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ISOMORPHISM TYPES OF THE HYPERARITHMETIC SETS Ha
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Introduction Historically, this paper originates from M. Davis' result
[l] that for \a\= \b\ < ω2 (a,beθ), Hrt and H& are recursively isomorphic.
Spector, in [10], showed that HΛ and H& for \a\ = \b\ have the same Turing
degree. Y. Moschovakis in [6], had shown that these results are best
possible in that the sets Ha for | α | = α, ω2 ^ a a principal number for
addition, have well-ordered sequences of type coi under one-one reducibility
and, also, incomparable one-one degrees. The author in his thesis [8]
showed that any countable ordered set can be embedded in the one-one
ordering of HΛ, \a\ = a as above and that there are incomparable one-one
degrees below any Ha, if \a\ = a^ω3. Moschovakis also has shown that if
β = ξ + a, a principle for addition, that {Hb: | b | = β} has the same structure
under one-one reducibility as does {Ha: \a\ = a}. This carries over to this
paper after Theorem 1.1 and we restrict ourselves to those Ha such that \a\
is principle for addition, i.e., \a\ = c/for some β ^ 1.

In this paper we introduce a general notion of one-one reducibility
applicable to the hyperarithmetic sets (since these sets are cylinders,
[9], pp. 89-90, we need only to discuss one-one reducibility). The notion is
simply the following; suppose a, be O and \a\ = \b\, when is there a one-one
function/(ΛΓ) recursive in Hc such that xe Ha iff/(x)eH&? Since Ha and Hb

have the same Turing degree, clearly any ceO, \c\> | α | is sufficient. The
question we try to answer is how small can I c \ be chosen in general, so
that Hα and H^ are one-one reducible to each other by functions recursive in
Hc, i.e., Ha and H& are isomorphic via a permutation of J*l recursive in Hc.
Alternatively, for | c | < \a\, Hc can be viewed as a constructive subset of
both \λa and H& and using only an oracle for Hc can one show a question of
membership in Ha is equivalent to a question of membership in H& (this is
similar to a "bounded truth-table" reduction except that the bound is Hc).
We will give a necessary and sufficient condition on the size of I c I in order
to show Hα, Hfc are isomorphic by a permutation of V̂ recursive in Hc when
\a\< ωω2. That this condition is sufficient for all a, b e O is demonstrated.
However, the necessity of this condition for | a \ ̂  ε0 is not proven and
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contrary to as announced in [7] is an open question. The author hopes that
the techniques introduced here will eventually demonstrate this necessity.
Basically these results depend upon constructing ordinal notations a e 0
with very fast growth toward its limit \a\ as in [5] and [8]. Consequences
about ordinal notations will follow immediately from these results. For
example, there exist recursive well-orderings of order type ωω which are
not isomorphic via any function recursive in O , i.e., via any arithmetic
permutation of JV.

1 One-one reducibility in Hc The notation used in this paper will be that
found in [2], [4], and [10]. Familiarity with the results and techniques of
recursion theory are assumed as in [9]. Frequent use is made of Post's
Theorem which is taken to refer to the results listed on pp. 314-15 of [9].

Definition 1.1 We say that a set A is one-one reducible in C to B and write
A ^ι B if there is a function/ (one-one) recursive in C such that xe A iff
/We B.

These definitions are natural generalizations of the usual notion of
one-one reducibility and become particularly relevant in the study of the
one-one degrees in C of the hyperarithmetic sets \λa> where a* = 3 5*e0.
The following definition and theorem generalizes the notion and results
introduced by Y. Moschovakis in [6] in studying the one-one degrees of Hat.

Definition 1.2 Let a1 = 3 5* and b* = 3 bb be two Kleene notations for
ordinals such that \a'| = | δ ' | . We say that a* is recursively majorized in C
by b1 and write a' -< c b1 if there is a function / recursive in C such that

\anN I bf(n) I for al l n.

T h e o r e m 1.1 For ce O9 \c\ < \a'\ = \b'\

Ua, Φ\λb, iff a' < Hcb'.

Proof: The proof of this result is essentially as in [6] except that in
Lemma 2b, p. 330, one asserts instead that there is a primitive recursive
σ3(e) such that if * = σ3(e) and (Ez)(T?(e,t,z) Λ U(z) = k), then P'(t) φ P(k);
which is just an effective way of saying Pr is not many-one reducible in P
to P.

By MyhilΓs Theorem [9], the following is evident:

Corollary 1.1 Ha' and Hi,' ore isomorphic using a permutation recursive in
Hc | c | < | α f | = | δ ' | iff a1 -< H< br and br < Hca\

It follows automatically from Moschovakis' work that we need only
study one-one reducibility in Hc of Ha, such that \a* \ is a principle number
for addition. The following definition and lemmas generalize the notion of
"limit point of order n," see p. 51 of [5], to any order a (a constructive).
We use the predicate C(b) of [3], §12 and §13, in order to express z <0 x as
an r.e. predicate noting that for a, b eθ, ae C(b) iff a < 0 δ, and there is a
primitive recursive predicate V(a,b,x) such that for any numbers a, b,
aeC(b) iff (Ex)V(a,b,x).
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Definition 1.3 We define predicates Lb(x) for each b e 0, b Φ 1 inductively
as follows:

L2i(x) if x = 3 5y

L2b(x) if L*(x) Λ (z)(z € C(ΛΓ) — (Ew)(z e C(w) A M; e CM Λ L*(K;)))

L3.5yW if (n)(Lyn(x)).

Below A refers to the jump operator applied n times to A.

Lemma 1.1 (a) If be 0, \2b\ = k > 0 is finite, then L2b(x) is one-one
reducible to O ^ " 1 ^ (for k = 1, L2i(x) is recursive),

(b) There is a primitive recursive function f(a,x) such that for a - 3 5ye 0,

La(x)ifff(a,x)eHl.

(c)lfb = 3'5y+0ce0, \c\ = kΦθ, then Lb(x) is 1-1 reducible to H £Jy l } .

Proof: Clearly, L2 l(#) is recursive. Consider L 2 2W Ξ L21(AΓ) Λ ( ^ ( ( E Λ Γ J F ^ ,
ΛΓ,^) -* Ew(E^2 7(^, w, ̂ 2) Λ E^3 F(M;, Λ;, Λ:3) A L2(M;)) which is equivalent to a
predicate of VΈ-form and consequently is 1-1 reducible to O". Let eQ be a
primitive recursive index of this reduction of L22(x) to O". Part (a) follows
inductively by Post's Theorem as in [9].

We complete the proof by defining a primitive recursive function f(y, x)
such that for y in 0, y Φ 1, 2, Ly(x) iff f(y, x) e Hy(y), where γ(y) is as
specified in the result, i.e., γ(a) = b such that \b\ = 2(k - 1) if \a\ = k finite,
a Φ 1, 2, and y(α) = 3 5 y +0 δ if α = 3 5 y +0 c for some finite c in O and
| δ | = 2 | c | + 1. By Post 's Theorem let g(u,x)_be a 1-1 primitive recursive
function such that uniformly for A, g(u,x) e A{3) iff {u}(x) {A' A (r)(re C(x) ->
(Ew)(re C(w) A we C(ΛΓ)Λ {u}(w) fίA')). Now define φ(z,y,x) primitive recur-
sively as follows:

φ ( z , y , x ) = O i i y = l w y = 2 w ( y Φ 2 ( y ) o A y Φ 3 5 ( y ) 2 ) .
φ(z, 22, x) = {eo}(x) where e0 is obtained in Part (a).
φ(z, 2b, x) = g((λx) {z}(b,x), x) if b Φ 2.
φ(z, 3 5y, x) = φi(z,y,x), where φι is the primitive
recursive function defined as follows:

Consider l(n)({z}(yn, x) e Ήγ(yn)) = (En)({z}(yn, x) e H y ( y w ) = (En) ρ(γ(yn),
3 5y, {z}(yn, x)) e H3.5y, where p is the partial recursive function of Lemma
3, p. 326 of [4], = Eni^'^iφ^z.y.x), φι{z,y,x),n)y by Lemma 1, p. 325 of
[4] where φλ is primitive recursive. Consequently,

(n)({z}(yn,x)eH^J ̂  (fήC^^iφάz.y.x), φfc.y.x^n)).

By the Recursion Theorem, p. 352-3 of [2], there is an e such that
φe(y,x) £? φ(e,y,x)- Define f(yfx) = φ(e,y,x) and by the construction of/, it
follows for all ye 0, y Φ 1, 2, Ly(x) ittf(y,x) e Hy(y), by induction on \y \ in 0.

Q.E.D.

As is well known, every ordinal a has a unique Cantor Normal Form,
i.e., a = αΛ kn + . . . + (J° k0 such that βi > β^l9 for 1 < i ^ n, and O Φ h <
ω for O ̂  i^ n with n, βi, kt uniquely determined by a.
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L e m m a 1.2 For a1, beO, b Φ 1, Lb(ar) iff the Cantor Normal Form of

\a'\ = α A kn + . . . + o Λ k0 is such that βo>\b\.

Proof: By induction on | δ | for all a' in O, for | δ | = 1 the result i s clear.

Suppose the result i s true for all b e 0 such that β = 161 ̂  1, consider

6 = 2 (* ) o such that | δ | = β + 1 and suppose L&(α'). By definition, Lb(a') =

(z)(Ew)(z < 0 a
1 — £ < 0 w < 0 α ' Λ L(fc)0W) Λ L(b)o(a'). Thus, j30 ^ I (δ)0I = |3 > 1

and, by the inductive hypothesis, a'=3-5a. \a'\= \\m\an\ and, clearly,

since Lb(a') there exist a sequence w, < 0 wi+1 < 0 α 'such that L(b)0(u>i) and

lim|w, | '= lα'ln. For some k, i>k implies \wι\ = ωβ° kn + . . . +ωβι-kι +

ωm°l+ai-ki E i t h e r for some j , \(b)0\ + a{ = \(b)0\ for a l l i>j o r | ( 6 ) 0 | +

oίi > \(b)0\ for al l i>j and, hence, ωβ° = \\m ωKb)o1 kΐ = <J(b)ol+1 o r ωβ° >

sup ω

κ«ol+ β<^ωK*>oi+i # Conversely, suppose β0 >\(b)0\ + 1, if β0 = y + 1, then

ω °̂ ^o = lim(aA (k0 - 1) + ωγ n) and there exists a sequence Wi < 0 «
f such

that \wi\ = ωβ^'kn + . . . +(ω β ° (ifeo - 1) +ωγ-i) and Urn 1 ^ 1 = \a'\. If β0 i s a

limit, then there i s a sequence yw such that \(b)0\ < yw and Πm γn - β0 and

consequently we can find w% < 0 a
f such that lim \wi\ = α f and |w, I = ωβn «̂ +

. . . + ωβ° - (k0 - 1) + ωyi feί. Thus, Lb(a') follows.

Suppose br = 3 5fc and Lb,(a') i s true. Thus, (n)(L^(α')) i s true. Con-

sequently, by inductive hypothesis, βo^\bn\, hence, βo^\\m\bn\= \b'\.

Conversely, suppose β0 ^ lδ fl, then βo> \bn\ for every n and consequently

Lbn(a') holds for all n.

Now we prove one of the main results of this paper.

T h e o r e m 1.2 (a) If \a'\ = | δ f I = c*A β α limit, then Haι is isomorphic to Hb,

by a permutation of JV recursive in H c such that \ c \ = β.

(b) If \a'\= \bf\ = ωk, 2^k finite, then Ha, is isomorphic to Hb, by a

permutation of Ά recursive in o ^ 2 * ( * " 2 ) + l ) .

(c) If \a'\= \b'\ = ωY+k, l^k finite, and γ a limit ordinal, then Ha, is

isomorphic to Hb, by a permutation of M recursive in H c where \ c \ = γ + 2k.

Proof: Suppose the hypothesis of part (a) and that ceO and \c\ = β. By

Theorem 1.1, it i s sufficient to show a' -< H c b' and b' H H c ar. Thus, we

shall define a function g recursive in Hc such that I αf | < I bga) \ for all i.

For each i, let w, be the smallest number n such that (z)(z < 0 α, -• lLCfl(z))

where LCn i s the predicate of the definition before Lemma 1.1. Con-

sequently, by Lemma 1.2, the Cantor Normal Form for |α, | and any a < |α, |

i s such that β0 < \cni\ and, hence, Iα;I < CO'CΛΛ By Lemma 1.1, w, i s the

smallest number n such that (£)(2 ̂ 0 «/ —* /( c«, 2 ) € Hy(Yβ)) for the primitive

recursive /(y,^) which i s equivalent to φ(e,aif cn) e Hy(Cw), where £ i s a g.n.

of/ and </>(#, α, , Q ) i s primitive recursive. Consequently, m = μnφ(e, ait cn) e

Hy(Cw), and clearly m as a function of i i s recursive in Hc. Given ni9 start

enumerating the elements < 0 b' until one finds the first element Z{ in this

enumeration such that LCn.(Zi), i.e., f(cni, z{) e Hy(C w.). Define £•(**) = μ j ^ < 0 &/-

Thus, for each i, I α* I < (JCni' ^ U ί l < 1^0)1, where ^ i s recursive in Hc.

Consequently, a' -< H c br and by the analogous argument, b* -< hca'. Thus,

(a) holds by Corollary 1.1.
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Suppose the hypothesis of (b) as in (a) we show that for arbitrary
a', b'eO, \a'\ = \b'\ = ωk implies a' < H c b' where c e O and \c I = 2(k - 2) + 1.
Note that k = 1 implies \λa, and Hb, have the same one-one degree by [l].
Let ceO such that \c\ = k - 1, then by Lemma 1.1 Lc(z) is one-one re-
ducible to Hy(c)= o ( 2 ( * " 2 ) ) (recursive if | c | = 1) and by Lemma 1.2, for
z < 0 α', Lc(>ε) is true iff \z | = co w for some w / 0, since | α ' | = ωk. For
each z, let Ui be the number of z's, z ^ 0 α* such that Lc{z). We compute n*
recursively in o ( 2 α " 2 ) + 1 ) as follows: First, consider Ez(z < 0 aι Λ LC(Z)) (this
is equivalent to Ez(z <0 a{Λ /(C, *) /O ( 2 U ~ 2 ) ) )) which is equivalent to φ(c, a{) e
Q(2.α-2))+i f o r a p r i m i t i v e recursive function φ. If the answer is φ(c,a,i){

o(2.(A-2)+i) t h e n w . = o i f Ί L c ( β . ) and w, = 1 if Lc(βi). If the answer is
(j ι(c,fl/)6θ' 2 ' u " 2 ) + l ) , then let zx be the first element in the enumeration of
z < 0 ai such that Lc(zι). Suppose now we have defined zl9 . . ., Zk by this
procedure k <* 1. Consider E>ε(>2: ̂  2 ^ . . .Λ Z ± zk*z <Qa{ ΛLC(Z)), if true,
then take Zk+ι to be the first element of the enumeration of all z < 0 in-
different from zl9 . . ., Zk such that Lc(zk+1)f otherwise, w, = ̂ , if ΊLc(β/), or
m = k + l if L c fe) . Clearly, w, is defined recursively in o ( 2 ' α " 2 ) ) + 1 and
\di\^ωnί. Given wz find the first m + 1 numbers xu . . ., xni+1 in the
enumeration oi x <ob' such that L c (^) , ^ = 1, . . ., m + 1, (this computation
is recursive in O2 given that \bτ\ = ωk). Define g(i) = μj such that

Λ ^^O bj for fc = 1, . . ., wz + 1. Clearly, g is recursive in o ( 2 # u " 2 ) ) + 1 and
k M αΛ'< cow*'+1 ^ |δg(, ) | . Thus, a1 <Hd b' where UI = 2 (fe - 2) + 1, and
analogously b* 4Hd a*. Consequently, by Corollary 1.1, Ha, and H ,̂ are
isomorphic by a permutation of JSI recursive in H ,̂ \d\ = 2 (k - 2) + 1.

The proof of (c) is completely analogous to the proof of (b). Noting that
for \c\ = ω'β+(k-ι), Lc{z) is 1-1 reducible to H^7}, i.e., \\f ~ 1 ) + 1 = \ψ~\

Q.E.D.

Moschovakis notes in [6] that with respect to 1-1 reducibility there is a
minimum one-one degree of the form H ,̂ \a'\ = ω2, in the Turing degree.
The following shows this to be a rather general phenomenon.

Corol lary 1.2 If \a'\ = \b'\ = ω$+k, β a limit and k Φ O or β = O and k > 2,

then there is a minimal 1-1 degree Haf in H c in the Turing degree of

{Hfc,: I br I = ωβ+k} where \ c \ = 2 (k - 2) if β = O and k^2 and where \c\ =

β + 2k - lifβφO.

Proof: As noted in the proof of Theorem 1.2 (b), once one had found m for
each i, the rest of the computation can be carried out at the next lower
level. Consequently, let deO such that \d\ = ωβ+{k~ύ and a% = (d +0 d) +0

. . . +o d) with i summands d and consequently for any eeθ, \e\ = β + (k - 1),
the number m of elements z ^ 0 αf such that Le(z) equals i. Consequently,
a1 < b1 via a function recursive in Le(z) and the result follows by Theorem
1.1 and Lemma 1.1.

2 Natural well-orderings In this section we define from predicates

R(xi,yi9 - -, %k9yk) recursive in a set A sets e£ of &-tuples of Jsl recursive

in A ordered by first difference such that the size of these well-orderings

depends upon whether or not {xι)(Έyd - - (Xk)(EyώR(xi,yi, . . ., Xk,yk) i s
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true or false. Instead of working with the quantifier (Uz) of [5], we require
uniqueness on existential quantifiers which will lead to analogous results.
However, Lemma 4 of [5], which is quite sufficient to obtain the results in
section 3 for arithmetic predicates up through Hω, we know of no way of
generalizing to obtain all the results of section 3 below.

Lemma 2.1 Given a predicate R(ytz) we can effectively find predicates
Si(y, z) and S2(y, z) recursive uniformly in R(y, z) such that

(a) (Ey)(z)R(y,z) iff (E ! # ) % « )

and

(b) (y)(Ez)R(yfz) iff (y)(E\z)S2(y,z).

Proof: Define S^y, z) to be y = 2(y)° 3 ( y ) l A (W)(W < m α x ^ , z) - R((y)0, w)) A
(t)(Ew) (t < (y)0 ->w< (y)1ΛiR(tf w)) M(t) (Ew) (t < (y)0 -* w < (y)1AiR(tf w)).
Define S2(y, z) to be R{y, z) Λ (W){W < z -> lR(y, w)).

Lemma 2.2 Given a predicate of the form R{xuyι, . . ., xn, yn) we can
effectively find a predicate S(xi, yl9 . . ., xn, yn) recursive uniformly in R
such that

foXEyJ . . (xn)(Έyn)R iff (*J(ElyJ . . . (xn)(E\yn)S.

Proof: By induction on n ^ l with n = 1 by L e m m a 2.1 (b), consider
((E3>2)(#3) . . . {xn)(Eyn)R(xi,yi, . ., Xn,yn)). By L e m m a 2.1 (a), t h e r e i s
predicate Sάx^y^xJ recursive uniformly in (Ey2)(x3) . . . (x^(Ey,iR(xl9yl9

x2,y2, . . .,Xn,yn) such that E\yl(x2)Si(xi9yux2) iff (Eyjfo) . (xn)(Eyn)
R(Xι,yι, , Xn,ytd and, hence, (xi)(E\y^(Xz)Sι(xuyuxύ iff (xJiEyj) . . .
(xn)(Eyn) R(xi, yi, . . ., xn, yn). Since S^x^y^Xz) is recursive uniformly in
(Ey2)(x3) . . . (xn)(Eyn)R, then by Post's Theorem,

Sι(χuyuχ2)
 Ξ (χ'2){Ey2) . . . (χn)(Eyn) Ri(χi, yu χ2, χr2, y2, . . ., Xn,yn)

with Rί recursive uniformly in R. By inductive hypothesis, there is a
predicate S2(#i, 3>i, #2, #2,3>2> . . ., ΛΓW, yn) recursive uniformly in Rx and,
hence, in R such that

Sι(xuyiyx2) = (xL)(E\y2) . . . (xn)(E\yn) S2(xly yly x2, x2, y2, . . ., xn,yn).

Define S{xlf ylf . . ., xn, yn) to be S2(xu yu (x2)θ9 (χ2)u y2y . . ., χn, yn) and, con-
sequently,

(x2) Si(xl9 yl9 x2) = (ΛΓ2)(E!3;2) . . . (xn)(Elyn) S(xly yu x2f y2f . . ., xn,yn).

Thus,

[Eyd{x2) . . {Ey»)(xn)R(xi,yi, . . ., xn) = Ely^xJS^x^y^xJ
H (ElyJixJiElyJ . . . (xn)(Elyn)S.

Thus, the result follows easily.

Definition 2.1 A subset e of ^be longs to W* if e is recursive in R and the
following four conditions hold:
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(1) (zl9 . . ., Zk) e e implies for all i ^ k, Zi = 2X 3 y for some x and y.

(ii) For every x, there is at most one y such that |{(2* 3y, z2, . . . , zk) e e}\ =
ω ~ι, here | | means order type by first difference.

(iii) For every x and y {(z2, . . ., zk): (2X 3y, * 2, . . ., zk) e e}e w£-λ.

(iv) If for x and y |{(2* 3y,z2, . . ., zk) e e}\ = ωk'\ then for every z < x,
there is a yz < y such that

l {(2 z 3 y * * 2 , ...,zk)ee}\ = ωk~\

Definition 2.2 For el9 e2, . . ., eke W*, define ®(el9 . . ., ek) = {(2*1 3 y \ . . .,
2*w 3yn): seφi) A lh(y<) = k* for all t ^ ife - 1 (2X l 3(yύi, . .., 2Xw 3(yw)0 e ei+1}.

Lemma 2.3 (1) For any k ^ 1 «w^ e x, . . ., eA e W^®(βi, . . ., eύ e W*.

(2) 7^ for some i^k \e{\ <ωn, t h e n \®{el9 . . ., e k ) \ ̂  m \ n ( \ e 1 \ , . . ., \ek\) +
ωn'\

(3) 1 ® ^ ! , . . ., ek)\ = ωn iff for all ί ^ k, k I = ω w .

Proof: By induction on n. For n = 1, the result is c lear. Consider
elf . . ., eke w£, to show ®(ex, . . ., e&) e PF^. (i) is immediate. For a fixed
# and y such that seqίy) Λ Ih( y) = fe, then

(*) {(2* 3y, 2X2 3 y 2, . . ., 2x"-3y")€®(*1, . . ., β A)}
= {(2X 3y, 2X2 3 y 2, . . ., 2Xn- 3yn): (2X2 - 3y2, . . ., 2Xn- 3yn)

e®({(*2, ., zn): (2x'3(y\z2} . . , zn)eeι}, . . .,
{{z2, . . ., zn): {2x iy)*-\z2, . . ., zn)eek})}.

By (*) and our inductive hypothesis (1), it follows that ®{eu . . ., ek)
satisfies (iii). (ii) holds for ®(elf . . ., βk) since (ii) holds for el9 . . ., ek

and apply the inductive hypothesis (3) to the right-hand side of (*). Suppose
for fixed x and y9

| {(2*.3 y,2**.3 y 2, . . ., 2x» 3yηe®(eu . . ., ek)}\ = c/~\

then by (*) and (3) for i^k - 1,

\{(2x 3(y\z2,...,zn)eei+1}\ = ωn-\

Since ei+1e W% and by (iv), for each z < x there is a yZιi+ι < {y)ί such that
|{(2* 3y*.<+S*2, . . ., ^ ) e e ί + 1 } | = ω β " 1 . Thus,

|{(2* S 2 ^ ' 1 . . . ^ f *, z2, . . ., ^ e ® ( β l , . . ., ^ ) } | = a ) - 1

by (*) and (3). Clearly, 2yz>1 . . . py

kl>£ < y and thus (iv) holds for ®(el9 . . .,
ek). Thus, ®(βi, . . ., ^ ) e Ϊ Γ | .

Suppose ^i€ W^ and \eλ\ < ωn. By (ii) and (iv), there is a unique x such
that for all z <x there is exactly one yz such that \{{2Z- 3y-z,z2j . . ., zn) e
eί}\ = ωn~1 and for any z ^x and any y, \{2Z 3y, 22, . . ., >εw) e #i}| < ω " " 1 .
Consequently, by (*), (2), and (3), noting the choice of yz for e2) . . ., en

given z < x must also be correct, we have at most x numbers of the form
2Z 3 y such that |{(2* 3y,z2y . . ., zn) e ®(el9 . . ., en)}\ = ωn~\ From this (2)
follows readily.
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By (2), I ® (eu . . ., ek) \ = ωn implies for all i ^k9 |e, | = ωn. Conversely,
suppose \ei+1 | = ωn for i + 1 < k. It is easy to verify that for every x, there
i s a unique yx>i such that for all i ^ k - 1, \{(2X -3yx>i+1, z2, . . ., zn) e ei+1\ =
ωn~ι. Hence,

I{(2*. 32>*'\ . . pEf,z2, . . ., *„) e * ( * , . . ., ek)}\ = ω - 1

by (*) and inductive hypothesis (3). Clearly, then l®(βi, . . ., e^)\ = ωn.
Q.E.D.

We define by induction on n a well-ordering £$w e Ŵ f recursive in R for
each predicate of the form (x^Ey^ . . . (xn)(Έyn)Sn(xi,yi9 . . ., ^,y») w i t h

Sw recursive in R. Moreover, for each n the above operator ® maps any
k + 1-tuple of well-orderings of the form £S/ w, Sί> recursive in i? for i ^ k,
to ®(es0>n, - . ., %^n) a well-ordering recursive in i?. We can always
assume by the above Lemma 2.2 that if (EyJ . . . (xn)(Eyn) Sn(xlf y1} . . .,
Xn, yn), then

{E\yx) . . . (Xn)(E\yn)Sn(xi,yi, . . ., Xn,yn).

Suppose n = 1: Let e
5 l
 = {2

X
 3

y
: sβq(y) A lh(y) = x + 1 Λ(>S:)

2 < X
S

1
U, (y)

z
 -

1)}.
Suppose n = j + 1:

esj+1 = {(2x 3y,zu . . ., *y): seq(3;)A lh(y)
= x + 1A (*!, . . ., *y)e €)(β5o/, . . ., eSχj)}

where

Szf; = (x2)(Ey2) . . . Uy+i)(Ey;.+1)S,-+iU,(3;)z - 1,^,3^2, . . ., ^;+i,y;+i).

^5 / + 1 is ordered by first differences and <, i.e., it is a subordering of the
natural ordering of ^V/+1. It is obvious that esn and ®(eSon, . . ., eSkn) are
well-orderings and their order types are less than or equal to ωw.

Lemma 2.4 (a) eSne Wnfor all n and S«.

(b) For all xι ^ j , (EyJ . . . M(Eyn) Sn(xu yu . . . , xn, yn) iff there is a y such
that |{(2;> 3y, z2, . . ., zn) € %JI = ωn"\

(c) |β JJ = ωll<fir^i)(Eyi) . . . M(Eyn)SM.

Proof: By induction on n, the result is immediate for n = 1. Consider Sn

for w > 1, assuming the result is true for n - 1. By the previous lemma
and definition it is clear that (i) and (iii) hold for eSn. Suppose that
|{(2* 3y, z2, . . ., zn) e eSn}\ = ωn'\ then seq(y), \h(y) = x + 1, and for i ^ x,
I es. n I = a)""1 by Lemma 2.3, (3), where

(x2)(Ey2) . . . {xn){Eyn)Si>n = (x2)(Ey2) . . . (xn)(Eyn)Sn(i,(y)i - 1,

^2,^2, . ., xn,yJ.

Hence, by our inductive hypothesis (c),

(x2)(Ey2) . . . (xn)(Eyn)Sn(i,(y)i - 1, *2, 3>2, . . ., Xn9yn)
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is true, but then {y)ι - 1 is uniquely determined by i. Hence, 3; is unique
and (ii) holds for eSγι. Moreover, for z < x, take yz = 2y° . . . />y*and by the
definition of Sn and the previous Lemma, it is clear that |{(2Z 3y z, z2, . . .,
zn) c %„} = ω"" 1 and ;yz < y. Thus, (iv) holds for eSn and e$w € W%. (b) is clear
and (c) follows from (b) and properties (ii) and (iv) of elements of W*.

Q.E.D.

We now define mappings ®k: Wζ* W*-* W* for n = k, k + 1 whose
definitions are motivated by the notion of relativization of quantifiers as
follows.

Definition 2.3 eγ ®x e[ = {(2* 32y#3>"): 2X 3ye e{ and 2 2*' 3 y. 3y ' e e j .

βι .®i e2 = \(2 ό , 2 - 3 :

(2 o , 2 o ) € 02> ^ 3 € el9 and 2 3 e ex).

Below we let en{z) = {(>ε2, . . ., zn): (z9z2, . . ., zn).e en}. Now suppose ®7

has been defined for all j < k where k ^ 2. Let

^ % ^ = {(2" 32)/ 3 ) / % 2 , . . . , . * * ) :

U2, . . ., zk) € (^(22X'3y 3y') ©A.x βA'(2*. 3y))}

and define

^ % βA + 1 = {(2X 32 X 3 )",^ 2, . . ., sA + 1):
(«2, . , *k+d * (ek(22χ 3y 3y') φ ^ ^ ®A ek+1(2x 3y)))}.

The following result establishes that ®£ is well-defined and its
fundamental properties:

L e m m a 2 .5 Let ek e W*, en e W^for n = korn = k+l, then

(a) ek®keneW*,
(b) If \ek\< ωk, then Iek ®k enI < ω \
(c) 7/ \ek\ = ωk and \en\ < ωn, then \ek ®k en\ < l e j + ω " " 1

/or »=^orn=fe + l,

(d) W ®ken\ = ωn iff \ek\ = ω* and \en\ = ωn.

Proof: By induction on k, consider k = n = 1. It is clear that if 2* 3 2 y # 3 y e
e1 ®! {̂, then 3; is unique for x since 2* 3y€ e[ and 3;' is unique for 2* 3y

since 22X*3y 3y/e ex\ thus, 2y 3y ' is unique for x. Thus, (i), (ii), and (iii) of
the definition of W? hold. Suppose 2X 32y#3y'e eι φA e{ and let 2 < #, then
there is SL yz < y such that 2Z 3yze β{ and then, since 2Z 3 y z < 2* - 3y, there
i s a ^ < y such that 22* i 3 y z- 3^ e ^ Thus, 2* 3 2 y ' 3 y ' > 22 32y**3^ e βx ®x e[
and βi ®i β'e W*. Clearly, \ex ®i e ' N Iβίl and | e j < ω implies |βi ®i e[\<
\ex I < ω and from these (c), (b), and (d) follow.

Now for k = 1 consider n = 2. Note first that

*! ®i 2̂ = {(2* 32 y*3 y /, z): ze (e, ®χ β2(2x 3y)) and (22X*3>>- 3 y ' € ex)}

and thus (i) and (iii) hold. Suppose now |{(2X 32y#3y , >ε) e eγ %x e2}\ = ω, i.e.,
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\ex ®! e2(2x 3y) \ = co, and thus, by (d) for k = n = 1, we have | e j =
I e2{2x 3y) I = co. Since e2 e W2, we have that 3; is unique for x, but 22*'3 y * 3 y ' e
ex and hence y* is unique for 2* 3 y. Thus, 2y 3 y ' is the unique number such
that I (βι ®ι e2)(2x 3 2 y # 3 y ) I = co, and (ii) holds for eλ ®x e2. By a similar type
argument, as above, (iv) holds for eγ ®i e2 and ex ®x e2e W?. Suppose now
Ui I < co, then by the inductive hypothesis (b) for all z \ ex ®x e2(z) | < ω, and
it follows that (e1 ®x e2)(2) = 0 for all but finitely many z. Thus, \eι%ιe2\<
ω and (b) holds. Suppose | e j = co and | e 2 | < co2, there is some j such that for
i < j there is a unique y, such that \e2(2r' 3yi) \ = ω and for any 2X' 3 y ^ 2' 3y /

for all e < j , I ^2(2X 3y) | < ω. It follows readily that there are exact ly ;
numbers z of the form z - 2X 32 *'3 ί# for some £ < j and 3;/ such that
\(eλ ®! e2)(z)\ = ω, using inductive hypothesis (d), and for all other z,
I (#i ®i ^2)(^) I < ω. Clearly, then,

\ e λ ® x e 2 \ ^ ω -(j) + ω ^ \ e 2 \ + ω,

since ω (j) < I e21, and (c) holds. If I eγ \ = ω and I e2 \ = ω2, fhen I eγ ®\ e21 =
co2. Conversely, suppose |βi ®λ e2\ = ω2, then for some y, yr,

[(e, ®x β2)(2° 32y'3y/) I = ω = I ex 9X e2(2° 3y) I

and by inductive hypothesis (d) | ex \ = ω. If I e21 < co2, then \eγ ®x e21 ^ I 2̂1 +
co < ω2 by (c), contrary to hypothesis, and thus (d) holds.

Suppose the result is true for k - 1 and n = k - 1, & where fc ^ 2.
Consider now k and w = k,

e * % 4 = {(2* 3 2 y 3 y , 2 2 , . . . , . * , ) :
(«2, , '**) € (^(22X'3y 3y ) 9k^ e'k(2

x. 3y))}.

Clearly, (i) and (iii) hold by the i n d u c t i v e h y p o t h e s i s . Suppose
I (ek ®k 4H2X 32y '3/) I = ωk'\ then by definition and (d), I ^ ( 2 2 X ' 3 y 3y') I = co^ 1

and I e'k(2x' 3y) | = ω*" 1. Consequently, by definition of Wg, y is unique for x
and yr is unique for 2* 3y; thus 2 y # 3 y ' is uniquely determined by x.
Likewise, (iv) holds and ek ®k e[e W*. Suppose \ek\ < cô , then for at most
finitely many numbers of the form 22*'3 y 3 y ' | ^ ( 2 2 X ' 3 y - 3y') I = co*"1, and
corresponding to each of these,

I (ek ®A eΰ(2*.3* *y) I = \ek(2*X'*y 3y) *h_x el(2x- 3y) I
^ ki(2 x .3 y )Uco^ 2

by (c) if \e[{2x- 3y)| < co^"1 or, otherwise,

\(eh ®keί)(2x.32y'3y')\ = ωk~ι if k i(2^3 y ) | = ωk'\

For all but finitely many of the numbers of the form 2x 3 2 y * 3 y , l e ^ 2 * ' 3 ^
3 y ' ) |<co^" x and consequently by (b) it follows that \(ek ®k e'k)(2x 3 2 y ' 3 y ' ) | <
cofe"L. Thus, \ek®kel\<ωh and (b) holds. Suppose now that \ek\ = ωk and
Iβjίl < ω*, we wish to establish (c).

Case 1. Suppose for all numbers of the form 2* 3y, |ei(2* 3y) I < co*"1, then
for any y' \(ek % e[)(2x 22y'sy) \< co*""1, since if \eh(2*m*y- 3y>) |= co*"1, then
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by (c) I (ek ®k e'k)(2x 32y'33")| ̂  I e[{2x - 3y)l + ωk'2 < ω^1 and if I ek(2*'*y- 3y') I <
ω*"\ then by (b) I (ek ®k e'k)(2x- 32y'*y') | < ω*"1. Thus,

\ek®ke'k\^ωk'1^ \er

k\ +ωk'\

Case 2. Suppose for each i^j, there is a y* such that |e£(2* 3y*)l = ω*"1

and for 2x 3V2 I " 3 y ί for all ί*zj, then I4(2* 3y) I < ω*"1. Thus, since
|βfej = ωA, there is for every i^j a. unique y\ such that \(ek ®lk el)(2*
32yί 3y/)| = ω*-i b v inductive hypothesis (d). For any number 2* 3 2 y # s y '
different from 2*' 3 2 y / " 3 ^ for all t ^ j , we have I (eA ®k ek){2x- 32y#3y') I < ω*"1

by the argument given in Case 1 above. Consequently, \ek ®k^k\ ^^k'1'
(j + 1) + co*"1 ̂  141 + ω*"1. Thus, (c) holds. Clearly, \ek\ = ω* and 141 = ω*
implies I eA % e{| = ω^ and (d) follows from this, (b) and (c).

Suppose the result is true for k - 1 and n = k - 1, k and for k and n = fc
and consider n = k + 1, then

*A ®ik^+i = t(2* 3 2 y 3 y ' , 2 2 , . . ., zk+1):
(z2, . . ., zk+1)e (ek(22X'3y'3yl) ®k^{ek ®kek+ι{2x- 3y)))}.

Clearly, (i) and (iii) hold by our inductive hypothesis. Suppose now
\(ek®k ek+1)(2x' 3 2 y 3 y')| = ω*, then we have k ( 2 2 * 3 y 3y') I = ω*"1, \ek vk ek+1(2x•
3y)| = ω^ by our inductive hypotheses (d), and, hence also, \ek\= |e*+ 1(2*
3y) I = ωk. Hence, y is uniquely determined by x and y' is uniquely deter-
mined by 2* 3y. Hence, 2 y 3 y ' is uniquely determined by x, and (iii) holds.
Suppose z < x, then there is a yz < y such that \ek+1(2z' 3yz) I = ωk, and there
is a y'z < y' such that | ̂ ( 2 2 Z # 3 y z - 3y i) I = ω*"1. Thus,

\(eh % ^+ 1)(2 z.32^3 y i)| = k t f 2 * - 3 ^ ) ^
(ek®kek+1)2z.3yz))\ = ωk

by our inductive hypothesis (d), and (iv) holds. Suppose \ek\<ωk, then by
our inductive hypothesis (b), for every 2* 3 y \ek ®A e^-+1(2x 3y) I < ωk.
Moreover, there are at most finitely many numbers of the form 2x 3 2 y ' 3 y

such that I ̂ ( 2 2 X # 3 y 3y') I = c/" 1 and for each of these we have

I (ek ®k e,+1)(2* 32y*3y/) | = | ek{2^^ 3y') ®k.1(ek ®k ek+ι(2? 3y) I
< l ^ ^ ^ + i ( 2 x 3y)| + c o ^ 1 < ω ^

by our inductive hypotheses (c). For all other numbers of the form
2X- 3 2 y 3 y /, we have \ek(2*'3y- 3y) I < ω*"1 and thus \{ek ®k ek+1)(2x- 32y'3y) I <
ωk~x by our inductive hypothesis (b). Thus, l ^ % + i ek+1\ < ωk. Suppose
now for (c) that \ek\ = ωk and Iek+ι \ < ωk+1.

Case 1. Suppose for all 2* 3 y \ek+1(2x- 3y) I < ωk, then

I ek(22* 3y 3y') ®k-Aek ®k ek+1(2x- 3y)) I < I ek ®k * A + 1 ( 2 * 3y) I + ωk'1

if | ^ ( 2 2 X 3 y 3y /)| = ω*"1 and \ek ®k ek+ι(2x- 3 y ) k k + 1 ( 2 x 3y) I+C0*'1 by (c)
s i n c e \ek\ = ωk. T h u s , \(ek ®k ^ + 1 ) ( 2 X 3 2 y * 3 y ) | < ωk i f \ e k ( 2 2 X ' 3 y > 2 y ' ) \ = ωk~\
If \ek(22X *y.3y')\<ωk-\ then by (b) \(ek % β f e + 1 ) ( 2 x 3 2 y ' 3 y ' ) | < ωk'\ Thus,

I *k ®fe ek+i I ^ ωk ^ I βjk+i I + ω*.
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Case 2 Suppose there is a number j such that for all i < j , there is a yι
such that I ek+1(2( 3y')l = ω*and for 2* 3 y t 2* Zyi for all i^j9 |β Λ + 1 (2 x 3y)|<
ω*. There exists exactly (j + 0 numbers 2* 3 2 W ' 3 3 4 ' such that k ( 2 2 i ' 3 n '
3y*') I = ωk~ι for some i < j and, consequently, |(<% ® e*+i)(2f 32>/i'3^) I = ω*
for all t ^ j . For any number 2X 32 y*3 y ' ^ 2V 3*yί " s y ' for all i < j e*+i(2x 3y) <
ωfe and, consequently, as in Case 1, \(ek ®k ek+ι)(2x 32y#3y') I < αΛ Thus,

I βk ®k βk+i I ̂  ωA ( + 1) + ω*ί? I eΛ+11 + ωk.

Thus, (c) holds for ek ®k ek+1. Suppose \ek\ = ωk and Iβjk+iI = ω*+ 1, then it
readily follows that \ek ®kek+1\ = ω f e + 1 and (d) results from this, (b) and (c).
This completes the entire lemma. Q.E.D.

The above result can be used to establish the following main result
concerning %, which is fundamental to this paper.

Theorem 2.1 If k ̂  1 and \ e^ \ < co;< where O ̂  j ^ k, then \ek ®k en\ < ω ; for
n=korn=k+l.

Proof: By induction, consider k - 1. Suppose \eγ\ < ω, then by the previous
Lemma Ieλ ®i e{I < ω and \eι®ιe2\<ω. If Iex\ < ω° = 1, then IexI = O and
thus 10χ ®i e{ I = O and I eL ®x e2 j = 0.

Let β ̂  2 and suppose the result is true for all s < k and n = s or
w = s + 1. Consider first n = k, i.e., ek ®kek Suppose | e^\ < α>; for j ^ k.

Case 1 Suppose j = k, then \ek\<ωk which implies by the preceding
lemma (b) that I ek ®k

en\ < ωk = ω;>.

C<2se 2 Suppose j < k, then for at most finitely many x, y, ω7 > | ek(2x - 3y) I >
ω 7 " 1 and for all but finitely many xf y, I %(2* 3y) I < α) 7" 1 . Thus,

K^%^)(2^32 y 3y')|= \ek(22X'3y^y)^k^ e ί t f . ί l K / 1

for all but finitely many 2* 3y, y', since j - 1 < k - 1 and our inductive
hypothesis. Suppose now ω 7 " 1 ^ |^(2 2 X * 3 : y 3y') I < ω7, then since j ^ k - 1 by
the inductive hypothesis,

| # 3 y . 3 y ' ) ® H t f 3y)|<^

where this can occur at most for finitely many 2* - 3y, y . Thus, |e* ®* #£| <
ω 7 .

Suppose the result is true for ek % βfe, consider now ek ®k βk+ι where
I βk\ < co7 for some j ** k.

Case 1 Suppose j - k, then the result follows from the preceding Lemma,
i.e., \ek ®kek+1\<ωk.

Case 2 Suppose j < k and Iek\ < ω 7 . F o r at most finitely many x, y, ω 7 " 1 ̂
| ^ ( 2 x 3 y ) | < ω 7 and for al l other x, y, \ek{2x 3y) I < ω 7"" 1. Suppose ω 7 " 1 <
U f e(2 2 X 3 y 3 y ' ) | < c o 7 , then

\{ek ® , ^ + 1 ) ( 2 x 3 2 y 3 y / ) | = k , ( 2 2 X 3 y . 3 y / ) ® , - 1 (ek ®k ek+1(2*' 3 y ) ) l < ω 7

by our inductive hypothesis s ince j^k - 1 and ek ®k ek+ί(2*' 3y) e Wj*, and
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this happens for at most finitely many 2* &y'*yl. if |^(22*'3>/ 3y') | < ωj"\
then

K ^ ^ ^ + i ) ( 2 x 32 y 3 y ' ) | = k,(22X 33/ 3 y ' )®^ 1 (ek ^ ^ f . ^ K ^ - 1

by our inductive hypothesis since j - 1 < k - 1 and ek ®k ek+1(2x - 3y) eW*.
Thus I βΛ ®k ek+11 < co;. Q.E.D.

Note that we can define e^ ®k en for any n > k + 1 by

*A ®fe^w = ((<** ®fe βjb+l) ®*+l β ί + 2 ) . . . ® w - ! βΛ,

where k ί + 1 | = ω*+1, . . ., \ef

n.x\ = ωn'\ and e[e wf for i = k + 1, . . ., n - 1.

3 T/zβ construction of well-order ings of determined type Below Hω,
Hω.2, . . ., Hω.w, . . . are certain fixed hyperarithmetic sets determined by
aeO, e.g., Hω = Ha where |α | = ω and aeO, chosen so that we know \aι\
"effectively" (this certainly can be done up through εo) W refers to the
set of all indices of recursive well-orderings as in [lθ]. Wk and W^ refer
to sets of all indices of those well-orderings recursive and recursive in A
defined in section 2.

Lemma 3.1 For any x, we can effectively find ex(k) e Wk such that

\ex(k)\<ωk ifxeθ(2k)

\ex{k)\ =ωk ifxeOW.

Proof: xeθ(2k) = Ex, Vy, . . . Exk VykR(x, xu yl9 . . ., xk, yk), with R re-
cursive. Thus, x{O{2k) = VΛΓiÊ ! . . . VxkEyk ΊR(x, xu . . ., xk, yk) and, by
Lemma 2.2,

xέθ{2k) ^ V ^ E ! y i , . . . V^Ely* S(x, xl9 . . ., xk, yk).

By Lemma 2.4, take ex = eSk where Sk = S(x, xu . . ., xk, yk), then \ex\ < ωk

and \ex\ = ωk iΐfxf!θ(2k\

For the following we modify Kleene's T-predicate of [2] so that
τf(#,:y,£,w) iff T^(x,y,z) and only questions of the form aeAίor (a)1^n
are asked of the oracle. Then it follows that for a* = 3 5*e O Ezl^a'(x, y, z) s
.EnEzl*ϊa'{x, y, z, n) = EnEzl^aί(xf y, z, n) where Ĥ / = {w: (w)ϊ ̂  nλ(w)oe
Ha(w) }. Clearly H*w^i Ha^ and H^^ O T Wan, using Lemma 3 [4]. Consequently,
for a primitive recursive φ(x,n), (Ez)t*}aίι(x,y,z,n) = (Ez)l"an(φ(χtn),y,z).
Thus, Ezl*ίaf(xt y, z) = EήEzT*?an(φ(x, n), y, z). In particular,

(z) -π?a'(χ,y,z) ^ (n)(z) πτNψ(^»d,y,«).

Lemma 3.2 For any x9 aeO, \a\ = ω, then we can effectively find ex(a) e W
such that

\ex{a)\<ωωifxeHl
\ex{a)\= ωωifxέH'a.

Proof: Choose aeO such that H ^ = O ( 2 w - l ) . For each n,

EzΊH

1

an(φ(Xfn)fxtz)^(Ez)T?(2n'l)(φ(xtή)9xfz) sg(x,n) e O(2w),
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for a primitive recursive g(x,n). Let en = eg(Xtn)(n) of Lemma 3.1. Con-
sequently, xeH'a iff for some n, \en\<ωn. Define sz € W inductively as
follows: sx = eu . . ., si+1 = s{ ®, βf + 1 . Finally, let

ex(a) = su s2, . . ., sn, . . . = UMxs,-:
ordered by first coordinates first and then as in s t }.

Suppose xe H<5, then let j be the smallest i such that | e f I < ω\ By Lemma

2.5, Isy-ihω'"1,

| s y | = Isy-i Φy-i e, | < ley I + ω ; ' ~ 1 < ω / .

Thus, | s ; + 1 | = | s ; ® ; e ; + 1 | < ω ; and by T h e o r e m 2.1 for al l k ^j, \sk\< u>;.
ω

Thus, \ex(a)\ = Σ k l ^ ωj. If */H f l ' , then for all ny \en\ = ωn. Con-

sequently, by Lemma 2.5, \sn\ = ωw for all n. Thus, |e x (α) | = ωω. Q.E.D.

Let ^ € TFfω, t h e n ^ e β i s ί E ^ T j 1 ^ , - , ! , ^ and Xfίe{ = (Έz)Ί^ω(eit 2,x,z).
Thus, xeβi = Vz Ί l"ω(eit 2, ΛΓ, >e) = φ(eif 2, ΛΓ) e Hω. For each n > 1, let *?„(#) be
the elements of Wn associated with the question φ(eit2, x) € H^ by Lemma 3J.
(as in the proof of Lemma 3.2), i.e., for all n, \en{x) \ = ωn iff φ(eit 2,x) e Hω
iff xeβi. Consider the question y e H ω , as above prior to Lemma 3.2,
y e Hω s EήEz l*ϊan(φ(y,n),y, z). Let \an\ = 2nior n> 1, then

y € Hω s EnE^T?2w(φ(3;, n), y, z) ^ g(y, n) e O2 w + 1 = /(y, n) e O 2 ( w + 1 ) .

Moreover, it is evident that we can assume g (;y, n) e o2n+1 —> ^ ^ w + 1) e
Q2(«+I)+I^ c o n S equently, by Lemma 2.4 we can effectively find c^+^y) e Wn+1,
( n > l ) such that yeHL iff En( I α^+1(y) I = ωn+1) iff Ek(n)(n>k~* | ^ + 1 (y) l =
ωw + 1), i.e., 3^/H^ iff V n ( k + i ω l < ωw + 1).

Now we define the basic construction. Given eγ e Wγ

 ω, an ΛC and a 3>, we
find recursively the sequences en(x) for n ^ 1 and α^+iί^) for w ̂  1, as
above. By s(x)/fak+1(y), we mean the element of W constructed as in Lemma
3.2 from the sequence

eAx), e2(x), . . ., ak+ι{y)®k+ι ek+ι(x), ek+2(x), . . ..

Hence, if for some i < k + 1, | e , (#)l < ω*, then I s(x)/cik+i(y) I < ω* by
Theorem 2.1. If I ak+ι{y) \ < ωk+1 or I ek+1(x) | < ω*+ 1, then I αA+i(y) ®A+I
βA+iW I < ω*+ 1 by Lemma 2.5, and by Theorem 2.1, \$(x)/ak+ι(y)\ ^ωh+ι.
If the smallest i such that I £«•(#) I < ω* is larger than ^ + 1 and \ak+ι(y)\ =
ω^+1, then Is(x)/ak+1(x) \^ω\ Define

e(x,y) = s(x)/a2(y), s(x)/a3(y), . . ., s{x)/c^^iy), . . .,

i.e., the effective sum of these well-orderings. It has these properties:

(1) \θ(x,y)\ = ωω+1, ifyeHr

ω and x_eHΪ;

(2) \θ(x,y)\^ωω

9.if yίHlandxeHl;
(3) |^(Λr,y)| ^ ω ί + 1 , if xfHf

ω and e is the smallest number such that
k WKcΛ

For any e^e PF̂ , θ{xty)/el is the above except that we replace ek(x)
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everywhere by e[ $*£*(#). Thus, if \e[\<ωk, then \θ(xfy)/er

k\ ^ ω*+ 1 as in
(3) above. If \e'k\ = ωk, then (1), (2), and (3) indicate the size of \θ(x,y)/e'k\.
Similarly, for Q{xiy)/ek/e\ where e'ke Wk, e e Wjy \e]\< ωj impl ies \θ(x,y)/

T h e o r e m 3.1 (a) For every β, e WPω, we can effectively find ef e W such that
\ej\< ωω+1 ΛeΛ and \e{ I = ω'' implies \ef I = ωω+1 -ω{ = ωω+ί+\

(b) i<Y?r every e{ e wfω'n, we can effectively find ef e W such that \e*\^
ωω n+1'\ei\and \ei\ = ωi implies \ef\ = ωω'n+1 >ω* = ωω'n+i+1.

Proof: For part (a), we define ef by induction on i. First let σ(j) = jth
element of the form 2* 3 y such that O ̂  x < y and so that for all j , σ(j) <
σ(j + 1), (the range of σ is by definition the candidates for elements of any
ee w£). Define e? to be the effective sum in W of 0(σ(O), 3>(O)), . . .,
θ(σ(n), y{n)), . . * where

y(n) e Hω = σ(n) e e1Λ(Ez)(z > σ(n) Λ Z e ej.

If U i l = O, then \θ(σ(x), y(x))\< ωω by (3) above and \e\ \ < coω. If \eA = ω,
then for each xe eu y(n) e Hr

ω, and \θ(σ(n), y(n)) | = ωω+1 by (1) where σ(n) = x.
If \eL I ̂  O, finite, then \θ{σ(x), y(x)) I ̂  ωω for the largest x such that σ(x) e ex

since y(n) i Hω and by (2), and for all k > x, \θ{σ(k), y(k)) I < ωω by (3). Thus,
Ie* I < ω ω + 1 \eχ |. Suppose α(z) € Wi+X for each z, by (ejaii))*, we mean

Θ(/(O), y(O))/β(O), . . ., θ(f(n), y{n))/a(n), . . .

so that if for all i, U(z)l<ω ί < + 1 , then for each w, k(/W, y(n))/a(n) I < ωω,
and, hence, \(eja(i))*\ ^ωω. Similarly, for a fixed ^ 'e Ŵ ,

(eMϋ/eΰ* = ((0(/(O), y(O))/^f)/β(O))*, . . ., (β(/(n), y(«))/e*/fl(n))*, . . .,

so that if \e'k\< ωk, then I (eJadWe'ύ* I ̂  ωk+2.
Suppose now we have defined for all e, e W^ω

y e*, (ei/a(j))*, (ei/a(j)/ek)*
as above, such that the following properties are obtained:

(i) If \βi I = O, then IβJ k coω, | (e#-/e(j))* I < ωω, and I (ei/a(j)/eί)* I < ωω.

(ii) If I e; I = cυ\ then k * I = ω ω + 1 ω\

(iii) If, for all j , \a(j) | < ω y + 1 , then | (ei/a(j))* \ < ω ω and I fa/aty/el)* I ̂  ωω.

(iv) If, for some k, \a(k) \ = ω f e + 1 (and for all j > k, \a(j) \ = ω 7 + 1 ), and k I =
ω1', then \(ei/a(j))*\ =ωω+1-ω'.

(v) If 1 4 l < ω*, then | {eja{ί)/e^ \ ̂  ωk+i+1.

(vi) If \e'k\ = wk, \ei\ = ω\ for all j>k, |αϋ)l = ω ; + 1 for some k, then
l(ei/β(j)/e*>l = ω ω + 1 V .

(vii) If O^ IβfKω'', t h e n | e * N ω ω + 1 |βil, l f e/α( i ) )* l^ ω + 1 | β j , and ίfe/

Now define (e ί+i)* for β ί + 1 e W?+l as follows: For each n, let

y(w) e Hω = (Έz)(z e ei+1(σ(n))) Λ (EZ)(EX)(X >nsze ei+ι(σ(x))).
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Let y(n)(j) e W; + 1 such that

y(n) € HL = (E*)O)U * * ~> ly(n)(Λ I = ω / + 1 ) .

Let α(j) be similar except

(E*)(j)ϋ > * - I βϋ) I = ω'+1) s ( E * ) ( * € ei+1) ^ EzEx(z e e,+1(σ(*)).

e*+1 = (βί+1(σ(O))/y(O)0Vα(O))*, . . ., (βi+1(σ(n))/y(n)(i)/α(n))*, . . .
(the effective sum in W).

Similarly,

(ei+ι/b(j))* = (^+1(α(O))/Wθ)(j)/α(O) <£>, 6(O))*, . . .,
(ei+Mn))/y(n)(j)/a(n) ® β + 1 6(n))*, . . .,

and

(ei+i/HjVe'ύ* = (^/+i(σ(O))/y(O)0Vα(n) ® w + 1 6(n)/eU*, . . .,
(ei+1(σ(n))Mn)(j)/a(n) ® w + 1 (δ(n))/^)*, . . ..

Suppose | e ί + 1 | = O, then for each n, |Λ(W).| < ωn + 1, a(ή) e Wn+U con-
sequently, fry (v) lβ, +i(σU))/y(n)ϋ)/αW I < ωωand, thus, \e*+l\ ^ω ω . Suppose
now |e, + 1 | ^ O , and suppose \ei+ι\ = ωt+1, then for infinitely many n,
I ei+1(σ(n)) I = ω*, and given such w, y(ή) e H'ω and consequently, \y(n)(j) I = ω ; + 1

for all j ^ k for some &. Hence, by (vi), if also n is sufficiently large so
that \a(n)\ = ωn+1,

I (ei+Mn))/y(n)(j)/a(n))* \ = ωω+1 I eί+1(σ(n)) I = ωω+J -ω1'.

Thus,

|ef+ 1 |=(ω β H" 1 ω i) ω = ωω+1 ω / + 1.

Now to show I .β*+i I < ωω+1 I e, +i I, it is clear that | e ί + 1 | = Σ/ \ei+1(σ(n))\.

Suppose for some k | ̂ t+i(σ0')) I = O for all j > k. Let kx be the largest
number such that I β, +i(σ(&i)) I ̂  O, then y( î)/^Hω, and therefore ly(^i)(j)l<
ω / + 1 for all j . Consequently,

\(e(σ(k1))/y(k1)(j)/a(k1))^\^ωω

by (iii) and also

I (e(σ(n))/y(n)(ί)Mn))* I ^ ωω, for n > klf

Ieΐ+iI = g I(eί+1(σϋ))/y(n)θ)/βίi))*I

^ ( ^ ωω+1 I βi+1(σίi)) ̂  ωω ω ̂  ωω+1 ( .^Σ χ I ei+1(σ(j) I) + l)

^ ω ^ l ^ +J, (since I ^ W l / O ) .

If there is no k such that for all j ^ k, | βί+1(σ(i)) | = O, then

I 4 J = Σ l(^+1(σ(w))/^(n)(j)/α(n))*|

« Σ ωω + 1 (1 + I e, +1(σ(n) I) « ωω + 1 Σ (1 + e,+1(σ(n)))

= ωω + 1 U, + 1 | .
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By similar arguments the other conditions (i)-(vii) can be checked at i + 1.
This verif ies part (a).

The procedure is completely analogous for Hω.2, Hω. 3, . . . . For
example, given a question xe H'ω.2f we find effectively en(x) e W^ω'1 such that
for all n, \en{x)\ = ωn iff xe H .̂ Define s^x) = e^x), . . ., si+1(x) = Si(x) ® ί + 1

ei+1(x), . . ., and define ex = (s^x))*, . . ., (sn(x))*, . . . effective sum in W
of those well-orderings constructed in part (a). If \ei(x)\<ω* for some i,
then \sn(x) I < ω* for all n, and, hence,

Iex\ = Σ I (*.(*))• I « Σ ω ω + 1 (1 +1 * ( * ) I) « ω ω + 1 Σ 11 + sn{x) I

^ GO Cϋ = (A)

This gives the basic construction for the wfω'2 argument. Thus, (b) holds
by induction. Q.E.D.

This technique yields the following result:

Theorem 3.2 Let n ̂  1, then there is an effective procedure to find exe W
such that

\ex\ = ωω'nif xeHLn
\ex\<ωω'nifxeH!ύ.n.

Corollary 3.1 Let k > 1, then there is an effective procedure to jτnu exe W
such that

\ex\ =ωω'n+kifxeHΪ&1

IβxKα^ ^t/xeHgJ1.

Proof: xtW^n iff (xi)Eyλ . . . (xk)Eyk(z) R(x, xu yu . . ., xk, yA', z), with R
recursive in Hω.w. By the techniques of section 2 we can find Sk a set of
fe-tuples of JV such that for recursive /, (xu . . ., Xk) e Sk iiif(xι, . . ., Xk) €
Hω.«, since the set Hω « is a complete set for predicates VzR with R
recursive in Hω.n, and \Sk\ = ωk iff xe H .̂"ζ\ Let ex = the effective sum of
e/(*i,...,**)'suck t n a t (%i> •> x*) 6-^* ordered first by ί^, . . ., xk) and next
as in e/(xlf...fXn), there βf{xΛ,...,xn) is obtained as in Theorem 3.1. Clearly,
if |SΛI = ω*, then \ex\ = ω^-ω* = ωω'n+k. If IS Î < co*, then since α>ω'*is a
principle number for addition it follows easily that \ex\ < ωω'n cô  •= ωω'n+k.

Q.E.D.

The following result generalizes a result of [8] originally noticed by
S. Tennenbaum.

Lemma 3.3 For any set A, {x}λ(x) grows faster than any function recursive
in A.

Proof: By grows faster we mean there is no function/recursive in A such
that whenever {Λ:}Λ(*) is defined {#}A(#) ^ /(AT). If F(x) were such a function,
take e to be a Gδdel number of f(x) + 1 in A, then {e}λ(e) = f(e) + 1 ̂  f(e),
a contradiction.

Now we show Theorem 1.2 (b) is best possible. Namely, we construct
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aeO such that \a\ = ωk+2 such that there is no function/recursive in O(2^)

such that a{ ^ ωk+1 -f(i) for all i. Consider lγ(2k)(x,x, w) by Post's Theorem
and Lemma 2.2 this is equivalent to (Elz^xJiElyj) . . . (xk)(E\yk) R(x, w, z,
%i> •> yύ with R recursive. Noting that Ί^2k\x,x,w) true implies w is
unique, consider for each number 2W 3Z

foKEIyJ . . . (Xk)(Elyk) R(x, w, z9 xu . . ., xk).

By Lemma 2.4, find ek(2w 3Z #) e Wk such that 1^(2" 3z,x) | = ω* iff
(ΛΓi) (E !^i) . . . fo) ( E ! % ) R(x, w, z, xl9 . . ., xk). Let e ^ 3Z, *) e W be w-
copies of ^ ( 2 " 3Z, ΛΓ), and let e(#) eWbe the effective sum over e(2w 3Z,#)
for all possible w, z ordered first by 2W - 3Z next as in e(2w 32, x). Clearly,
\e(x)\^ωk, if Ί(E^)T^(2A)(Λ:,Λr,zί;). However, if Έ,wlγ{2k\xfxfw), then α>fe.
{x}oi2k\x) < \e(x)\<ωέ+1. Let α(f)eί; be found as in [5] Theorem 1 such
that Ia,i I = ω 11 + e(i) |. Let αo = α(O), . . . , ai+1 = α, +o a(i), clearly, 13 5*1 =
ωk+2, and for all i, ωk+1 fy}°{2k)(i) ^ \a{\. Consequently, by Lemma 3.3 a1 =
3-5* *o(aA).ft' where 16, I = ωk+1 f. Thus, by Theorem 1.1, Ha, &

(2k) Hb,,
but by Theorem 1.2 (b) Ha> isomorphic to H^Λby function recursive in

0(2fe+i) χ n u s > Theorem 1.2 (b) is the best possible result.

In order to show that Theorem 1.2 (a) at \a'\ = ωω is necessary, we
first build \a(k)' I = ωω such that a(k)i grows more rapidly to ωω than ωf(i) for
any function / recursive in O* . As in the previous sections, obtain for
each x, ek(2w . 3Z, x) e Wk, if w > k, let ektW(2w 3Z, x) = ek(2w. 3Z, ΛΓ) ®fe β w

where ew e Ww and 1^1 = ωw, and iίw^k, ektW(2w' 3Z, Λ:) = ̂ ( 2 ^ 3Z, x). Let
β(λr) e W be the effective sum of ektW(2w. 3Z, ΛΓ) for all w, ^. If Ewlγ(2k\x,x, w)9

then ω"'^ | e W l < ω ω , since for all 2W 3Z except one 1^(2". 3Z, ΛΓ) | < ωk

while |^,u;(2u; 3z, ΛΓ)| = ωw for some >e if T ?(2k)(x, x, w), by Theorem 2.1. If
ΊEwlγ(2k)(x,x,w), then \e(x)\^ωk by Theorem 2.1. By Theorem 1 [5], let
c(kh e 0 such that I c{k)ι | = ω 11 + e(i) |. Define α(fc)f = 3 5 ^ } so that α(fe)o =
c(k)o and a(k)i+1 = a( )̂/ + o φ ) / + i , Clearly, α(fe)f grows faster to ωω than
co/(ί) for any / recursive on O ( 2 Λ ). Finally, define

«o = βί^o* -> ai+± = ai +o(«(l)i+i +o«(2) t+i + . . . +o«(^ + l)ί+i).

Clearly, |α f I = 13 5*1 = u>ω and a1 ^ c^^5 6', if b'eO and |6, I = ωf' (suppose
a1 •< b1 via / recursive in O^M just choose an index e for / larger than k,
then {e}0(2k\e) < \a(k)e \ ^ ωf{e\ a contradiction). Thus, by Theorem 1.1,
Haι ^ίγ(2k) Y\b, for any k but by Theorem 1.2 (a) Ha, and'H*; are isomorphic
by a permutation of V̂ recursive in Hω.

A similar argument works for building a'eO such that \a'\ = ωω'n+k

(k ΪO) such that a{ grows faster to \a'\ than does ω

ω'n+^'1^ .f(i) for any
function / recursive in Hω.n+2&-i. Since for k = 2,

^"•"^-'(x.x.w) Ξ ΈlzbMΈlyJbl R(x, w, z, xlf yl9 x2)

with R recursive in Hω n. By Corollary 3.1 we find exe W such that cϋω # w + 1

w< \ex\<ωω'n+2 if l**ω%(x,x,w), and \ex\^ωω'n+\ otherwise. Let a e 0
such that lc<l = ω | l + e , | by Theorem 1 in [5], then ωω'n+1-w < \a I <
ωω'n+2, if T?&«,t,M;) and |c, N ωω'n+1, otherwise. Let a0 = co, . . ., α/+1 =
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a{ + o c ί + 1 and a' = 3-5*. Clearly, \ar| = ω ω # w + 2 and a' rf H£3?n δ', if \bi\ =

ωω'ή+1-i. By Theorem 1.1 and 1.2, H,, £»£« H*/ but Htf, and Hb, are

isomorphic by a permutation of jV recursive in Hω.». Similarly, for Hω.w

being necessary for showing Hat and Wb, isomorphic if \a'\ = I ft'I = ω ω # n .

These results are summarized by the following theorem.

Theorem 3.3 For all β < ω2, \ar\ = | δ ' | = ω ,̂ the Hc determined as in

Theorem 1.2 is the smallest level possible in the hyper arithmetic hierarchy

in order to have all Waι and H^ isomorphic, using functions recursive in Hc.

REFERENCES

[1] Davis, M.} On the Theory of Recursive Unsolvability, Ph.D. Thesis, Princeton University
(1950).

[2] Kleene, S. C, Introduction to Metamathematics, New York, Toronto, Amsterdam, and
Gronigen(1952).

[3] Kleene, S. C, 'On the forms of the predicate in the theory of constructive ordinals,"
American Journal of Mathematics, vol. 66 (1944), pp. 41-58.

[4] Kleene, S. C, "Arithmetical predicates and function quantifiers," Transactions of the
American Mathematical Society, vol. 79 (1955), pp. 312-340.

[5] Kreisel, G., J. Shoenfield, and Hao Wang, "Number theoretic concepts and recursive well-
orderings," Archiv fur mathematische Logik und Grundlagen forschung, vol. 5 (1960),
pp. 42-64.

[6] Moschovakis, Y. N., 'The many-one degrees of the predicates HΛ(x)," Pacific Journal of
Mathematics, vol. 18 (1966), pp. 329-342.

[7] Nelson, G. C, "Isomorphism types of the hyperarithmetic sets," Abstract in The Journal of
Symbolic Logic, vol. 36 (1971), p. 374.

[8] Nelson, G. C, "Many-one reducibility within the Turing degrees of the hyperarithmetic
sets Hd(x)," Transactions of the American Mathematical Society, vol. 191 (1974), pp. 1-44.

[9] Rogers, H., Jr., Theory of Recursive Functions and Effective Computability, New York
(1967).

[10] Spector, C, "Recursive well-orderings," The Journal of Symbolic Logic, vol. 20 (1955),
pp. 151-163.

The University of Iowa
Iowa City, Iowa




