} \epsilon W_{n}^{R}$ and $\left|e_{1}\right|<\omega^{n}$. By (ii) and (iv), there is a unique x such that for all $z<x$ there is exactly one y_{z} such that $\mid\left\{\left(2^{z} \cdot 3^{y_{z}}, z_{2}, \ldots, z_{n}\right) \epsilon\right.$ $\left.e_{1}\right\} \mid=\omega^{n-1}$ and for any $z \geqslant x$ and any $\left.y, \mid\left\{2^{z} \cdot 3^{y}, z_{2}, \ldots, z_{n}\right) \in e_{1}\right\} \mid<\omega^{n-1}$. Consequently, by (*), (2), and (3), noting the choice of y_{z} for e_{2}, \ldots, e_{n} given $z<x$ must also be correct, we have at most x numbers of the form $2^{z} \cdot 3^{y}$ such that $\left|\left\{\left(2^{z} \cdot 3^{y}, z_{2}, \ldots, z_{n}\right) \in \circledast\left(e_{1}, \ldots, e_{n}\right)\right\}\right|=\omega^{n-1}$. From this (2) follows readily.

By (2), $\left|\circledast\left(e_{1}, \ldots, e_{k}\right)\right|=\omega^{n}$ implies for all $i \leqslant k,\left|e_{i}\right|=\omega^{n}$. Conversely, suppose $\left|e_{i+1}\right|=\omega^{n}$ for $i+1 \leqslant k$. It is easy to verify that for every x, there is a unique $y_{x, i}$ such that for all $i \leqslant k-1, \mid\left\{\left(2^{x} \cdot 3^{y_{x, i+1}}, z_{2}, \ldots, z_{n}\right) \in e_{i+1} \mid=\right.$ ω^{n-1}. Hence,

$$
\left|\left\{\left(2^{x} \cdot 3^{2^{y_{x, 1}}} \ldots p_{k-1}^{y_{x, k}}, z_{2}, \ldots, z_{n}\right) \epsilon \circledast\left(e_{1}, \ldots, e_{k}\right)\right\}\right|=\omega^{n-1}
$$

by (*) and inductive hypothesis (3). Clearly, then $\left|\circledast\left(e_{1}, \ldots, e_{k}\right)\right|=\omega^{n}$.
Q.E.D.

We define by induction on n a well-ordering $e_{S_{n}} \epsilon W_{n}^{R}$ recursive in R for each predicate of the form $\left(x_{1}\right)\left(\mathrm{E} y_{1}\right) \ldots\left(x_{n}\right)\left(\mathrm{E} y_{n}\right) S_{n}\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)$ with S_{n} recursive in R. Moreover, for each n the above operator \circledast maps any $k+1$-tuple of well-orderings of the form $e_{S_{i, n}}, S_{i, n}$ recursive in R for $i \leqslant k$, to $\circledast\left(e_{S_{0, n}}, \ldots, e_{S_{k, n}}\right)$ a well-ordering recursive in R. We can always assume by the above Lemma 2.2 that if $\left(\mathrm{E} y_{1}\right) \ldots\left(x_{n}\right)\left(\mathrm{E} y_{n}\right) S_{n}\left(x_{1}, y_{1}, \ldots\right.$, x_{n}, y_{n}), then

$$
\left(E!y_{1}\right) \ldots\left(x_{n}\right)\left(E!y_{n}\right) S_{n}\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right) .
$$

Suppose $n=1$: Let $e_{S_{1}}=\left\{2^{x} \cdot 3^{y}: \operatorname{seq}(y) \wedge \operatorname{lh}(y)=x+1 \wedge(z)_{z \leqslant x} S_{1}\left(z,(y)_{z}-\right.\right.$ 1) \}.

Suppose $n=j+1$:

$$
\begin{aligned}
e_{S_{j+1}} & =\left\{\left(2^{x} \cdot 3^{y}, z_{1}, \ldots, z_{j}\right): \operatorname{seq}(y) \wedge \operatorname{lh}(y)\right. \\
& \left.=x+1 \wedge\left(z_{1}, \ldots, z_{j}\right) \in \circledast\left(e_{S_{0, j}}, \ldots, e_{S_{x, j}}\right)\right\}
\end{aligned}
$$

where

$$
S_{z, j}=\left(x_{2}\right)\left(\mathrm{E} y_{2}\right) \ldots\left(x_{j+1}\right)\left(\mathrm{E} y_{j+1}\right) S_{j+1}\left(z,(y)_{z}-1, x_{2}, y_{2}, \ldots, x_{j+1}, y_{j+1}\right)
$$

$e_{s_{j+1}}$ is ordered by first differences and $<$, i.e., it is a subordering of the natural ordering of \mathcal{N}^{j+1}. It is obvious that $e_{S_{n}}$ and $\circledast\left(e_{S_{0, n}}, \ldots, e_{S_{k, n}}\right)$ are well-orderings and their order types are less than or equal to ω^{n}.
Lemma 2.4 (a) $e_{S_{n}} \epsilon W_{n}^{R}$ for all n and S_{n}.
(b) For all $x_{1} \leqslant j$, $\left(\mathrm{E} y_{1}\right) \ldots\left(x_{n}\right)\left(\mathrm{E} y_{n}\right) S_{n}\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)$ iff there is a y such that $\left|\left\{\left(2^{j} \cdot 3^{y}, z_{2}, \ldots, z_{n}\right) \in e_{S_{n}}\right\}\right|=\omega^{n-1}$.
(c) $\left|e_{S_{n}}\right|=\omega^{n}$ iff $\left(x_{1}\right)\left(\mathrm{E} y_{1}\right) \ldots\left(x_{n}\right)\left(\mathrm{E} y_{n}\right) S_{n}$.

Proof: By induction on n, the result is immediate for $n=1$. Consider S_{n} for $n>1$, assuming the result is true for $n-1$. By the previous lemma and definition it is clear that (i) and (iii) hold for $e_{S_{n}}$. Suppose that $\left|\left\{\left(2^{x} \cdot 3^{y}, z_{2}, \ldots, z_{n}\right) \in e_{S_{n}}\right\}\right|=\omega^{n-1}$, then $\operatorname{seq}(y), \operatorname{lh}(y)=x+1$, and for $i \leqslant x$, $\left|e_{s_{i, n}}\right|=\omega^{n-1}$ by Lemma 2.3, (3), where

$$
\begin{aligned}
& \left(x_{2}\right)\left(\mathrm{E} y_{2}\right) \ldots\left(x_{n}\right)\left(\mathrm{E} y_{n}\right) S_{i, n}=\left(x_{2}\right)\left(\mathrm{E} y_{2}\right) \ldots\left(x_{n}\right)\left(\mathrm{E} y_{n}\right) S_{n}\left(i,(y)_{i}-1,\right. \\
& \left.x_{2}, y_{2}, \ldots, x_{n}, y_{n}\right) .
\end{aligned}
$$

Hence, by our inductive hypothesis (c),

$$
\left(x_{2}\right)\left(\mathrm{E} y_{2}\right) \ldots\left(x_{n}\right)\left(\mathrm{E} y_{n}\right) S_{n}\left(i,(y)_{i}-1, x_{2}, y_{2}, \ldots, x_{n}, y_{n}\right)
$$

is true, but then $(y)_{i}-1$ is uniquely determined by i. Hence, y is unique and (ii) holds for $e_{S_{n}}$. Moreover, for $z<x$, take $y_{z}=2^{y_{0}} \ldots p_{z}^{y_{z}}$ and by the definition of S_{n} and the previous Lemma, it is clear that $\mid\left\{\left(2^{z} \cdot 3^{y z}, z_{2}, \ldots\right.\right.$, $\left.\left.z_{n}\right) \in e_{S_{n}}\right\}=\omega^{n-1}$ and $y_{z}<y$. Thus, (iv) holds for $e_{s_{n}}$ and $e_{s_{n}} \in W_{n}^{R}$. (b) is clear and (c) follows from (b) and properties (ii) and (iv) of elements of W_{n}^{R}.

Q.E.D.

We now define mappings $\circledast_{k}: W_{k}^{R} \times W_{n}^{R} \rightarrow W_{n}^{R}$ for $n=k, k+1$ whose definitions are motivated by the notion of relativization of quantifiers as follows.
Definition $2.3 e_{1} \circledast_{1} e_{1}^{\prime}=\left\{\left(2^{x} \cdot 3^{2^{y} \cdot 3^{y^{\prime}}}\right): 2^{x} \cdot 3^{y} \in e_{1}^{\prime}\right.$ and $\left.2^{2^{x} \cdot 3^{y}} \cdot 3^{y^{\prime}} \in e_{1}\right\}$. $e_{1} \circledast_{1} e_{2}=\left\{\left(2^{x} \cdot 3^{2^{y} \cdot 3^{y^{\prime}}}, 2^{z} \cdot 3^{2^{w \cdot 3^{w \prime}}}\right)\right.$:

$$
\left.\left(2^{x} \cdot 3^{y}, 2^{z} \cdot 3^{w}\right) \in e_{2}, 2^{2^{x} \cdot 3^{y} y} \cdot 3^{y^{\prime}} \in e_{1}, \text { and } 2^{2^{z} \cdot 3^{w}} \cdot 3^{w^{\prime}} \in e_{1}\right\}
$$

Below we let $e_{n}(z)=\left\{\left(z_{2}, \ldots, z_{n}\right):\left(z, z_{2}, \ldots, z_{n}\right) . \epsilon e_{n}\right\}$. Now suppose \circledast_{j} has been defined for all $j<k$ where $k \geqslant 2$. Let

$$
\begin{aligned}
e_{k} \circledast_{k} e_{k}^{\prime}=\{ & \left\{\left(2^{x} \cdot 3^{2^{y} \cdot 3^{y^{\prime}}}, z_{2}, \ldots, z_{k}\right):\right. \\
& \left.\left(z_{2}, \ldots, z_{k}\right) \in\left(e_{k}\left(2^{2^{x} 3_{3} y} \cdot 3^{y^{\prime}}\right) \circledast_{k-1} e_{k}^{\prime}\left(2^{x} \cdot 3^{y}\right)\right)\right\}
\end{aligned}
$$

and define

$$
\begin{aligned}
& e_{k} \circledast_{k} e_{k+1}=\left\{\left(2^{x} \cdot 3^{2^{x} \cdot 3^{y^{\prime}}}, z_{2}, \ldots, z_{k+1}\right):\right. \\
& \left.\left(z_{2}, \ldots, z_{k+1}\right) \in\left(e_{k}\left(2^{2 x \cdot 3 y} \cdot 3^{y^{\prime}}\right) \circledast_{k-1}\left(e_{k} \circledast_{k} e_{k+1}\left(2^{x} \cdot 3^{y}\right)\right)\right)\right\} .
\end{aligned}
$$

The following result establishes that \circledast_{k} is well-defined and its fundamental properties:

Lemma 2.5 Let $e_{k} \in W_{k}^{R}, e_{n} \in W_{n}^{R}$ for $n=k$ or $n=k+1$, then
(a) $e_{k} \circledast_{k} e_{n} \in W_{n}^{R}$,
(b) If $\left|e_{k}\right|<\omega^{k}$, then $\left|e_{k} \circledast_{k} e_{n}\right|<\omega^{k}$,
(c) If $\left|e_{k}\right|=\omega^{k}$ and $\left|e_{n}\right|<\omega^{n}$, then $\left|e_{k} \circledast_{k} e_{n}\right| \leqslant\left|e_{n}\right|+\omega^{n-1}$
for $n=k$ or $n=k+1$,
and
(d) $\left|e_{k} \circledast_{k} e_{n}\right|=\omega^{n}$ iff $\left|e_{k}\right|=\omega^{\dot{k}}$ and $\left|e_{n}\right|=\omega^{n}$.

Proof: By induction on k, consider $k=n=1$. It is clear that if $2^{x} \cdot 3^{2^{y \cdot 3^{\prime \prime}}} \epsilon$ $e_{1} \circledast_{1} e_{1}^{\prime}$, then y is unique for x since $2^{x} \cdot 3^{y} \in e_{1}^{\prime}$ and y^{\prime} is unique for $2^{x} \cdot 3^{y}$ since $2^{2^{x} \cdot 3^{y}} \cdot 3^{y^{\prime}} \in e_{1}$; thus, $2^{y} \cdot 3^{y^{\prime}}$ is unique for x. Thus, (i), (ii), and (iii) of the definition of W_{1}^{R} hold. Suppose $2^{x} \cdot 3^{2^{y} \cdot 3^{y^{\prime}}} \epsilon e_{1} \circledast_{1} e_{1}^{\prime}$ and let $z<x$, then there is a $y_{z}<y$ such that $2^{z} \cdot 3^{y_{z}} \in e_{1}^{\prime}$ and then, since $2^{z} \cdot 3^{y_{z}}<2^{x} \cdot 3^{y}$, there
 and $e_{1} \circledast_{1} e_{1}^{\prime} \epsilon W_{1}^{R}$. Clearly, $\left|e_{1} \circledast_{1} e_{1}^{\prime}\right| \leqslant\left|e_{1}^{\prime}\right|$ and $\left|e_{1}\right|<\omega$ implies $\left|e_{1} \circledast_{1} e_{1}^{\prime}\right|<$ $\left|e_{1}\right|<\omega$ and from these (c), (b), and (d) follow.

Now for $k=1$ consider $n=2$. Note first that

$$
e_{1} \circledast_{1} e_{2}=\left\{\left(2^{x} \cdot 3^{2^{y \cdot} \cdot 3^{y^{\prime}}}, z\right): z \in\left(e_{1} \circledast_{1} e_{2}\left(2^{x} \cdot 3^{y}\right)\right) \text { and }\left(2^{2^{x} \cdot 3^{y}} \cdot 3^{y^{\prime}} \in e_{1}\right)\right\}
$$

and thus (i) and (iii) hold. Suppose now $\left|\left\{\left(2^{x} \cdot 3^{2^{y} \cdot 3^{y^{\prime}}}, z\right) \epsilon e_{1} \circledast_{1} e_{2}\right\}\right|=\omega$, i.e.,
$\left|e_{1} \circledast_{1} e_{2}\left(2^{x} \cdot 3^{y}\right)\right|=\omega$, and thus, by (d) for $k=n=1$, we have $\left|e_{1}\right|=$ $\left|e_{2}\left(2^{x} \cdot 3^{y}\right)\right|=\omega$. Since $e_{2} \in W_{2}^{R}$, we have that y is unique for x, but $2^{2^{x} \cdot 3^{y}} \cdot 3^{y^{\prime}} \epsilon$ e_{1} and hence y^{\prime} is unique for $2^{x} \cdot 3^{y}$. Thus, $2^{y} \cdot 3^{y^{\prime}}$ is the unique number such that $\left|\left(e_{1} \circledast_{1} e_{2}\right)\left(2^{x} \cdot 3^{2^{y} \cdot 3^{y}}\right)\right|=\omega$, and (ii) holds for $e_{1} \circledast_{1} e_{2}$. By a similar type argument, as above, (iv) holds for $e_{1} \circledast_{1} e_{2}$ and $e_{1} \circledast_{1} e_{2} \in W_{2}^{R}$. Suppose now $\left|e_{1}\right|<\omega$, then by the inductive hypothesis (b) for all $z\left|e_{1} \circledast_{1} e_{2}(z)\right|<\omega$, and it follows that $\left(e_{1} \circledast_{1} e_{2}\right)(z)=\varnothing$ for all but finitely many z. Thus, $\left|e_{1} \circledast_{1} e_{2}\right|<$ ω and (b) holds. Suppose $\left|e_{1}\right|=\omega$ and $\left|e_{2}\right|<\omega^{2}$, there is some j such that for $i<j$ there is a unique y_{i} such that $\left|e_{2}\left(2^{i} \cdot 3^{y_{i}}\right)\right|=\omega$ and for any $2^{x} \cdot 3^{y} \neq 2^{i} \cdot 3^{y_{i}}$ for all $i<j,\left|e_{2}\left(2^{x} \cdot 3^{y}\right)\right|<\omega$. It follows readily that there are exactly j numbers z of the form $z=2^{i} \cdot 3^{2 y_{i \cdot 3} y_{i}^{\prime}}$ for some $i<j$ and y_{i}^{\prime} such that $\left|\left(e_{1} \circledast_{1} e_{2}\right)(z)\right|=\omega$, using inductive hypothesis (d), and for all other z, $\left|\left(e_{1} \circledast_{1} e_{2}\right)(z)\right|<\omega$. Clearly, then,

$$
\left|e_{1} \circledast_{1} e_{2}\right| \leqslant \omega \cdot(j)+\omega \leqslant\left|e_{2}\right|+\omega,
$$

since $\omega \cdot(j) \leqslant\left|e_{2}\right|$, and (c) holds. If $\left|e_{1}\right|=\omega$ and $\left|e_{2}\right|=\omega^{2}$, then $\left|e_{1} \circledast_{1} e_{2}\right|=$ ω^{2}. Conversely, suppose $\left|e_{1} \circledast_{1} e_{2}\right|=\omega^{2}$, then for some y, y^{\prime},

$$
\left|\left(e_{1} \circledast_{1} e_{2}\right)\left(2^{0} \cdot 3^{2^{y} \cdot 3^{y^{\prime}}}\right)\right|=\omega=\left|e_{1} \circledast_{1} e_{2}\left(2^{0} \cdot 3^{y}\right)\right|
$$

and by inductive hypothesis (d) $\left|e_{1}\right|=\omega$. If $\left|e_{2}\right|<\omega^{2}$, then $\left|e_{1} \circledast_{1} e_{2}\right| \leqslant\left|e_{2}\right|+$ $\omega<\omega^{2}$ by (c), contrary to hypothesis, and thus (d) holds.

Suppose the résult is true for $k-1$ and $n=k-1, k$ where $k \geqslant 2$. Consider now k and $n=k$,

$$
\begin{aligned}
e_{k} \circledast_{k} e_{k}^{\prime}= & \left\{\left(2^{x} \cdot 3^{2^{y} \cdot 3^{y^{\prime}}}, z_{2}, \ldots, z_{k}\right):\right. \\
& \left.\left(z_{2}, \ldots, z_{k}\right) \in\left(e_{k}\left(2^{2^{x} \cdot 3^{y}} \cdot 3^{y^{\prime}}\right) \circledast_{k-1} e_{k}^{\prime}\left(2^{x} \cdot 3^{y}\right)\right)\right\} .
\end{aligned}
$$

Clearly, (i) and (iii) hold by the inductive hypothesis. Suppose $\left|\left(e_{k} \circledast_{k} e_{k}^{\prime}\right)\left(2^{x} \cdot 3^{y^{y} \cdot 3^{y}}\right)\right|=\omega^{k-1}$, then by definition and (d), $\left|e_{k}\left(2^{2^{x} \cdot 3^{y}} \cdot 3^{y^{\prime}}\right)\right|=\omega^{k-1}$ and $\left|e_{k}^{\prime}\left(2^{x} \cdot 3^{y}\right)\right|=\omega^{k-1}$. Consequently, by definition of W_{k}^{R}, y is unique for x and y^{\prime} is unique for $2^{x} \cdot 3^{y}$; thus $2^{y} \cdot 3^{y^{\prime}}$ is uniquely determined by x. Likewise, (iv) holds and $e_{k} \circledast_{k} e_{k}^{\prime} \in W_{k}^{R}$. Suppose $\left|e_{k}\right|<\omega^{k}$, then for at most finitely many numbers of the form $2^{2^{x} \cdot 3^{y}} \cdot 3^{y^{\prime}}\left|e_{k}\left(2^{2^{x} \cdot 3^{y}} \cdot 3^{y^{\prime}}\right)\right|=\omega^{k-1}$, and corresponding to each of these,

$$
\begin{aligned}
\left|\left(e_{k} \circledast_{k} e_{k}^{\prime}\right)\left(2^{x} \cdot 3^{2^{y} 3^{y^{\prime}}}\right)\right| & =\left|e_{k}\left(2^{2 x} 3^{y} \cdot 3^{y^{\prime}}\right) \circledast_{k-1} e_{k}^{\prime}\left(2^{x} \cdot 3^{y}\right)\right| \\
& \leqslant\left|e_{k}^{\prime}\left(2^{x} \cdot 3^{y}\right)\right|+\omega^{k-2}
\end{aligned}
$$

by (c) if $\left|e_{k}^{\prime}\left(2^{x} \cdot 3^{y}\right)\right|<\omega^{k-1}$ or, otherwise,

$$
\left|\left(e_{k} \circledast_{k} e_{k}^{\prime}\right)\left(2^{x} \cdot 3^{2^{y} \cdot 3^{y^{\prime}}}\right)\right|=\omega^{k-1} \text { if }\left|e_{k}^{\prime}\left(2^{x} \cdot 3^{y}\right)\right|=\omega^{k-1} .
$$

For all but finitely many of the numbers of the form $2^{x} \cdot 3^{2^{y} \cdot 3^{y^{\prime}}}, \mid e_{k}\left(2^{2^{x} \cdot 3^{y}}\right.$. $\left.3^{y^{\prime}}\right) \mid<\omega^{k-1}$ and consequently by (b) it follows that $\left|\left(e_{k} \circledast_{k} e_{k}^{\prime}\right)\left(2^{x} \cdot 3^{2^{y} \cdot 3^{y^{\prime}}}\right)\right|<$ ω^{k-1}. Thus, $\left|e_{k} \circledast_{k} e_{k}^{\prime}\right|<\omega^{k}$ and (b) holds. Suppose now that $\left|e_{k}\right|=\omega^{k}$ and $\left|e_{k}^{\prime}\right|<\omega^{k}$, we wish to establish (c).

Case 1. Suppose for all numbers of the form $2^{x} \cdot 3^{y}$, $\left|e_{k}^{\prime}\left(2^{x} \cdot 3^{y}\right)\right|<\omega^{k-1}$, then for any $y^{\prime}\left|\left(e_{k} \circledast_{k} e_{k}^{\prime}\right)\left(2^{x} \cdot 3^{2^{y} \cdot 3^{y^{\prime}}}\right)\right|<\omega^{k-1}$, since if $\left|e_{k}\left(2^{2^{x} \cdot 3^{y}} \cdot 3^{y^{\prime}}\right)\right|=\omega^{k-1}$, then
by (c) $\left|\left(e_{k} \circledast_{k} e_{k}^{\prime}\right)\left(2^{x} \cdot 3^{2^{y} \cdot 3^{y}}\right)\right| \leqslant\left|e_{k}^{\prime}\left(2^{x} \cdot 3^{y}\right)\right|+\omega^{k-2}<\omega^{k-1}$ and if $\left|e_{k}\left(2^{2^{x} \cdot 3^{y}} \cdot 3^{y^{\prime}}\right)\right|<$ ω^{k-1}, then by (b) $\left|\left(e_{k} \circledast_{k} e_{k}^{\prime}\right)\left(2^{x} \cdot 3^{2 y \cdot 3^{y^{\prime}}}\right)\right|<\omega^{k-1}$. Thus,

$$
\left|e_{k} \circledast_{k} e_{k}^{\prime}\right| \leqslant \omega^{k-1} \leqslant\left|e_{k}^{\prime}\right|+\omega^{k-1} .
$$

Case 2. Suppose for each $i \leqslant j$, there is a y_{i} such that $\left|e_{k}^{\prime}\left(2^{i} \cdot 3^{y_{i}}\right)\right|=\omega^{k-1}$ and for $2^{x} \cdot 3^{y} \neq 2^{i} \cdot 3^{y_{i}}$ for all $i \leqslant j$, then $\left|e_{k}^{\prime}\left(2^{x} \cdot 3^{y}\right)\right|<\omega^{k-1}$. Thus, since $\left|e_{k}\right|=\omega^{k}$, there is for every $i \leqslant j$ a unique y_{i}^{\prime} such that $\mid\left(e_{k} \circledast_{k} e_{k}^{\prime}\right)\left(2^{i}\right.$. $\left.3^{2^{2} \cdot 3^{y_{i}^{\prime}}}\right)\left.\right|^{\prime}=\omega^{k-1}$ by inductive hypothesis (d). For any number $2^{x} \cdot 3^{2 y_{\cdot} 3^{\prime}}$ different from $2^{i} \cdot 3^{2^{y_{i}} 3^{3_{i}^{\prime}}}$ for all $i \leqslant j$, we have $\left|\left(e_{k} \circledast_{k} e_{k}^{\prime}\right)\left(2^{x} \cdot 3^{2^{y \cdot} \cdot 3^{y^{\prime}}}\right)\right|<\omega^{k-1}$ by the argument given in Case 1 above. Consequently, $\left|e_{k} \circledast_{k} e_{k}^{\prime}\right| \leqslant \omega^{k-1}$. $(j+1)+\omega^{k-1} \leqslant\left|e_{k}^{\prime}\right|+\omega^{k-1}$. Thus, (c) holds. Clearly, $\left|e_{k}\right|=\omega^{k}$ and $\left|e_{k}^{\prime}\right|=\omega^{k}$ implies $\left|e_{k} \circledast_{k} e_{k}^{\prime}\right|=\omega^{k}$ and (d) follows from this, (b) and (c).

Suppose the result is true for $k-1$ and $n=k-1, k$ and for k and $n=k$ and consider $n=k+1$, then

$$
\begin{aligned}
& e_{k} \circledast_{k} e_{k+1}=\left\{\left(2^{x} \cdot 3^{2^{y} \cdot 3^{y^{\prime}}}, z_{2}, \ldots, z_{k+1}\right):\right. \\
& \left.\left(z_{2}, \ldots, z_{k+1}\right) \in\left(e_{k}\left(2^{2^{x} \cdot 3^{y}} \cdot 3^{y^{y}}\right) \circledast_{k-1}\left(e_{k} \circledast_{k} e_{k+1}\left(2^{x} \cdot 3^{y}\right)\right)\right)\right\} .
\end{aligned}
$$

Clearly, (i) and (iii) hold by our inductive hypothesis. Suppose now $\left|\left(e_{k} \circledast_{k} e_{k+1}\right)\left(2^{x} \cdot 3^{2^{y} \cdot 3^{y^{\prime}}}\right)\right|=\omega^{k}$, then we have $\left|e_{k}\left(2^{2^{x} \cdot 3^{y}} \cdot 3^{y^{\prime}}\right)\right|=\omega^{k-1}, \mid e_{k} *_{k} e_{k+1}\left(2^{x}\right.$. $\left.3^{y}\right) \mid=\omega^{k}$ by our inductive hypotheses (d), and, hence also, $\left|e_{k}\right|=\mid e_{k+1}\left(2^{x}\right.$. $\left.3^{y}\right) \mid=\omega^{k}$. Hence, y is uniquely determined by x and y^{\prime} is uniquely determined by $2^{x} \cdot 3^{y}$. Hence, $2^{y} \cdot 3^{y^{\prime}}$ is uniquely determined by x, and (iii) holds. Suppose $z<x$, then there is a $y_{z}<y$ such that $\left|e_{k+1}\left(2^{z} \cdot 3^{y z}\right)\right|=\omega^{k}$, and there is a $y_{z}^{\prime}<y^{\prime}$ such that $\left|e_{k}\left(2^{z^{z} \cdot 3^{y_{z}}} \cdot 3^{y_{z}^{\prime}}\right)\right|=\omega^{k-1}$. Thus,

$$
\begin{aligned}
& \left|\left(e_{k} \circledast_{k} e_{k+1}\right)\left(2^{z} \cdot 3^{2^{y_{z}} \cdot 3^{y z}}\right)\right|=\mid e_{k}\left(2^{2^{z} \cdot 3^{y_{z}}} \cdot 3^{y / z}\right) \circledast_{k-1} \\
& \left.\left.\left(e_{k} \circledast_{k} e_{k+1}\right) 2^{z} \cdot 3^{y z}\right)\right) \mid=\omega^{k}
\end{aligned}
$$

by our inductive hypothesis (d), and (iv) holds. Suppose $\left|e_{k}\right|<\omega^{k}$, then by our inductive hypothesis (b), for every $2^{x} \cdot 3^{y}\left|e_{k} \circledast_{k} e_{k+1}\left(2^{x} \cdot 3^{y}\right)\right|<\omega^{k}$. Moreover, there are at most finitely many numbers of the form $2^{x} \cdot 3^{2 y \cdot 3^{y^{i}}}$ such that $\left|e_{k}\left(2^{2^{x} \cdot 3^{y}} \cdot 3^{y^{\prime}}\right)\right|=\omega^{k-1}$ and for each of these we have

$$
\begin{aligned}
\left|\left(e_{k} \circledast_{k} e_{k+1}\right)\left(2^{x} \cdot 3^{2^{y} \cdot 3^{y^{\prime}}}\right)\right| & =\mid e_{k}\left(2^{2^{x} \cdot 3^{y}} \cdot 3^{y^{\prime}}\right) \circledast_{k-1}\left(e_{k} \circledast_{k} e_{k+1}\left(2^{x} \cdot 3^{y}\right) \mid\right. \\
& \leqslant\left|e_{k} \circledast_{k} e_{k+1}\left(2^{x} \cdot 3^{y}\right)\right|+\omega^{k-1}<\omega^{k}
\end{aligned}
$$

by our inductive hypotheses (c). For all other numbers of the form $2^{x} \cdot 3^{2^{y \cdot 3^{y^{\prime}}}}$, we have $\left|e_{k}\left(2^{2^{x} \cdot 3^{y}} \cdot 3^{y^{\prime}}\right)\right|<\omega^{k-1}$ and thus $\left|\left(e_{k} \circledast_{k} e_{k+1}\right)\left(2^{x} \cdot 3^{2^{y} \cdot 3^{y^{\prime}}}\right)\right|<$ ω^{k-1} by our inductive hypothesis (b). Thus, $\left|e_{k} \circledast_{k+1} e_{k+1}\right|<\omega^{k}$. Suppose now for (c) that $\left|e_{k}\right|=\omega^{k}$ and $\left|e_{k+1}\right|<\omega^{k+1}$.

Case 1. Suppose for all $2^{x} \cdot 3^{y}\left|e_{k+1}\left(2^{x} \cdot 3^{y}\right)\right|<\omega^{k}$, then

$$
\left|e_{k}\left(2^{2^{x} \cdot 3^{y}} \cdot 3^{y^{\prime}}\right) \circledast_{k-1}\left(e_{k} \circledast_{k} e_{k+1}\left(2^{x} \cdot 3^{y}\right)\right)\right| \leqslant\left|e_{k} \circledast_{k} e_{k+1}\left(2^{x} \cdot 3^{y}\right)\right|+\omega^{k-1}
$$

if $\left|e_{k}\left(2^{2^{x} \cdot 3^{y}} \cdot 3^{y}\right)\right|=\omega^{k-1}$ and $\left|e_{k} \circledast_{k} e_{k+1}\left(2^{x} \cdot 3^{y}\right)\right| \leqslant\left|e_{k+1}\left(2^{x} \cdot 3^{y}\right)\right|+\omega^{k-1}$ by (c) since $\left|e_{k}\right|=\omega^{k}$. Thus, $\left|\left(e_{k} \circledast_{k} e_{k+1}\right)\left(2^{x} \cdot 3^{2^{y} \cdot 3^{y}}\right)\right|<\omega^{k}$ if $\left|e_{k}\left(2^{2^{x} \cdot 3^{y}} \cdot 3^{y^{\prime}}\right)\right|=\omega^{k-1}$. If $\left|e_{k}\left(2^{2^{x} \cdot 3^{y}} \cdot 3^{y^{i}}\right)\right|<\omega^{k-1}$, then by (b) $\left|\left(e_{k} \circledast_{k} e_{k+1}\right)\left(2^{x} \cdot 3^{2^{y \cdot 3}}{ }^{y^{\prime}}\right)\right|<\omega^{k-1}$. Thus,

$$
\left|e_{k} \circledast_{k} e_{k+1}\right| \leqslant \omega^{k} \leqslant\left|e_{k+1}\right|+\omega^{k}
$$

Case 2 Suppose there is a number j such that for all $i \leqslant j$, there is a y_{i} such that $\left|e_{k+1}\left(2^{i} \cdot 3^{y_{i}}\right)\right|=\omega^{k}$ and for $2^{x} \cdot 3^{y} \neq 2^{i} \cdot 3^{y_{i}}$ for all $i \leqslant j,\left|e_{k+1}\left(2^{x} \cdot 3^{y}\right)\right|<$ ω^{k}. There exists exactly $(j+1)$ numbers $2^{i} \cdot 3^{2^{y_{i} \cdot y^{\prime}} y_{i}^{\prime}}$ such that $\mid e_{k}\left(2^{2^{i} \cdot 3^{y_{i}}}\right.$. $\left.3^{y_{i}^{\prime}}\right) \mid=\omega^{k-1}$ for some $i \leqslant j$ and, consequently, $\mid\left(e_{k} \circledast e_{k+1}\right)\left(2^{i} \cdot 3^{\left.2^{y_{i} \cdot 3^{y_{i}^{\prime}}}\right) \mid=\omega^{k}, ~}\right.$ for all $i \leqslant j$. For any number $2^{x} \cdot 3^{2^{y} \cdot 3^{y^{\prime}}} \neq 2^{i} \cdot 3^{2^{y_{i}} \cdot 3^{y_{i}^{\prime}}}$ for all $i \leqslant j e_{k+1}\left(2^{x} \cdot 3^{y}\right)<$ ω^{k} and, consequently, as in Case 1, $\left|\left(e_{k} \circledast_{k} e_{k+1}\right)\left(2^{x} \cdot 3^{2^{y} \cdot 3^{y^{\prime}}}\right)\right|<\omega^{k}$. Thus,

$$
\left|e_{k} \circledast_{k} e_{k+1}\right| \leqslant \omega^{k} \cdot(j+1)+\omega^{k} \leqslant\left|e_{k+1}\right|+\omega^{k} .
$$

Thus, (c) holds for $e_{k} \circledast_{k} e_{k+1}$. Suppose $\left|e_{k}\right|=\omega^{k}$ and $\left|e_{k+1}\right|=\omega^{k+1}$, then it readily follows that $\left|e_{k} \circledast_{k} e_{k+1}\right|=\omega^{k+1}$ and (d) results from this, (b) and (c). This completes the entire lemma.
Q.E.D.

The above result can be used to establish the following main result concerning \circledast_{k}, which is fundamental to this paper.

Theorem 2.1 If $k \geqslant 1$ and $\left|e_{k}\right|<\omega^{j}$ where $\mathrm{O} \leqslant j \leqslant k$, then $\left|e_{k} \circledast_{k} e_{n}\right|<\omega^{j}$ for $n=k$ or $n=k+1$.

Proof: By induction, consider $k=1$. Suppose $\left|e_{1}\right|<\omega$, then by the previous Lemma $\left|e_{1} \circledast_{1} e_{1}^{\prime}\right|<\omega$ and $\left|e_{1} \circledast_{1} e_{2}\right|<\omega$. If $\left|e_{1}\right|<\omega^{0}=1$, then $\left|e_{1}\right|=0$ and thus $\left|e_{1} \circledast_{1} e_{1}^{\prime}\right|=0$ and $\left|e_{1} \circledast_{1} e_{2}\right|=0$.

Let $k \geqslant 2$ and suppose the result is true for all $s<k$ and $n=s$ or $n=s+1$. Consider first $n=k$, i.e., $e_{k} \circledast_{k} e_{k}^{\prime}$. Suppose $\left|e_{k}\right|<\omega^{j}$ for $j \leqslant k$.
Case 1 Suppose $j=k$, then $\left|e_{k}\right|<\omega^{k}$ which implies by the preceding lemma (b) that $\left|e_{k} \circledast_{k} e_{n}^{\prime}\right|<\omega^{k}=\omega^{j}$.

Case 2 Suppose $j<k$, then for at most finitely many $x, y, \omega^{j}>\left|e_{k}\left(2^{x} \cdot 3^{y}\right)\right| \geqslant$ ω^{j-1} and for all but finitely many $x, y,\left|e_{k}\left(2^{x} \cdot 3^{y}\right)\right|<\omega^{j-1}$. Thus,

$$
\left|\left(e_{k} \circledast_{k} e_{k}^{\prime}\right)\left(2^{x} \cdot 3^{2^{y} \cdot 3^{y}}\right)\right|=\left|e_{k}\left(2^{2^{x} \cdot 3^{y}} \cdot 3^{y^{i}}\right) \circledast_{k-1} e_{k}^{\prime}\left(2^{x} \cdot 3^{y}\right)\right|<\omega^{j-1}
$$

for all but finitely many $2^{x} \cdot 3^{y}, y^{\prime}$, since $j-1<k-1$ and our inductive hypothesis. Suppose now $\omega^{j-1} \leqslant\left|e_{k}\left(2^{2^{x} \cdot 3^{y}} \cdot 3^{y^{\prime}}\right)\right|<\omega^{j}$, then since $j \leqslant k-1$ by the inductive hypothesis,

$$
\left|e_{k}\left(2^{2^{x} \cdot 3^{y}} \cdot 3^{y^{j}}\right) \circledast_{k-1} e_{k}^{\prime}\left(2^{x} \cdot 3^{y}\right)\right|<\omega^{j}
$$

where this can occur at most for finitely many $2^{x} \cdot 3^{y}, y^{\prime}$. Thus, $\left|e_{k} \circledast_{k} e_{k}^{\prime}\right|<$ ω^{j}.

Suppose the result is true for $e_{k} \circledast_{k} e_{k}^{\prime}$, consider now $e_{k} \circledast_{k} e_{k+1}$ where $\left|e_{k}\right|<\omega^{j}$ for some $j \leqslant k$.

Case 1 Suppose $j=k$, then the result follows from the preceding Lemma, i.e., $\left|e_{k} \circledast_{k} e_{k+1}\right|<\omega^{k}$.

Case 2 Suppose $j<k$ and $\left|e_{k}\right|<\omega^{j}$. For at most finitely many $\dot{x}, y, \omega^{j-1} \leqslant$ $\left|e_{k}\left(2^{x} \cdot 3^{y}\right)\right|<\omega^{j}$ and for all other $x, y,\left|e_{k}\left(2^{x} \cdot 3^{y}\right)\right|<\omega^{j-1}$. Suppose $\omega^{j-1} \leqslant$ $\left|e_{k}\left(2^{2^{x} \cdot 3^{y}} \cdot 3^{y^{\prime}}\right)\right|<\omega^{j}$, then

$$
\left|\left(e_{k} \circledast_{k} e_{k+1}\right)\left(2^{x} \cdot 3^{2^{y} \cdot 3^{y}}\right)\right|=\left|e_{k}\left(2^{2^{x} \cdot 3^{y}} \cdot 3^{y^{\prime}}\right) \circledast_{k-1}\left(e_{k} \circledast_{k} e_{k+1}\left(2^{x} \cdot 3^{y}\right)\right)\right|<\omega^{j}
$$

by our inductive hypothesis since $j \leqslant k-1$ and $e_{k} \circledast_{k} e_{k+1}\left(2^{x} \cdot 3^{y}\right) \in W_{\dot{k}}^{R}$, and
this happens for at most finitely many $2^{x} \cdot 3^{2^{y} \cdot 3^{y^{\prime}}}$. If $\left|e_{k}\left(2^{2^{x} \cdot 3^{y}} \cdot 3^{y^{\prime}}\right)\right|<\omega^{j-1}$, then

$$
\left|\left(e_{k} \circledast_{k} e_{k+1}\right)\left(2^{x} \cdot 3^{2^{y} \cdot 3^{y}}\right)\right|=\left|e_{k}\left(2^{2^{x} \cdot 3^{y}} \cdot 3^{y^{\prime}}\right) \circledast_{k-1}\left(e_{k} \circledast_{k} e_{k+1}\left(2^{x} \cdot 3^{y}\right)\right)\right|<\omega^{j-1}
$$

by our inductive hypothesis since $j-1<k-1$ and $e_{k} \circledast_{k} e_{k+1}\left(2^{x} \cdot 3^{y}\right) \in W_{k}^{R}$. Thus $\left|e_{k} \circledast_{k} e_{k+1}\right|<\omega^{j}$.
Q.E.D.

Note that we can define $e_{k} \circledast_{k} e_{n}$ for any $n>k+1$ by

$$
e_{k} \circledast_{k} e_{n}=\left(\left(e_{k} \circledast_{k} e_{k+1}^{\prime}\right) \circledast_{k+1} e_{k+2}^{\prime}\right) \ldots \circledast_{n-1} e_{n}
$$

where $\left|e_{k+1}^{\prime}\right|=\omega^{k+1}, \ldots,\left|e_{n-1}^{\prime}\right|=\omega^{n-1}$, and $e_{i}^{\prime} \in W_{i}^{R}$ for $i=k+1, \ldots, n-1$.
3 The construction of well-orderings of determined type Below \mathbf{H}_{ω}, $\mathbf{H}_{\omega \cdot 2}, \ldots, \mathbf{H}_{\omega \cdot n}, \ldots$ are certain fixed hyperarithmetic sets determined by $a \in O$, e.g., $\mathrm{H}_{\omega}=\mathrm{H}_{a}$ where $|a|=\omega$ and $a \in O$, chosen so that we know $\left|a_{i}\right|$ "effectively" (this certainly can be done up through ε_{0}). W refers to the set of all indices of recursive well-orderings as in [10]. W_{k} and W_{k}^{A} refer to sets of all indices of those well-orderings recursive and recursive in A defined in section 2.

Lemma 3.1 For any x, we can effectively find $e_{x}(k) \in W_{k}$ such that

$$
\begin{aligned}
& \left|e_{x}(k)\right|<\omega^{k} \text { if } x \epsilon \frac{\mathbf{O}^{(2 k)}}{\left|e_{x}(k)\right|=\omega^{k} \text { if } x \epsilon \mathbf{O}^{(2 k)}} .
\end{aligned}
$$

Proof: $x \in \mathrm{O}^{(2 k)} \equiv \mathrm{E} x_{1} \forall y_{1} \ldots \mathrm{E} x_{k} \forall y_{k} R\left(x, x_{1}, y_{1}, \ldots, x_{k}, y_{k}\right)$, with R recursive. Thus, $\left.x \notin \mathrm{O}^{(2 k)} \equiv \forall x_{1} \mathrm{E} y_{1} \ldots \forall x_{k} \mathrm{E} y_{k}\right\urcorner R\left(x, x_{1}, \ldots, x_{k}, y_{k}\right)$ and, by Lemma 2.2,

$$
x \notin \mathrm{O}^{(2 k)} \equiv \forall x_{1} \mathrm{E}!y_{1}, \ldots \forall x_{k} \mathrm{E}!y_{k} S\left(x, x_{1}, \ldots, x_{k}, y_{k}\right) .
$$

By Lemma 2.4, take $e_{x}=e_{S_{k}}$ where $S_{k}=S\left(x, x_{1}, \ldots, x_{k}, y_{k}\right)$, then $\left|e_{x}\right| \leqslant \omega^{k}$ and $\left|e_{x}\right|=\omega^{k}$ iff $x \notin \mathrm{O}^{(2 k)}$.

For the following we modify Kleene's T-predicate of [2] so that $\mathrm{T}_{1}^{A}(x, y, z, n)$ iff $\mathrm{T}_{1}^{A}(x, y, z)$ and only questions of the form $a \in A$ for $(a)_{1} \leqslant n$ are asked of the oracle. Then it follows that for $a^{\prime}=3 \cdot 5^{a} \in O E z \mathrm{~T}_{1}^{\mathrm{H}^{\prime}}(x, y, z) \equiv$ $\operatorname{E} n \mathrm{E} z \mathrm{~T}_{1}^{\mathrm{H}_{a^{\prime}}}(x, y, z, n) \equiv \mathrm{E} n \mathrm{E} z \mathrm{~T}_{1}^{\mathrm{H}_{a_{n}^{\prime}}}(x, y, z, n)$ where $\mathbf{H}_{a_{n}^{\prime}}=\left\{w:(w)_{1} \leqslant n \wedge(w)_{\mathrm{o}} \epsilon\right.$ $\mathrm{H}_{a_{(w)}}$ \}. Clearly $\mathrm{H}_{a_{n}} \leqslant \mathrm{H}_{a_{n}^{\prime}}$ and $\mathrm{H}_{a_{n}^{\prime}} \leqslant m \mathrm{H}_{a_{n}}$, using Lemma 3 [4]. Consequently, for a primitive recursive $\phi(x, n)$, ($\mathrm{E} z) \mathrm{T}_{1}^{\mathrm{H}_{a_{n}^{\prime}}}(x, y, z, n) \equiv(\mathrm{E} z) \mathrm{T}_{1}^{\mathrm{H}_{a_{n}}(\phi(x, n), y, z) \text {. }}$ Thus, $\mathrm{E} z \mathrm{~T}_{1}^{\mathrm{H}_{a}}(x, y, z) \equiv \mathrm{E} n \mathrm{E} z \mathrm{~T}_{1}^{\mathrm{H}_{a_{n}}}(\phi(x, n), y, z)$. In particular,

$$
(z) \neg \mathrm{T}_{1}^{\mathrm{H}_{a^{\prime}}}(x, y, z) \equiv(n)(z) \neg \mathrm{T}_{1}^{\mathrm{H}_{a_{n}}}(\phi(x, n), y, z) .
$$

Lemma 3.2 For any $x, a \in O,|a|=\omega$, then we can effectively find $e_{x}(a) \in W$ such that

$$
\begin{aligned}
& \left|e_{x}(a)\right|<\omega^{\omega} \text { if } x \in \mathrm{H}_{a}^{\prime} \\
& \left|e_{x}(a)\right|=\omega^{\omega} \text { if } x \notin \mathrm{H}_{a}^{\prime} .
\end{aligned}
$$

Proof: Choose $a \in \boldsymbol{O}$ such that $\mathrm{H}_{a_{n}}=\mathbf{O}^{(2 n-1)}$. For each n,

$$
\mathrm{E} z \mathrm{~T}_{1}^{\mathrm{H}_{a_{n}}}(\phi(x, n), x, z) \equiv(\mathrm{E} z) \mathrm{T}_{1}^{\mathrm{O}^{(2 n-1)}}(\phi(x, n), x, z) \equiv g(x, n) \in \mathrm{O}^{(2 n)},
$$

for a primitive recursive $g(x, n)$. Let $e_{n}=e_{g(x, n)}(n)$ of Lemma 3.1. Consequently, $x \in \mathbf{H}_{a}^{\prime}$ iff for some n, $\left|e_{n}\right|<\omega^{n}$. Define $s_{i} \in W$ inductively as follows: $s_{1}=e_{1}, \ldots, s_{i+1}=s_{i} \circledast_{i} e_{i+1}$. Finally, let

$$
\begin{aligned}
& e_{x}(a)=s_{1}, s_{2}, \ldots, s_{n}, \ldots=\bigcup\left\{\{i\} \times s_{i}:\right. \\
& \text { ordered by first coordinates first and then as in } \left.s_{i}\right\} .
\end{aligned}
$$

Suppose $x \in \mathrm{H}_{a}^{\prime}$, then let j be the smallest i such that $\left|e_{i}\right|<\omega^{i}$. By Lemma $2.5,\left|s_{j-1}\right|=\omega^{j-1}$,

$$
\left|s_{j}\right|=\left|s_{j-1} \circledast_{j-1} e_{j}\right| \leqslant\left|e_{j}\right|+\omega^{j-1}<\omega^{j} .
$$

Thus, $\left|s_{j+1}\right|=\left|s_{j} \circledast_{j} e_{j+1}\right|<\omega^{j}$ and by Theorem 2.1 for all $k \geqslant j,\left|s_{k}\right|<\omega^{j}$. Thus, $\left|e_{x}(a)\right|=\sum_{i=0}^{\infty}\left|s_{i}\right| \leqslant \omega^{j}$. If $x \notin \mathbf{H}_{a}^{\prime}$, then for all $n,\left|e_{n}\right|=\omega^{n}$. Consequently, by Lemma 2.5, $\left|s_{n}\right|=\omega^{n}$ for all n. Thus, $\left|e_{x}(a)\right|=\omega^{\omega}$. Q.E.D.

Let $e_{i} \in W_{i}^{\mathbf{H}_{\omega}}$, then $x \in e_{i} \equiv(\mathrm{E} z) \mathrm{T}_{1}^{\mathbf{H}_{\omega}}\left(e_{i, 1}, x, z\right)$ and $x \notin e_{i} \equiv(\mathrm{E} z) \mathrm{T}_{1}^{\mathbf{H}_{\omega}}\left(e_{i, 2}, x, z\right)$. Thus, $x \in e_{i} \equiv \forall z \neg T_{1}^{\mathbf{H}_{\omega}}\left(e_{i, 2}, x, z\right) \equiv \phi\left(e_{i, 2}, x\right) \in \overline{\mathbf{H}_{\omega}^{\prime}}$. For each $n \geqslant 1$, let $e_{n}^{\prime}(x)$ be the elements of W_{n} associated with the question $\phi\left(e_{i, 2}, x\right) \in \mathrm{H}_{\omega}^{\prime}$ by Lemma 3.1 (as in the proof of Lemma 3.2), i.e., for all $n,\left|e_{n}(x)\right|=\omega^{n}$ iff $\phi\left(e_{i, 2}, x\right) \epsilon \overline{\mathbf{H}_{\omega}^{\prime}}$ iff $x \in e_{i}$. Consider the question $y \in \mathbf{H}_{\omega}^{\prime}$, as above prior to Lemma 3.2, $y \in \mathrm{H}_{\omega}^{\prime} \equiv \mathrm{E} n \mathrm{E} z \mathrm{~T}_{1}^{\mathrm{H}_{a_{n}}(\phi(y, n), y, z) \text {. Let }\left|a_{n}\right|=2 n \text { for } n \geqslant 1 \text {, then }, ~(v)}$

$$
y \in \mathrm{H}_{\omega}^{\prime} \equiv \mathrm{E} n \mathrm{E} z \mathrm{~T}_{1}^{\mathrm{O}^{2 n}}(\phi(y, n), y, z) \equiv g(y, n) \in \mathrm{O}^{2 n+1} \equiv f(y, n) \in \overline{\mathrm{O}^{2(n+1)}}
$$

Moreover, it is evident that we can assume $g(y, n) \in \mathrm{O}^{2 n+1} \rightarrow g(y, n+1) \epsilon$ $\mathrm{O}^{2(n+1)+1}$. Consequently, by Lemma 2.4 we can effectively find $a_{n+1}(y) \in W_{n+1}$, $(n \geqslant 1)$ such that $y \in \mathrm{H}_{\omega}^{\prime}$ iff $\mathrm{E} n\left(\left|a_{n+1}(y)\right|=\omega^{n+1}\right)$ iff $\mathrm{E} k(n)\left(n \geqslant k \rightarrow\left|a_{n+1}(y)\right|=\right.$ $\left.\omega^{n+1}\right)$, i.e., $y \notin \mathbf{H}_{\omega}^{\prime}$ iff $\forall n\left(\left|a_{n+1}(y)\right|<\omega^{n+1}\right)$.

Now we define the basic construction. Given $e_{1} \in W_{1}^{\mathbf{H}}$, an x and a y, we find recursively the sequences $e_{n}(x)$ for $n \geqslant 1$ and $a_{n+1}(y)$ for $n \geqslant 1$, as above. By $s(x) / a_{k+1}(y)$, we mean the element of W constructed as in Lemma 3.2 from the sequence

$$
e_{1}(x), e_{2}(x), \ldots, a_{k+1}(y) \circledast_{k+1} e_{k+1}(x), e_{k+2}(x), \ldots
$$

Hence, if for some $i<k+1,\left|e_{i}(x)\right|<\omega^{i}$, then $\left|s(x) / a_{k+1}(y)\right| \leqslant \omega^{i}$ by Theorem 2.1. If $\left|a_{k+1}(y)\right|<\omega^{k+1}$ or $\left|e_{k+1}(x)\right|<\omega^{k+1}$, then $\mid a_{k+1}(y) \circledast_{k+1}$ $e_{k+1}(x) \mid<\omega^{k+1}$ by Lemma 2.5, and by Theorem 2.1, $\left|s(x) / a_{k+1}(y)\right| \leqslant \omega^{k+1}$. If the smallest i such that $\left|e_{i}(x)\right|<\omega^{i}$ is larger than $k+1$ and $\left|a_{k+1}(y)\right|=$ ω^{k+1}, then $\left|s(x) / a_{k+1}(x)\right| \leqslant \omega^{i}$. Define

$$
\theta(x, y)=s(x) / a_{2}(y), s(x) / a_{3}(y), \ldots, s(x) / a_{n+1}(y), \ldots
$$

i.e., the effective sum of these well-orderings. It has these properties:
(1) $|\theta(x, y)|=\omega^{\omega+1}$, if $y \in \mathbf{H}_{\omega}^{\prime}$ and $x \in \overline{\mathbf{H}_{\omega}^{\prime}}$;
(2) $|\theta(x, y)| \leqslant \omega^{\omega}$, if $y \& \mathbf{H}_{\omega}^{\prime}$ and $x \in \overline{\mathbf{H}_{\omega}^{\prime}}$;
(3) $|\theta(x, y)| \leqslant \omega^{i+1}$, if $x \notin \overline{\bar{H}_{\omega}^{\prime}}$ and i is the smallest number such that $\left|e_{i}(x)\right|<\omega^{i}$.
For any $e_{k}^{\prime} \epsilon W_{k}, \theta(x, y) / e_{k}^{\prime}$ is the above except that we replace $e_{k}(x)$
everywhere by $e_{k}^{\prime} \circledast_{k} e_{k}(x)$. Thus, if $\left|e_{k}^{\prime}\right|<\omega^{k}$, then $\left|\theta(x, y) / e_{k}^{\prime}\right| \leqslant \omega^{k+1}$ as in (3) above. If $\left|e_{k}^{\prime}\right|=\omega^{k}$, then (1), (2), and (3) indicate the size of $\left|\theta(x, y) / e_{k}^{k}\right|$. Similarly, for $\theta(x, y) / e_{k}^{\prime} / e_{j}^{\prime}$ where $e_{k}^{\prime} \in W_{k}, e_{j}^{\prime} \in W_{j},\left|e_{j}^{\prime}\right|<\omega^{j}$ implies $\mid \theta(x, y) /$ $e_{k}^{\prime} / e_{j}^{\prime} \mid \leqslant \omega^{j+1}$.
Theorem 3.1 (a) For every $e_{i} \in W_{i}^{\mathbf{H}}$, we can effectively find $e_{i}^{*} \in W$ such that $\left|e_{i}^{*}\right| \leqslant \omega^{\omega+1} \cdot\left|e_{i}\right|$ and $\left|e_{i}\right|=\omega^{i}$ implies $\left|e_{i}^{*}\right|=\omega^{\omega+1} \cdot \omega^{i}=\omega^{\omega+i+1}$.
(b) For every $e_{i} \in W_{i}^{\mathbf{H}} \omega \cdot n$, we can effectively find $e_{i}^{*} \epsilon W$ such that $\left|e_{i}^{*}\right| \leqslant$ $\omega^{\omega \cdot n+1} \cdot\left|e_{i}\right|$ and $\left|e_{i}\right|=\omega^{i}$ implies $\left|e_{i}^{*}\right|=\omega^{\omega \cdot n+1} \cdot \omega^{i}=\omega^{\omega \cdot n+i+1}$.

Proof: For part (a), we define e_{i}^{*} by induction on i. First let $\sigma(j)=j$ th element of the form $2^{x} \cdot 3^{y}$ such that $\mathrm{O} \leqslant x \leqslant y$ and so that for all $j, \sigma(j)<$ $\sigma(j+1)$, (the range of σ is by definition the candidates for elements of any $\left.e \epsilon W_{1}^{A}\right)$. Define e_{1}^{*} to be the effective sum in W of $\theta(\sigma(\mathrm{O}), y(\mathrm{O})), \ldots$, $\theta(\sigma(n), y(n)), \ldots$ where

$$
y(n) \in \mathbf{H}_{\omega}^{\prime} \equiv \sigma(n) \in e_{1} \wedge(\mathrm{E} z)\left(z>\sigma(n) \wedge z \in e_{1}\right) .
$$

If $\left|e_{1}\right|=0$, then $|\theta(\sigma(x), y(x))|<\omega^{\omega}$ by (3) above and $\left|e_{1}^{*}\right| \leqslant \omega^{\omega}$. If $\left|e_{1}\right|=\omega$, then for each $x \in e_{1}, y(n) \in \mathbf{H}_{\omega}^{\prime}$, and $|\theta(\sigma(n), y(n))|=\omega^{\omega+1}$ by (1) where $\sigma(n)=x$. If $\left|e_{1}\right| \neq \mathrm{O}$, finite, then $|\theta(\sigma(x), y(x))| \leqslant \omega^{\omega}$ for the largest x such that $\sigma(x) \in e_{1}$ since $y(n) \notin \mathbf{H}_{\omega}^{\prime}$ and by (2), and for all $k>x,|\theta(\sigma(k), y(k))|<\omega^{\omega}$ by (3). Thus, $\left|e_{1}^{*}\right| \leqslant \omega^{\omega+1} \cdot\left|e_{1}\right|$. Suppose $a(i) \in W_{i+1}$ for each i, by $\left(e_{1} / a(i)\right)^{*}$, we mean

$$
\theta(f(\mathrm{O}), y(\mathrm{O})) / a(\mathrm{O}), \ldots, \theta(f(n), y(n)) / a(n), \ldots
$$

so that if for all $i,|a(i)|<\omega^{i+1}$, then for each $n,|\theta(f(n), y(n)) / a(n)|<\omega^{\omega}$, and, hence, $\left|\left(e_{1} / a(i)\right)^{*}\right| \leqslant \omega^{\omega}$. Similarly, for a fixed $e_{k}^{\prime} \epsilon W_{k}$,

$$
\left(e_{1} / a(i) / e_{k}^{\prime}\right) *=\left(\left(\theta(f(\mathrm{O}), y(\mathrm{O})) / e_{k}^{\prime}\right) / a(\mathrm{O})\right)^{*}, \ldots,\left(\theta(f(n), y(n)) / e_{k}^{\prime} / a(n)\right)^{*}, \ldots,
$$

so that if $\left|e_{k}^{\prime}\right|<\omega^{k}$, then $\left|\left(e_{1} / a(i) / e_{k}^{\prime}\right) *\right| \leqslant \omega^{k+2}$.
Suppose now we have defined for all $e_{i} \in W_{i}^{\mathbf{H}}, e_{i}^{*},\left(e_{i} / a(j)\right)^{*},\left(e_{i} / a(j) / e_{k}^{\prime}\right) *$ as above, such that the following properties are obtained:
(i) If $\left|e_{i}\right|=0$, then $\left|e_{i}^{*}\right| \leqslant \omega^{\omega},\left|\left(e_{i} / a(j)\right) *\right| \leqslant \omega^{\omega}$, and $\left|\left(e_{i} / a(j) / e_{k}^{\prime}\right) *\right| \leqslant \omega^{\omega}$.
(ii) If $\left|e_{i}\right|=\omega^{i}$, then $\left|e_{i}^{*}\right|=\omega^{\omega+1} \cdot \omega^{i}$.
(iii) If, for all $j,|a(j)|<\omega^{j+1}$, then $\left|\left(e_{i} / a(j)\right) *\right| \leqslant \omega^{\omega}$ and $\left|\left(e_{i} / a(j) / e_{k}^{\prime}\right)^{*}\right| \leqslant \omega^{\omega}$.
(iv) If, for some $k,|a(k)|=\omega^{k+1}$ (and for all $j \geqslant k,|a(j)|=\omega^{j+1}$), and $\left|e_{i}\right|=$ ω^{i}, then $\left|\left(e_{i} / a(j)\right)^{*}\right|=\omega^{\omega+1} \cdot \omega^{i}$.
(v) If $\left|e_{k}^{\prime}\right|<\omega^{k}$, then $\left|\left(e_{i} / a(j) / e_{k}^{\prime}\right) *\right| \leqslant \omega^{k+i+1}$.
(vi) If $\left|e_{k}^{\prime}\right|=\omega^{k},\left|e_{i}\right|=\omega^{i}$, for all $j \geqslant k,|a(j)|=\omega^{j+1}$ for some k, then $\left|\left(e_{i} / a(j) / e_{k}^{\prime}\right) *\right|=\omega^{\omega+1} \cdot \omega^{i}$.
(vii) If $\mathrm{O} \neq\left|e_{i}\right|<\omega^{i}$, then $\left|e_{i}^{*}\right| \leqslant \omega^{\omega+1} \cdot\left|e_{i}\right|,\left|\left(e_{i} / a(j)\right) *\right| \leqslant \omega^{\omega+1} \cdot\left|e_{i}\right|$, and $\mid\left(e_{i} \mid\right.$ $\left.a(j) / e_{k}^{\prime}\right) *\left|\leqslant \omega^{\omega+1} \cdot\right| e_{i} \mid$.

Now define $\left(e_{i+1}\right) *$ for $e_{i+1} \in W_{i+1}^{\mathbf{H}_{\omega}}$ as follows: For each n, let

$$
y(n) \epsilon \mathbf{H}_{\omega}^{\prime} \equiv(\mathrm{E} z)\left(z \in e_{i+1}(\sigma(n))\right) \wedge(\mathrm{E} z)(\mathrm{E} x)\left(x>n \wedge z \in e_{i+1}(\sigma(x))\right)
$$

Let $y(n)(j) \in W_{j+1}$ such that

$$
y(n) \in \mathbf{H}_{\omega}^{\prime} \equiv(\mathrm{E} k)(j)\left(j \geqslant k \rightarrow|y(n)(j)|=\omega^{j+1}\right) .
$$

Let $a(j)$ be similar except

$$
\begin{gathered}
(\mathrm{E} k)(j)\left(j \geqslant k \rightarrow|a(j)|=\omega^{j+1}\right) \equiv(\mathrm{E} z)\left(z \in e_{i+1}\right) \equiv \mathrm{E} z \mathrm{E} x\left(z \in e_{i+1}(\sigma(x))\right. \\
e_{i+1}^{*}=\left(e_{i+1}(\sigma(\mathrm{O})) / y(\mathrm{O})(j) / a(\mathrm{O})\right)^{*}, \ldots,\left(e_{i+1}(\sigma(n)) / y(n)(j) / a(n)\right)^{*}, \ldots
\end{gathered}
$$

(the effective sum in W).
Similarly,

$$
\begin{aligned}
\left(e_{i+1} / b(j)\right)^{*}= & \left(e_{i+1}(\sigma(\mathrm{O})) /\left(y(\mathrm{O})(j) / a(\mathrm{O}) \circledast_{1} b(\mathrm{O})\right)^{*}, \ldots,\right. \\
& \left(e_{i+1}(\sigma(n)) / y(n)(j) / a(n) \circledast_{n+1} b(n)\right)^{*}, \ldots,
\end{aligned}
$$

and

$$
\begin{aligned}
\left(e_{i+1} / b(j) / e_{k}^{\prime}\right)^{*}= & \left(e_{i+1}(\sigma(\mathrm{O})) / y(\mathrm{O})(j) / a(n) \circledast_{n+1} b(n) / e_{k}^{\prime}\right) *, \ldots, \\
& \left(e_{i+1}(\sigma(n)) / y(n)(j) / a(n) \circledast_{n+1}(b(n)) / e_{k}^{\prime}\right)^{*}, \ldots .
\end{aligned}
$$

Suppose $\left|e_{i+1}\right|=0$, then for each $n,|a(n)|<\omega^{n+1}, a(n) \in W_{n+1}$, consequently, by $(v)\left|e_{i+1}(\sigma(x)) / y(n)(j) / a(x)\right|<\omega^{\omega}$ and, thus, $\left|e_{i+1}^{*}\right| \leqslant \omega^{\omega}$. Suppose now $\left|e_{i+1}\right| \neq 0$, and suppose $\left|e_{i+1}\right|=\omega^{i+1}$, then for infinitely many n, $\left|e_{i+1}(\sigma(n))\right|=\omega^{i}$, and given such $n, y(n) \epsilon \mathbf{H}_{\omega}^{\prime}$ and consequently, $|y(n)(j)|=\omega^{j+1}$ for all $j \geqslant k$ for some k. Hence, by (vi), if also n is sufficiently large so that $|a(n)|=\omega^{n+1}$,

$$
\left|\left(e_{i+1}(\sigma(n)) / y(n)(j) / a(n)\right) *\right|=\omega^{\omega+1} \cdot\left|e_{i+1}(\sigma(n))\right|=\omega^{\omega+1} \cdot \omega^{i}
$$

Thus,

$$
\left|e_{i+1}^{*}\right|=\left(\omega^{\omega+1} \cdot \omega^{i}\right) \cdot \omega=\omega^{\omega+1} \cdot \omega^{i+1}
$$

Now to show $\left|e_{i+1}^{*}\right| \leqslant \omega^{\omega+1} \cdot\left|e_{i+1}\right|$, it is clear that $\left|e_{i+1}\right|=\sum_{n \in \omega}\left|e_{i+1}(\sigma(n))\right|$. Suppose for some $k\left|e_{i+1}(\sigma(j))\right|=0$ for all $j>k$. Let k_{1} be the largest number such that $\left|e_{i+1}\left(\sigma\left(k_{1}\right)\right)\right| \neq \mathrm{O}$, then $y\left(k_{1}\right) \notin \mathrm{H}_{\omega}^{\prime}$, and therefore $\left|y\left(k_{1}\right)(j)\right|<$ ω^{j+1} for all j. Consequently,

$$
\left|\left(e\left(\sigma\left(k_{1}\right)\right) / y\left(k_{1}\right)(j) / a\left(k_{1}\right)\right) *\right| \leqslant \omega^{\omega}
$$

by (iii) and also

$$
\begin{aligned}
& \quad|(e(\sigma(n)) / y(n)(j) / a(n)) *| \leqslant \omega^{\omega}, \text { for } n \geqslant k_{1}, \\
&\left|e_{i+1}^{*}\right|=\sum_{j \in \omega}\left|\left(e_{i+1}(\sigma(j)) / y(n)(j) / a(j)\right) *\right| \\
& \leqslant\left.\leqslant \sum_{j \leqslant k_{1}-1} \omega^{\omega+1} \cdot\left|e_{i+1}(\sigma(j))\right|\right)+\omega^{\omega} \cdot \omega \leqslant \omega^{\omega+1} \cdot\left(\sum_{j \leqslant k_{1}-1} \mid e_{i+1}(\sigma(j) \mid)+1\right) \\
& \leqslant \omega^{\omega+1} \cdot\left|e_{i+1}\right|,\left(\text { since }\left|e_{i+1}\left(k_{1}\right)\right| \neq 0\right) .
\end{aligned}
$$

If there is no k such that for all $j \geqslant k$, $\left|e_{i+1}(\sigma(j))\right|=0$, then

$$
\begin{aligned}
\left|e_{i+1}^{*}\right| & =\sum_{n \in \omega}\left|\left(e_{i+1}(\sigma(n)) / y(n)(j) / a(n)\right) *\right| \\
& \leqslant \sum_{n \in \omega} \omega^{\omega+1} \cdot\left(1+\mid e_{i+1}(\sigma(n) \mid) \leqslant \omega^{\omega+1} \cdot \sum\left(1+e_{i+1}(\sigma(n))\right)\right. \\
& =\omega^{\omega+1} \cdot\left|e_{i+1}\right|
\end{aligned}
$$

By similar arguments the other conditions (i)-(vii) can be checked at $i+1$. This verifies part (a).

The procedure is completely analogous for $H_{\omega \cdot 2}, H_{\omega \cdot 3}, \ldots$ For example, given a question $x \epsilon \overline{\mathbf{H}_{\omega \cdot 2}^{\prime}}$, we find effectively $e_{n}(x) \epsilon W_{n}^{\mathbf{H}} \omega \cdot 1$ such that for all $n,\left|e_{n}(x)\right|=\omega^{n}$ iff $x \in \overline{\mathbf{H}_{\omega}^{\prime}}$. Define $s_{1}(x)=e_{1}(x), \ldots, s_{i+1}(x)=s_{i}(x) \circledast_{i+1}$ $e_{i+1}(x), \ldots$, and define $e_{x}=\left(s_{1}(x)\right)^{*}, \ldots,\left(s_{n}(x)\right)^{*}, \ldots$ effective sum in W of those well-orderings constructed in part (a). If $\left|e_{i}(x)\right|<\omega^{i}$ for some i, then $\left|s_{n}(x)\right|<\omega^{i}$ for all n, and, hence,

$$
\begin{aligned}
\left|e_{x}\right| & =\sum_{n \in \omega}\left|\left(s_{n}(x)\right) *\right| \leqslant \sum_{n \in \omega} \omega^{\omega+1} \cdot\left(1+\left|s_{n}(x)\right|\right) \leqslant \omega^{\omega+1} \cdot \sum_{n \in \omega}\left|1+s_{n}(x)\right| \\
& \leqslant \omega^{\omega+1} \cdot \omega^{i}=\omega^{\omega+i+1} .
\end{aligned}
$$

This gives the basic construction for the $W_{i}^{\mathbf{H}_{\omega \cdot 2}}$ argument. Thus, (b) holds by induction. Q.E.D.

This technique yields the following result:
Theorem 3.2 Let $n \geqslant 1$, then there is an effective procedure to find $e_{x} \in W$ such that

$$
\begin{aligned}
& \left|e_{x}\right|=\omega^{\omega \cdot n} \text { if } x \in \overline{\mathbf{H}_{\omega}^{\prime} \cdot n} \\
& \left|e_{x}\right|<\omega^{\omega \cdot n} \text { if } x \in \mathbf{H}_{\omega \cdot n}^{\prime} .
\end{aligned}
$$

Corollary 3.1 Let $k \geqslant 1$, then there is an effective procedure to juna $e_{x} \in W$ such that

$$
\begin{aligned}
& \left|e_{x}\right|=\omega^{\omega \cdot n+k} \text { if } x \in \overline{\mathbf{H}_{\omega \cdot n}^{2 k+1}} \\
& \left|e_{x}\right|<\omega^{\omega \cdot n+k} \text { if } x \in \mathbf{H}_{\omega \cdot n}^{2 k+1} .
\end{aligned}
$$

Proof: $x \in \overline{\mathbf{H}_{\omega \cdot n}^{2 k+1}}$ iff $\left(x_{1}\right) \mathrm{E} y_{1} \ldots\left(x_{k}\right) \mathrm{E} y_{k}(z) R\left(x, x_{1}, y_{1}, \ldots, x_{k}, y_{\dot{k}}\right.$, z), with R recursive in $H_{\omega \cdot n}$. By the techniques of section 2 we can find S_{k} a set of k-tuples of \mathcal{N} such that for recursive $f,\left(x_{1}, \ldots, x_{k}\right) \in S_{k}$ iff $f\left(x_{1}, \ldots, x_{k}\right) \epsilon$ $\overline{\mathbf{H}_{\omega \cdot n}^{\prime}}$, since the set $\overline{\mathbf{H}_{\omega \cdot n}^{\prime}}$ is a complete set for predicates $\forall z R$ with R recursive in $\mathbf{H}_{\omega \cdot n}$, and $\left|S_{k}\right|=\omega^{k}$ iff $x \in \overline{\mathbf{H}_{\omega \cdot n}^{2 k+1}}$. Let $e_{x}=$ the effective sum of $e_{f\left(x_{1}, \ldots, x_{k}\right)}$ such that $\left(x_{1}, \ldots, x_{k}\right) \in \mathcal{N}^{k}$ ordered first by $\left(x_{1}, \ldots, x_{k}\right)$ and next
 if $\left|S_{k}\right|=\omega^{k}$, then $\left|e_{x}\right|=\omega^{\omega \cdot n} \cdot \omega^{k}=\omega^{\omega \cdot n+k}$. If $\left|S_{k}\right|<\omega^{k}$, then since $\omega^{\omega \cdot n}$ is a principle number for addition it follows easily that $\left|e_{x}\right|<\omega^{\omega \cdot n} \cdot \omega^{k}=\omega^{\omega \cdot n+k}$. Q.E.D.

The following result generalizes a result of [8] originally noticed by S. Tennenbaum.

Lemma 3.3 For any set $A,\{x\}^{A}(x)$ grows faster than any function recursive in A.

Proof: By grows faster we mean there is no function f recursive in A such that whenever $\{x\}^{A}(x)$ is defined $\{x\}^{A}(x) \leqslant f(x)$. If $F(x)$ were such a function, take e to be a Gödel number of $f(x)+1$ in A, then $\{e\}^{A}(e)=f(e)+1 \leqslant f(e)$, a contradiction.

Now we show Theorem 1.2 (b) is best possible. Namely, we construct
$a \epsilon O$ such that $|a|=\omega^{k+2}$ such that there is no function f recursive in $O^{(2 k)}$ such that $a_{i} \leqslant \omega^{k+1} \cdot f(i)$ for all i. Consider $\mathrm{T}_{1}^{(2 k)}(x, x, w)$ by Post's Theorem and Lemma 2.2 this is equivalent to $(\mathrm{E}!z)\left(x_{1}\right)\left(\mathrm{E}!y_{1}\right) \ldots\left(x_{k}\right)\left(\mathrm{E}!y_{k}\right) R(x, w, z$, x_{1}, \ldots, y_{k}) with R recursive. Noting that $\mathrm{T}_{1}^{\mathrm{O}^{(2 k)}}(x, x, w)$ true implies w is unique, consider for each number $2^{w} \cdot 3^{z}$

$$
\left(x_{1}\right)\left(\mathrm{E}!y_{1}\right) \ldots\left(x_{k}\right)\left(\mathrm{E}!y_{k}\right) R\left(x, w, z, x_{1}, \ldots, x_{k}\right)
$$

By Lemma 2.4, find $e_{k}\left(2^{w} \cdot 3^{z}, x\right) \in W_{k}$ such that $\left|e_{k}\left(2^{w} \cdot 3^{z}, x\right)\right|=\omega^{k}$ iff $\left(x_{1}\right)\left(\mathrm{E}!y_{1}\right) \ldots\left(x_{k}\right)\left(\mathrm{E}!y_{k}\right) R\left(x, w, z, x_{1}, \ldots, x_{k}\right)$. Let $e\left(2^{w} \cdot 3^{z}, x\right) \in W$ be w copies of $e_{k}\left(2^{w} \cdot 3^{z}, x\right)$, and let $e(x) \in W$ be the effective sum over $e\left(2^{w} \cdot 3^{z}, x\right)$ for all possible w, z ordered first by $2^{w} \cdot 3^{z}$ next as in $e\left(2^{w} \cdot 3^{z}, x\right)$. Clearly, $|e(x)| \leqslant \omega^{k}$, if $\urcorner(\mathrm{E} w) \mathrm{T}^{\mathrm{O}}{ }^{(2 k)}(x, x, w)$. However, if $\mathrm{E} w \mathrm{~T}_{1}^{\mathrm{O}}{ }^{(2 k)}(x, x, w)$, then ω^{k}. $\{x\}^{\mathrm{O}^{(2 k}}(x)<|e(x)|<\omega^{k+1}$. Let $a(i) \epsilon O$ be found as in [5] Theorem 1 such that $\left|a_{i}\right|=\omega \cdot|1+e(i)|$. Let $a_{0}=a(0), \ldots, a_{i+1}=a_{i}+\mathrm{o} a(i)$, clearly, $\left|3 \cdot 5^{a}\right|=$ ω^{k+2}, and for all $i, \omega^{k+1} \cdot\{i\}^{0}{ }^{(2 k)}(i) \leqslant\left|a_{i}\right|$. Consequently, by Lemma $3.3 a^{\prime}=$ $3 \cdot 5^{a} \not{ }^{\mathrm{O}^{(2 k)}} b^{\prime}$ where $\left|b_{i}\right|=\omega^{k+1} \cdot i$. Thus, by Theorem $1.1, \mathrm{H}_{a^{\prime}} \nexists_{1}^{\mathrm{O}^{(2 k)}} \mathrm{H}_{b^{\prime}}$, but by Theorem 1.2 (b) $H_{a^{\prime}}$ isomorphic to $H_{b^{\prime}}$ by function recursive in $\mathrm{O}^{(2 k+1)}$. Thus, Theorem 1.2 (b) is the best possible result.

In order to show that Theorem 1.2 (a) at $\left|a^{\prime}\right|=\omega^{\omega}$ is necessary, we first build $\left|a(k)^{\prime}\right|=\omega^{\omega}$ such that $a(k)_{i}$ grows more rapidly to ω^{ω} than $\omega^{f(i)}$ for any function f recursive in $O^{(2 k)}$. As in the previous sections, obtain for each $x, e_{k}\left(2^{w} \cdot 3^{z}, x\right) \in W_{k}$, if $w>k$, let $e_{k, w}\left(2^{w} \cdot 3^{z}, x\right)=e_{k}\left(2^{w} \cdot 3^{z}, x\right) \circledast_{k} e_{w}$ where $e_{w} \in W_{w}$ and $\left|e_{w}\right|=\omega^{w}$, and if $w \notin k, e_{k, w}\left(2^{w} \cdot 3^{z}, x\right)=e_{k}\left(2^{w} \cdot 3^{z}, x\right)$. Let $e(x) \in W$ be the effective sum of $e_{k, w}\left(2^{w} \cdot 3^{z}, x\right)$ for all w, z. If $\mathrm{E} w \mathrm{~T}_{1}^{\mathrm{O}}{ }^{(2 k)}(x, x, w)$, then $\omega^{w} \leqslant|e(x)|<\omega^{\omega}$, since for all $2^{w} \cdot 3^{z}$ except one $\left|e_{k}\left(2^{w} \cdot 3^{z}, x\right)\right|<\omega^{k}$ while $\left|e_{k, w}\left(2^{w} \cdot 3^{z}, x\right)\right|=\omega^{w}$ for some z if $T_{1}{ }^{(2 k)}(x, x, w)$, by Theorem 2.1. If $\urcorner \mathrm{E} w \mathrm{~T}_{1}^{\mathrm{O}(2 k)}(x, x, w)$, then $|e(x)| \leqslant \omega^{k}$ by Theorem 2.1. By Theorem 1 [5], let $c(k)_{i} \in O$ such that $\left|c(k)_{i}\right|=\omega \cdot|1+e(i)|$. Define $a(k)^{\prime}=3 \cdot 5^{a(k)}$ so that $a(k)_{\mathrm{O}}=$ $c(k)_{\mathrm{O}}$ and $a(k)_{i+1}=a(k)_{i}+_{\mathrm{O}} c(k)_{i+1}$. Clearly, $a(k)^{\prime}$ grows faster to ω^{ω} than $\omega^{f(i)}$ for any f recursive on $O^{(2 k)}$. Finally, define

$$
a_{\mathrm{O}}=a(1)_{\mathrm{O}}, \ldots, a_{i+1}=a_{i+\mathrm{o}}\left(a(1)_{i+1}+\mathrm{o} a(2)_{i+1}+\ldots+_{\mathrm{o}} a(i+1)_{i+1}\right) .
$$

Clearly, $\left|a^{\prime}\right|=\left|3 \cdot 5^{a}\right|=\omega^{\omega}$ and $a^{\prime} \not \chi^{O^{(2 k)}} b^{\prime}$, if $b^{\prime} \in O$ and $\left|b_{i}\right|=\omega^{i}$ (suppose $a^{\prime} \prec b^{\prime}$ via f recursive in $O^{(2 k)}$ just choose an index e for f larger than k, then $\{e\}^{0(2 k)}(e)<\left|a(k)_{e}\right| \leqslant \omega^{f(e)}$, a contradiction). Thus, by Theorem 1.1, $\mathbf{H}_{a^{\prime}} \not \mathrm{P}^{(2 k)} \mathrm{H}_{b^{\prime}}$ for any k but by Theorem 1.2 (a) $\mathbf{H}_{a^{\prime}}$ and $\mathbf{H}_{b^{\prime}}$ are isomorphic by a permutation of \mathcal{N} recursive in H_{ω}.

A similar argument works for building $a^{\prime} \in O$ such that $\left|a^{\prime}\right|=\omega^{\omega \cdot n+k}$ $(k \neq 0)$ such that a_{i} grows faster to $\left|a^{\prime}\right|$ than does $\omega^{\omega \cdot n+(k-1)} \cdot f(i)$ for any function f recursive in $\mathbf{H}_{\omega \cdot n+2 k-1}$. Since for $k=2$,

$$
\mathrm{T}_{1}^{\mathrm{H}_{\omega \cdot n+2 k-1}}(x, x, w) \equiv \mathrm{E}!z\left(x_{1}\right)\left(\mathrm{E}!y_{1}\right)\left(x_{2}\right) R\left(x, w, z, x_{1}, y_{1}, x_{2}\right)
$$

with R recursive in $\mathrm{H}_{\omega \cdot n}$. By Corollary 3.1 we find $e_{x} \in W$ such that $\omega^{\omega \cdot n+1}$. $w \leqslant\left|e_{x}\right|<\omega^{\omega \cdot n+2}$ if $T_{1}^{H_{\omega \cdot n}^{(3)}}(x, x, w)$, and $\left|e_{x}\right| \leqslant \omega^{\omega \cdot n+1}$, otherwise. Let $c_{i} \in O$ such that $\left|c_{i}\right|=\omega \cdot\left|1+e_{i}\right|$ by Theorem 1 in [5], then $\omega^{\omega \cdot n+1} \cdot w \leqslant\left|c_{i}\right|<$ $\omega^{\omega \cdot n+2}$, if $\mathrm{T}_{1}^{\mathrm{H}}{ }^{(3)}(i, i, w)$ and $\left|c_{i}\right| \leqslant \omega^{\omega \cdot n+1}$, otherwise. Let $a_{\mathrm{O}}=c_{\mathrm{O}}, \ldots, a_{i+1}=$
$a_{i}+_{0} c_{i+1}$ and $a^{\prime}=3 \cdot 5^{a}$. Clearly, $\left|a^{\prime}\right|=\omega^{\omega \cdot n+2}$ and $a^{\prime} \notin \mathbf{H}_{\omega \cdot n}^{(3)} b^{\prime}$, if $\left|b_{i}\right|=$ $\omega^{\omega \cdot n+1} \cdot i$. By Theorem 1.1 and $1.2, H_{a^{\prime}} \xi_{1}^{(3)} \cdot H_{b^{\prime}}$ but $H_{a^{\prime}}$ and $H_{b^{\prime}}$ are isomorphic by a permutation of \mathcal{N} recursive in $H_{\omega \cdot n}^{(4)}$. Similarly, for $H_{\omega \cdot n}$ being necessary for showing $H_{a^{\prime}}$ and $H_{b^{\prime}}$ isomorphic if $\left|a^{\prime}\right|=\left|b^{\prime}\right|=\omega^{\omega \cdot n}$.

These results are summarized by the following theorem.
Theorem 3.3 For all $\beta<\omega^{2},\left|a^{\prime}\right|=\left|b^{\prime}\right|=\omega^{\beta}$, the H_{c} determined as in Theorem 1.2 is the smallest level possible in the hyperarithmetic hievarchy in order to have all $\mathbf{H}_{a^{\prime}}$ and $\mathbf{H}_{b^{\prime}}$ isomorphic, using functions recursive in \mathbf{H}_{c}.

REFERENCES

[1] Davis, M., On the Theory of Recursive Unsolvability, Ph.D. Thesis, Princeton University (1950).
[2] Kleene, S. C., Introduction to Metamathematics, New York, Toronto, Amsterdam, and Gronigen (1952).
[3] Kleene, S. C., "On the forms of the predicate in the theory of constructive ordinals," American Journal of Mathematics, vol. 66 (1944), pp. 41-58.
[4] Kleene, S. C., "Arithmetical predicates and function quantifiers," Transactions of the American Mathematical Society, vol. 79 (1955), pp. 312-340.
[5] Kreisel, G., J. Shoenfield, and Hao Wang, "Number theoretic concepts and recursive wellorderings," Archiv fuir mathematische Logik und Grundlagen forschung, vol. 5 (1960), pp. 42-64.
[6] Moschovakis, Y. N., "The many-one degrees of the predicates $\mathrm{H}_{a}(x)$," Pacific Journal of Mathematics, vol. 18 (1966), pp. 329-342.
[7] Nelson, G. C., "Isomorphism types of the hyperarithmetic sets," Abstract in The Journal of Symbolic Logic, vol. 36 (1971), p. 374.
[8] Nelson, G. C., "Many-one reducibility within the Turing degrees of the hyperarithmetic sets $H_{a}(x), "$ Transactions of the American Mathematical Society, vol. 191 (1974), pp. 1-44.
[9] Rogers, H., Jr., Theory of Recursive Functions and Effective Computability, New York (1967).
[10] Spector, C., "Recursive well-orderings," The Journal of Symbolic Logic, vol. 20 (1955), pp. 151-163.

The University of Iowa
Iowa City, Iowa

