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ISOMORPHISM TYPES OF THE HYPERARITHMETIC SETS H,

GEORGE C. NELSON

Introduction Historically, this paper originates from M. Davis’ result
[1] that for |al= |b] < w? (a, be0), Hs and H, are recursively isomorphic.
Spector, in [10], showed that H, and H, for |a| = | 5| have the same Turing
degree. Y. Moschovakis in [6], had shown that these results are best
possible in that the sets H, for |al=a, w*<a a principal number for
addition, have well-ordered sequences of type w, under one-one reducibility
and, also, incomparable one-one degrees. The author in his thesis [8]
showed that any countable ordered set can be embedded in the one-one
ordering of H,, |al=a as above and that there are incomparable one-one
degrees below any H,, if |al = @ > «®. Moschovakis also has shown that if
B = & + a, a principle for addition, that {H,: |b| = 8} has the same structure
under one-one reducibility as does {H.: |al = a}. This carries over to this
paper after Theorem 1.1 and we restrict ourselves to those H, such that |a|
is principle for addition, i.e., |al = w? for some g8 > 1.

In this paper we introduce a general notion of one-one reducibility
applicable to the hyperarithmetic sets (since these sets are cylinders,
[9], pp. 89-90, we need only to discuss one-one reducibility). The notion is
simply the following; suppose @, be O and |al = |b], when is there a one-one
function f(x) recursive in H. such that xe H, iff f(x) e H,? Since H,and H,
have the same Turing degree, clearly any c €0, |c|> |al is sufficient. The
question we try to answer is how small can |c| be chosen in general, so
that H, and H; are one-one reducible to each other by functions recursive in
H,, i.e., H; and H, are isomorphic via a permutation of N recursive in H..
Alternatively, for |c|< |al, H: can be viewed as a constructive subset of
both H, and H; and using only an oracle for H. can one show a question of
membership in H, is equivalent to a question of membership in Hj (this is
similar to a ‘‘bounded truth-table’’ reduction except that the bound is H.).
We will give a necessary and sufficient condition on the size of lc|in order
to show H,, H, are isomorphic by a permutation of N recursive in H. when
la| < w®®. That this condition is sufficient for all a, b€ O is demonstrated.
However, the necessity of this condition for lal < €, is not proven and
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contrary to as announced in [7]is an open question. The author hopes that
the techniques introduced here will eventually demonstrate this necessity.
Basically these results depend upon constructing ordinal notations a € 0
with very fast growth toward its limit |a|as in [5] and [8]. Consequences
about ordinal notations will follow immediately from these results. For
example, there exist recursive well-orderings of order type w® which are
not isomorphic via any function recursive in 0(”), i.e., via any arithmetic
permutation of N.

1 One-one reducibility in H. The notation used in this paper will be that
found in [2], [4], and [10]. Familiarity with the results and techniques of
recursion theory are assumed as in [9]. Frequent use is made of Post’s
Theorem which is taken to refer to the results listed on pp. 314-15 of [9].

Definition 1.1 We say that a set A is one-one reducible in C to B and write
A <€ B if there is a function f (one-one) recursive in C such that x € A iff

f(x)eB.

These definitions are natural generalizations of the usual notion of
one-one reducibility and become particularly relevant in the study of the
one-one degrees in C of the hyperarithmetic sets Hy where @' = 3-5%¢ 0.
The following definition and theorem generalizes the notion and results
introduced by Y. Moschovakis in [6] in studying the one-one degrees of H,.

Definition 1.2 Let a'=3-5° and b'=3-5" be two Kleene notations for
ordinals such that |a'| = |b'|. We say that a' is recursively majorized in C
by b’ and write a' < € b' if there is a function f recursive in C such that
la,| < Ib/(n)l for all .

Theorem 1.1 For ce0, lc|< |a'|= |b']
Ha <HeHy iff a’ < e bt

Proof: The proof of this result is essentially as in [6] except that in
Lemma 2b, p. 330, one asserts instead that there is a primitive recursive
os(e) such that if ¢ = o5(e) and (Ez)(TP(e,t,2) A U(z) = k), then P'() # P(k);
which is just an effective way of saying P’ is not many-one reducible in P
to P.

By Myhill’s Theorem [9], the following is evident:

Corollary 1.1 Hy arnd Hy ave isomovphic using a permutation recursive in
He lel < la'| = |8 iff a' < He b and b' < He g,

It follows automatically from Moschovakis’ work that we need only
study one-one reducibility in H. of H,, such that |a'| is a principle number
for addition. The following definition and lemmas generalize the notion of
““limit point of order n,”” see p. 51 of [5], to any order a (a constructive).
We use the predicate C(b) of [3], §12 and §13, in order to express z <, ¥ as
an r.e. predicate noting that for a, b€ 0, ae C(b) iff a <, b, and there is a
primitive recursive predicate V(a, b,x) such that for any numbers a, b,
ae C(b) iff (Ex) V(a, b, x).
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Definition 1.3 We define predicates L,(x) for each b€ 0, b # 1 inductively
as follows:

L.(x) ifx=3-5"
Ly(x) if Ly(x) A (2)(z € C(x) — (Ew)(z € C(w) A w € C(x) A Ly(w)))
Lj.sy(x) if (n)(Lyn(x))

Below A™ refers to the jump operator applied » times to A.

Lemma 1.1 (@) If beO, 12°1=k >0 is finite, then L,y(x) is one-one
reducible to OC®=D (for k = 1, L,,(x) is recursive).

(b) Theve is a primitive vecursive function f(a,x) such that for a = 3-5”€0,
La(x) #ff f(a, x) € Hi.
() Ifb=35"4ce0, |cl=k+O0, then Ly(x) is 1-1 reducible to H**3V

Proof: Clearly, L,,(x) is recursive. Consider L,,(x) = L,,(x) A (2)((Ex,)V(z,
x,%,) — Ew(Ex, V(z,w, x,) A Ex; V(w, x, X3) A Ly(w)) which is equivalent to a
predicate of VE-form and consequently is 1-1 reducible to O". Let ey be a
primitive recursive index of this reduction of L,,(x) to O". Part (a) follows
inductively by Post’s Theorem as in [9].

We complete the proof by defining a primitive recursive function f(y, x)
such that for y in 0, y # 1, 2, L(x) iff f(y,x)e m, where y(y) is as
specified in the result, i.e., y(a) = b such that || = 2(k - 1) if |a| = & finite,
a#1, 2 and y(@) =3:5”+, b if a=35"+,c for some finite ¢ in O and
|6l =2|c|l+ 1. By Post’s Theorem let g(«, x) be 2 1-1 primitive recursive
function such that uniformly for A, g(u, %) € A® iff {u}(x) ¢ A" A (M) (7€ C(x) —
(Ew)(re C(w) a we C(x) a {u}(w) ¢ A")). Now define ¢(z,y,x) primitive recur-
sively as follows:

#(z, 9, %) Oif y=1vy=2v(y+ 294y + 3-577),
#(2, 2%, x) {e,}(x) where e, is obtained in Part (a).
#(2,2% %) = g((x) {2}(b, %), %) if b+ 2.

¢(z, 357 %) = ¢.(2,y,%), where ¢, is the primitive
recursive function defined as follows:

Consider 1(n)({z}(y,, x) € H,(,) = (En) ({2} s, %) € Hy(y,) = (En) p(y(v,),
3:5% {z}(9,, %)) € Hs.5, where p is the partial recursive function of Lemma
3, p. 326 of [4], = En(Ts (p,(2,9, %), ¢:(2,9,%),n), by Lemma 1, p. 325 of
[4] where ¢, is primitive recursive. Consequently,

(m) {2} 3, %) € Aryy) = ) (TH"(91(2, 3, %), $:(2, 9, %), ).

By the Recursion Theorem, p. 352-3 of [2], there is an e such that
0.(¥,%) =~ ¢(e,y,%). Define f(y,%) = ¢(e,y,%) and by the construction of f, it
follows for all ye 0, y # 1, 2, Ly(x) iff f(v, ) € H,y), by induction on | ylin 0.

Q.E.D.

As 1s well known, every ordinal a has a unique Cantor Normal Form,
ie., a-= Ok +u.P° ky such that B; > B;-y, for 1<i<n and O # k; <
w for O < i < n with n, B8;, k2, uniquely determined by a.
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Lemma 1.2 For a', be0, b+ 1, Ly(a') iff the Cantor Normal Form of
la'l = wPreby +. . +wﬂ° ko is such that B, = | bl.

Proof: By induction on |b| for all @’ in O, for |b| = 1 the result is clear.
Suppose the result is true for all beO such that 8= |d|>1, consider

= 9% guch that |b|=8+1 and suppose Ly(a'). By definition, L,(a') =
(z)(Ew)(z <oa' = z <o w <o a' A Lgy@)) A Liy(a’). Thus, By > (D)ol = B=>1

and, by the inductive hypothesis, a’'=3:5% |a’|= lim|a.| and, clearly,
since L,(a’) there exist a sequence w; <, w;q; <, a' such that L),(w;) and
lim|w;| = la'ln For some k, i >k implies |wi| = 0 -k, + ... +0f by +

l(”)°|+°" ki. Either for some j, |(b)ol +a; = l(b)ol for all i 2] or |(B)ol +
a; > |(b)o| for all i>j and, hence, w®® = lim W/®o!. pi = HIBoI+1 5 B0 >
sup w!®@ol+ai w'(b)°' *1 Conversely, suppose B, = [(b)o| + 1, if By = ¥ + 1, then
WP By = lim(P0- (B - 1) + w” - 1) and there exists a sequence w; <, @' such
that |w;|=wP kp+ ...+ @0 (B - 1) + w?-4) and lim|w;|= |a'|. If B, is a
limit, then there is a sequence y, such that [(),| < y, and lim v, = B, and
consequently we can find w; <, a' such that lim |w;| = a’ and |w; | = P"- &, +

. +wPoe(By - 1) + W% -k{. Thus, Ly(a’) follows.

Suppose ' = 3-5% and L, (a') is true. Thus, (n)(Ly,(a")) is true. Con-
sequently, by inductive hypothesis, B, > |b,|, hence, B, = lim|b,| = |b'|.
Conversely, suppose 3, > |b'l, then B, > |b,| for every » and consequently
Ly,(a') holds for all #.

Now we prove one of the main results of this paper.

Theorem 1.2 (a) If la'l = |b'| = w®, B a limit, then Ha is isomorphic to H,,
by a permutation of N recursive in H. such that |c| =

(o) If la'l=1b"|=w*, 2<k finite, then H, is isomorphic to H, by a
permutation of N 'recurswe in Q@ k=2

(c) If la'l= 10"l =w"** 1<k finite, and y a limit ordinal, them H, is
isomorphic to H,, by a permutation of N recursive in H. wheve |c| =y + 2k.

Proof: Suppose the hypothesis of part (a) and that ceO and |c|=8. By
Theorem 1.1, it is sufficient to show a' <Mep’ and b < Me g, Thus, we
shall define a function g recursive in Hc such that |a;|< |bgu)| for all i.
For each i, let n; be the smallest number # such that (2)(z <, @i — 1L,(2))
where L., is the predicate of the definition before Lemma 1.1. Con-
sequently, by Lemma 1.2, the Cantor Normal Form for |a;| and any a < | a;|
is such that B, < |cs;| and, hence, |a;| <w!n! By Lemma 1.1, #; is the
smallest number 7 such that (2)(z <, a; — f(cs, 2) € Hy(,) for the primitive
recursive f(y,x) which is equivalent to ¢(e,a;, c,) € Hy' (c,)» Where e is a g.n.
of f and ¢(e, a;, ;) is primitive recursive. Consequently, n; = un¢(e, a;, c,) €
H;(c,,), and clearly »; as a function of ¢ is recursive in H.. Given n;, start
enumerating the elements <, b’ until one finds the first element z; in this
enumeration such that Lc,,’(z,) i.e., flen;, 2i) € Hy(c, D Define g(i) = pjz;<, bj.
Thus, for each i, lai| < wlen;!< lle | g(z)l where g is recursive in H..

Consequently, a' < He pr and by the analogous argument, &' < He g, Thus,
(a) holds by Corollary 1.1,
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Suppose the hypothesis of (b) as in (a) we show that for arbitrary
a', b'€0, la'l = |b'| = w* implies a’ < "< b’ where ce 0 and |c| = 2(% - 2) + 1.
Note that 2 =1 implies H, and H, have the same one-one degree by [1].
Let ce O such that |c|=% - 1, then by Lemma 1.1 L.(z) is one-one re-
ducible to F|7(:)= 0?%=2) (recursive if |c|=1) and by Lemma 1.2, for
z <y a', L.(z) is true iff |z|=w® Y .xn for some n # 0, since |a’| = wk. For
each 7, let n; be the number of 2’s, 2 <, a; such that L.(z). We compute #;
recursively in 0%®2+) a5 follows: First, consider Ez(z <, a; A Lc(z)) (this
is equivalent to Ez(z <, a;» f(c, z) £ 0®* ?)) which is equivalent to ¢(c, a;) €
0@ ®=20+ o1 a primitive recursive function ¢. If the answer is ¢(c, a;) £
0 ®=2*) " then m; = O if 1Lc(a:) and n; = 1 if Le(ai). If the answer is
#(c,a;) e 0 *® D) then let z, be the first element in the enumeration of
z <, a; such that L.(z,). Suppose now we have defined z,, .. ., zx by this
procedure 2 > 1. Consider Ez(2 # 2,a...A2 # 2, A2 <ga; A L(2)), if true,
then take zp+; to be the first element of the enumeration of all z <, a;
different from z,, . . ., 2z such that L.(2;,,), otherwise, n; = &, if 1L.(a;), or
n; =k +1 if Lc(a;). Clearly, n; is defined recursively in O® * 20+ ap4q
la;| < w™. Given »; find the first n; + 1 numbers xi, ..., X,4: in the

enumeration of x <, b’ such that L.(x;), k=1, . . ., n; + 1, (this computation
is recursive in 0% *® given that |b'|=w*). Define g(i) = uj such that
Xy <o bj for k=1, ... n; +1. Clearly, g is recursive in 0@ *"2)*+ 3pq

lai| <" < W™ < |bysyl. Thus, a' <M4b' where |d|=2-(k-2)+1, and

analogously b' <Hd g1, Consequently, by Corollary 1.1, H, and H, are
isomorphic by a permutation of N recursive in H,, |d|=2-(k - 2) + 1.

The proof of (c) is completely analogous to the proof of (b). Noting that

for |cl=wP*® D L (2) is 1-1 reducible to Hy), i.e., HZ*-DF = HE,

Q.E.D.

Moschovakis notes in [6] that with respect to 1-1 reducibility there is a
minimum one-one degree of the form H!, |a’| = «* in the Turing degree.
The following shows this to be a rather general phenomenon.

Corollary 1.2 If |a'| = |b'| = wB*% B a limit and k # O ov =0 and k> 2,
then theve is a wminimal 1-1 degree H, in H. in the Turing degree of
{Hpi: 18" = 0P} wheve |cl=2-(k-2) if B=0 and k> 2 and where |c|=
B+2k-1i B#O0.

Proof: As noted in the proof of Theorem 1.2 (b), once one had found #; for
each 7, the rest of the computation can be carried out at the next lower
level. Consequently, let de O such that |d|=wP** ™ and a: = (d + d) +

. 4o d) with 4 summands d and consequently for any e€ 0, le| =8 + (k - 1),
the number #z; of elements z <, @; such that L.(z) equals . Consequently,
a' < b'via a function recursive in L.(2) and the result follows by Theorem
1.1 and Lemma 1.1.

2 Natural well-ovderings In this section we define from predicates
R(xy, vy, . . ., X, y&) recursive in a set A sets e;: of k-tuples of N recursive
in A ordered by first difference such that the size of these well-orderings
depends upon whether or not (x)(Ey)) . .. (x)(Ev) R(x1, v, . . ., X, V&) is
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true or false. Instead of working with the quantifier (Uz) of [5], we require
uniqueness on existential quantifiers which will lead to analogous results.
However, Lemma 4 of [5], which is quite sufficient to obtain the results in
section 3 for arithmetic predicates up through H,, we know of no way of
generalizing to obtain all the results of section 3 below.

Lemma 2.1 Given a predicate R(y,z) we can effectively find predicates
Si(y, 2) and S,(y, z) recursive uniformly in R(y, z) such that

(a) (Ey)(2) R(y, 2) iff (E!y)(2) S:(y, 2)
and
(b) (»)(E2) R(y, 2) iff (y)(E!2)S:(, 2).

Proof: Define S,(y, z) to be y = 2% 3%, (w)(w < max((9)1, 2) — R((y)o, w)) A
(D(Ew) (¢ < (9)o — w < (9),A 1R, w)) A1) (Ew) (£ < (9)o — w < ()1 ATR(E, w)).
Define S,(y, 2) to be R(y, 2) A (w)(w < 2 — 1R(y, w)).

Lemma 2.2 Given a predicate of the form R(xy,v., ..., X, yn) we can
effectively find a predicate S(x,,y:1, . . ., Xu, Yu) vecursive uniformly in R
such that

(%) (Epy) . . . (%) (Evo)R iff (x)(E!y) . . . () (E!ys)S.

Proof: By induction on #=1 with n=1 by Lemma 2.1 (b), consider
((Ey)(%5) . . . (%) (Eys) R(x1, 91, . « ., X¥n,¥n)). By Lemma 2.1 (a), there is
predicate S,(x,y,, ;) recursive uniformly in (Ey.)(xs) . . . (x,)(Eyn) R(xy, ¥y,
X2, V2, - - -, Xn, Yn) such that E!ly,(x;) Si(xy, v, x2) iff (Ey)(xs) . . . (%) (Eyn)
R(x,,9,, . . ., %z, ¥2) and, hence, (¥ )(E!y)(x,) Si(xy, vy, x5) iff (x)(Ey,) ...
(%2) (Eyn) R(x1, 91, - « ., Xn, yu). Since Sy(x,, ¥,, ¥,) is recursive uniformly in
(Ev,)(x3) . . . (%)(Eyz)R, then by Post’s Theorem,

Sl(xla 3’1, x2) = (xé)(Ey2) o .. (xn)(Eyn) Rl(xl) yl’ x2, x;’ yZ’ o . ey xﬂ) yn)

with R, recursive uniformly in R. By inductive hypothesis, there is a
predicate S,(x,, ¥1, X2, X3, Y2, + . ., ¥n, Yo) recursive uniformly in R, and,
hence, in R such that

Sl(xb Y1, %g) = (xzz)(E!yz) e (xn)(E!yn) S‘z(-’ﬁ, Vi, X, xz:, Noy o o oy Xp, yn)-

Define S(x,, y1, . . ., ¥n, Yn) to be Sy(%1, 1, (X2)o, (X2)1, V2, - . ., %n, ¥n) and, con-
sequently,

(%2) Su(%1, ¥1, %2) = (%) (E1y3) . . . () E190) S(x1, ¥1, X2, V2, - - 5 X, V).
Thus,

(Ey)(xs) . . . (Eya)(%n) R(X1, 31, - . -, %) = Ely(x,) Si(xy, ¥1, %)
= (E!19)(x)(Elys) . . . (x)(E!p,)S.

Thus, the result follows easily.

Definition 2.1 A subset e of N¢belongs to WF if e is recursive in R and the
following four conditions hold:
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(1) (24, ..., 2) € e implies for all i <k, z; = 2"- 3” for some x and y.

(ii) For every x, there is at most one y such that [{(2*+3, z,, ..., z) e e}l =
wt™!, here || means order type by first difference.

(iii) For every x and y {(2, . . ., 2): 2%+ 3% 2,, . . ., Z1) e e}e WS ..

(iv) If for x and y [{(2"-3% 2, ..., z) €€}l = w*™* then for every z <x,
there is a y, < y such that

{(2%- 3% 2, . . ., zx) e e} = w*7L.

Definition 2.2 For e,, e,, . . ., ere WX define ®(e,, . . ., ) = {(2-3", ..,
2. 37): seq(y;) A lh(y;) = kA for alli<k - 1(2%.300 om.30miyce, 1

Lemma 2.3 (1) Foranyk=1lande,, ..., ere WR®(ey, . . ., &) € WK

(2) If for some i<k |le;|<w”, then |®(ey, .. ., &)< min(lel, ..., lel) +
wﬂ-l

3) l®(ey, ..., e)l=w'iffforalli<k, |e;|=w".

Proof: By induction on n. For =z =1, the result is clear. Consider
€Ly« ..y GE WR to show ®(ey, . . ., )€ Wf. (i) is immediate. For a fixed
x and y such that seq(y) A Ih(y) = &, then

(%) {(2-3,2%2-32 ..., 23 ed(ey, ..., e)}
={(2"-3,22-3%, ..., 2.9, (2.2 . 2%.37)
e®{(zz, . . ., 2): (25-39% 2, ... zZn€el, ...,
{(22’? A Zn): (zx' 3(y)k-1; Ray « + o Z,,)E ek})}'

By (x) and our inductive hypothesis (1), it follows that ®(e,, . . ., ew)
satisfies (iii). (ii) holds for ®(e,, . . ., e) since (ii) holds for e,, . . ., ¢,
and apply the inductive hypothesis (3) to the right-hand side of (*). Suppose
for fixed x and y,

[{(2*-3%,2%2-8%, ... 2.8 e®(ey, ..., e}l =",
then by (x) and (3) fori <k - 1,
l{(zx‘ 3(}')",2,'2, R AY: e,‘+1}l ="l

Since e;1. € WR and by (iv), for each z < x there is a Vzi+1 < (9)i such that
[{(27- 8Yzi+1 2z, ... z,)ee;u} =w”'. Thus,

vz, -
[{(27- 325" . . p=E 2, .., 2)e®(ey, . . ., @)} = w7}

by (*) and (3). Clearly, 2°=! . .. p}#k <y and thus (iv) holds for ®(e,, . . .,
e;). Thus, ®(ey, . . ., e;) € WK,

Suppose e; € WR and |e;| < w”. By (ii) and (iv), there is a unique x such
that for all z < x there is exactly one y, such that [{(2%- 3% z,, . . ., zn) €
e}l =w”™" and for any z>x and any v, [{27-3",2,, ..., z)ee } <"
Consequently, by (%), (2), and (3), noting the choice of y, for ey, . . ., e,
given z < x must also be correct, we have at most x numbers of the form
2%- 3" such that |{(2°-3% 2,5, ..., z)e®(ey, . . ., )} =w”™". From this (2)
follows readily.
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By (2), [®(ey, . . ., &)l = w" implies for all i <k, |e;|=w”. Conversely,
suppose le;41] = w” for i+ 1<k, Itis easy to verify that for every x, there

is a unique y,,; such that for alli<k - 1, |{(2*- 3" 2, .. ., z,) ¢ e,ﬂl =
n=1

w” ", Hence,
l{(zx‘ 32)’x,.1. .. pzf'lk, Zy oy Z)E®(ey, L., ek)}l ="
by (*) and inductive hypothesis (3). Clearly, then |[®(e,, .. ., )l =

Q.ED.

We define by induction on # a well-ordering s, € W,‘f recursive in R for
each predicate of the form (x,)(Ey,) . . . (%)(Eyn) Sul%1, ¥1, - . ., %,, ¥,) With
S, recursive in R. Moreover, for each n the above operator ® maps any
k + 1-tuple of well-orderings of the form eg, , Si» recursive in R for i <k,
to @(eso‘,,, c ey esk'n) a well-ordering recursive in R. We can always
assume by the above Lemma 2.2 that if (Ey,) ... (x,)(Ey,) Si(xy, vy, - - -,
Xz, V), then

(Ey) ... () (E1,) Sl%1, Y1y « « oy Xy V)

Suppose 7 = 1: Let eg = {2%- 3% seq(y) alh(3) = & + 1a(2),Si(2, (9)z -
Nk
Suppose 7 = j + 1:

€sit1 = {(2"' 3y, 21, . . ., 2j): seq(y) A lh(y)
=x+1a(2y, ..., 2)€ @(eso,i, ce esx,].)}

where
sZ:f = (xz)(Eyz) o (x,'+1)(Ey,-+1) Sj+1(z, (y)z -1, %, 92 ..., Xj+1, y]-.H).

es; 4, 1s ordered by first differences and <, i.e., it is a subordering of the
natural ordering of N/*'. It is obvious that es, and ®(esy, - - -5 €5, ,) are
well-orderings and their order types are less than or equal to w”.

Lemma 2.4 (a) es € Wxfor all n and S,.

(b) For all x, < j, (Ey)) . . . (%)(Eyy) Sp(%1, Y1, . .., %n, ¥a) iff theve is a y such
that |{(2" -3, z,, . . ., 22) g5} = 0",

(c) les,| = w™iff (x)(Ey) . . . (x,)(E,)S,

Proof: By induction on 7, the result is immediate for » = 1. Consider S,
for » > 1, assuming the result is true for » - 1. By the previous lemma
and definition it is clear that (i) and (iii) hold for e;,. Suppose that
(2 8% 25, . . ., 2x) € g5} = 0", then seq(y), Ih(y) =x +1, and for i< x,
'es,-,,,l = w" ! by Lemma 2.3, (3), where

(%2)(Eyz) . . . (%) (EYn)Sin = (%)(Ep2) . . . (%) (Epa)Sa2, (9): - 1,
xZ) Yo, . . .y Xns yn)°

Hence, by our inductive hypothesis (c),

(x2)(Ey2) LI (xn)(Eyn) Sn(i; (y)t - 1’ X2y Y2, « + o5 Xy yn)
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is true, but then (¥); - 1 is uniquely determined by ¢. Hence, y is unique
and (ii) holds for es,. Moreover, for z < x, take y. = 2”0 . .. pY%and by the
definition of S, and the previous Lemma, it is clear that [{(2°-3"% z,,. . .,
z;)€es,}=w" 'and y. <y. Thus, (iv) holds for es, and es, ¢ WX, (b) is clear
and (c) follows from (b) and properties (ii) and (iv) of elements of WX

Q.E.D.

We now define mappings ®;: WR-x WR— WK for n="k, k+1 whose
definitions are motivated by the notion of relativization of quantifiers as
follows.

!
Definition 2.3 e, ®, e] = {(2°-3°"%): 2. 3%¢ el and 2% . 3" e ¢,}.

e @ e, = {(2°- 37 97 3293"). , -
(2%- 3%, 2°- '3 “Yee, 273" ce,, and 227 3% e e},

Below we let ex(2) = {(2,, . . ., 24): (2,25, . . ., 25).€ €,}. Now suppose ®;
has been defined for all j < & where k=2. Let

R
ey, ®pep={2°-3"% z, ...,

2):
(22, ey Zk) € (ek(zzx-a)'. 3yl) ®p -1 elg(zx‘ 3y))}

and define

: x.3y!
€, ® epqy = (27377 25, . L, Zpy):

(Zz, PSS zk+1) € (ek(zzx-sy . 3y') ®k-1(ek ®, ek+1(2x' 3y)))}

The following result establishes that ®, is well-defined and its
fundamental properties:

Lemma 2.5 Lete,e WX e,e WRforn="rkorn=~r+1, then

(a) e, ®, e, e WK
(d) If lep| < wk, then ey @ e,| < wk,

() If ley| = w* and le,| < w”, then e, & e,l < le,| +w™*

forn=korn=~k+1,
and
@) ler @ enl = 0" iff eyl = w* and |e,| = 0"

Proof: By induction on %, consider k= #n= 1. It is clear that if 2" 32"'3}” €
e; ® el, then y is unique for x since 2°-3Yee! and y' is unique for 2°- 3’
since 2237+ 3% ¢ ¢,; thus, 27+ 3" is unique for x. Thus, (i), (ii), and (iii) of
the definition of WX hold. Suppose 2*: 32" -3Y! €e, ® e! and let z < x, then
there is a ¥, < y such that 27-3”%¢ ¢! and then, since 2% 32 2% 3y there
is a y. < y' such that 2°"¥%-3% ¢ ¢,. Thus, 2°-32"% > 2%.39=Yc ¢ @, e}
and e, ®, ele WR. Clearly, |e, ®, e!l< |e!l and |e,| < w implies |e, ®, e!|<
|e,| < w and from these (c), (b), and (d) follow.
Now for k = 1 consider n = 2. Note first that

e, ® e, = {(2"- 32y'3yl, 2): ze (e, ®, e,(2+ %)) and (22"'3)" 3" ee)}

and thus (i) and (iii) hold. Suppose now |{(2*- 32y'3y', Z)ee, ® e}l =w, i.e.,
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le, ® e,(2°-3)| = w, and thus, by (d) for 2= n =1, we have |e,| =
lex(2°+8)| = w. Since e,e W& we have that y is unique for x, but 973”3V’ ¢
e, and hence y' is unique for 2*- 3%, Thus, 2”-3” is the unique number such
that |(e, ®, e,)(2"-32"%)| = w, and (ii) holds for e, ®, e,. By a similar type
argument, as above, (iv) holds for e, ®, e, and e, ®, e ¢ WK, Suppose now
le,| < w, then by the inductive hypothesis (b) for all z |e; ®, e,(2)| < w, and
it follows that (e, ®, e,)(z) = @ for all but finitely many z. Thus, le, ®, e,| <
w and (b) holds. Suppose |e;|=w and |e,| < «’, there is some j such that for
i < j there is a unique y; such that |e,(2" - 3”%)| = w and for any 2%+ 3” # 2¢. 3¢
for all <j, |ex2"+3)|<w. It follows readily that there are exactly j
numbers z of the form z =2°-32"*% for some i<j and y! such that
[(e, ®, €,)(2)| = w, using inductive hypothesis (d), and for all other z,
[(e, ®, e)(2)| < w. Clearly, then,

le, ® el <w:(j) +ws<le,| +w,

since w - (§) < |e,|, and (c) holds. If |e,| = w and |e,| = o, then le, ®; e,] =
o’. Conversely, suppose |e, ®, e,| = «*, then for some y, ',

I(el ®, ez)(20 : 32y.3y’) |=w= le1 ®, 32(20 : 3y) I

and by inductive hypothesis (d) |e,| = w. If |e,| <’ then |e, ®, e,l < |e,| +
w <’ by (c), contrary to hypothesis, and thus (d) holds.

Suppose the résult is true for k-1 and n=k- 1, £ where k= 2.
Consider now 2 and n = &,

e ®, el = {(2%- 32" s 2oy e e xzk)
(2, - - - 20 € (a2 3" ) @y, €l(2"- D).

Clearly, (i) and (111) hold by the inductive hypothesis. Suppose
(e, ®, e))(2%- 32" 3¥)| = w*~Y, then by definition and (d), lek(22x 3.3y =

and |ej(2%-3")| = w*"L. Consequently, by definition of WX, y is unique for x
and ' is unique for 2*-3”; thus 2”-3” is uniquely determmed by «.
Likewise, (iv) holds and ¢, ®, e/ e WX Suppose |e,| < w*, then for at most
finitely many numbers of the form 22%%7.3" |g, (27" oy -8")[=w*!, and

corresponding to each of these,
x .3y’ .37 ! x
(e, ® eD)(2"-37"") | = |ey(22™0 - 3) @, ei(2"- 3|
2(2%- 3| + k2
by (c) if |es(2"- 3”)] < w*™* or, otherwise,
|(ex ®x ed)(2*- 32" | = k™1 it |ef(2"- )| =

For all but finitely many of the numbers of the form 2*- 32y 3! , le (22x
3”")| < w*~! and consequently by (b) it follows that | (e, ®, ek)(2" 32" 3y)l <
wf™!. Thus, |e, ®; eil <w* and (b) holds. Suppose now that |e,| = w* and
lei| < w*, we wish to establish (c).

Case 1. Suppose for all numbers of the form 2*- 3, ler(2”- 3y?l < w*"!, then
for any y' |(e, ® e))(2*-32°9)| < w*™Y, since if Iek(22x 37,3y |= k" v , then
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by (c) (e, ® e(2*- 32" ) < lef(27- 3")! + k2 < Wkl and if | g,(2%" 7. 3")| <
=1 then by (b) (e, ®; e))(2*- 32%°9')| < w*"'. Thus,

k= g k-l.

|ek®kek|$w Iek|+w

Case 2. Suppose for each i< j, there is a y; such that le,;(z"-s")l = Wkt
and for 2°-3” # 2°- 3% for all i<j, then |ef(2*-3)|<w* !, Thus, since
leg| = wk, there is for every i<j a unique y; such that |(e, ® e})(2-
32Y3%) | = k=1 py inductive hypothesis (d). For any number 2% 323’
different from 2¢-32"°% for all i< j, we have |(e; ®; ef)(2%- 32" s’ )< wh?
by the argument given in Case 1 above. Consequently, |e, ®,ef| <w*~*-
G+1) +wf < |ef| + c_vk'l. Thus, (c) holds. Clearly, |ey| = w*and |e}| =
implies |e, & ef| = w* and (d) follows from this, (b) and (c).

Suppose the result is true for k- 1andz=%k- 1, kand for kand n =k
and consider n = k + 1, then

y!
er B e = (273770 fz, Yoy Zhp):
(22, - + + Zr) € (€x(22 - 37") @p-1(er @ €1 (27 3))))
Clearly, (i) and (111) hold by our inductive hypothes1s Suppose now
l(ee®s exsr) (2% 32737 =wk then we have |e,(22%37- 3) | = w*™? , le, ® epq,(2%-

3)| = w* by our inductive hypotheses (d), and, hence also, lekl = |ep (27
)| = wk. Hence, y is uniquely determined by x and y'is uniquely deter-
mined by 2*-3”. Hence, 2”-3” is uniquely determined by x, and (iii) holds.
Suppose z < x, then there is a y, < y such that |e,.,(2%- 3"")| w*, and there
is a y, < y' such that | ,(22*%"%-3%)| = w*"'. Thus,

|(ex @ exs) (27377 | = 122" ) @,
(e, ® €x41)27-39)) | = wt

by our inductive hypothesis (d), and (iv) holds. Suppose |e;| < w¥, then by
our inductive hypothesis (b), for every 2°-3” |e; ®; €p4.(2"- 3y)| < wk,
Moreover, there are at most finitely many numbers of the form 2*- 32" -3
such that Iek(22x‘3y 3yl)| ! and for each of these we have

.3 y
(e, ® ekﬂ)(z"-sz“ ) = 2" 3”) ®pesley & (23]
lek ® €1+1(2° F) | + WF T < wh

N1

by our inductive hypotheses (c). For all' other numbers of the form
9% . 323" , we have |ey(22°%7-3”)| < w*™! and thus |(e; & ek.,.l)(2” 3273y | <

w*™! by our inductive hypothesis (b). Thus, |e, ®4, €01 < wk. Suppose
now for (c) that |ey| = wk and |epy, | < w***

Case 1. Suppose for all 2%+ 3" | g;4,(2°+ 3") | < w*, then
3y oyl , -
len(227% - 3") @poi(er @ (2 PN | < leg @ aa(2-3) |+ *

if 127+ 8”)| = w*™! and e, @ epru(2” y3 N < |epa(2- ) | + 0! by (c)
since |ex| = k, Thus, |(e ® €p41)(2%- 3273 )|<w if le,e(zz 37,3y =
It |,(227-3")| < wk™", then by (b) |(e; ® exse)(2%- 3737)| < k™. Thus,

le]e ®p €k+1| <wk< Iek+1| + wk,
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Case 2 Suppose there is a number j such that for all ¢ <j, there is a y;
such that | e,4,(2° - 8"%)| = wkand for 273" # 2° - 3% for alli<j, lepa (27 8)I<
w*. There exists exactly ( + 1) numbers 2¢-32”93% guch that Iek(22’ 3y' .
3%)| = w*™! for some i<j and, consequently, l(ek ® €,41)(2° - 32Y3%) | =

for all i <j. For any number 2*- 32 o' # 25 32 % for all i<j ek+1(2 3 )<
wk and, consequently, as in Case 1, |(e, ®, ek+1)(2" 32%-3")| < wk. Thus,

ler @ pr] <k (5 + 1) + wE< ey, | + wh.
Thus, (c) holds for e, ® e,,. Suppose lepl = w* and |epq,l = , then it
readily follows that |e, ®; exy.| = w*** and (d) results from th1s, (b) and (c).
This completes the entire lemma. Q.E.D.

The above result can be used to establish the following main result
concerning ®;, which is fundamental to this paper.

Theorem 2.1 Ifk=>1and |e,| <w! wheve O<j<k, then |e, ®pe,| <w' for
n=korn==~k+1.

Proof: By induction, consider k= 1. Suppose |e,| < w, then by the previous
Lemma |e; ®, el <wand |e, ®, e,/ <w. If e,/ <w®=1, then |e,| = O and
thus |e, ®, e!l=0and |e, ® e,/ = 0.

Let =2 and suppose the result is true for all s<k and n=s5 or
n=s + 1. Consider first n=k, i.e., e, ®,¢;. Suppose |er| <w’ for j<k.

Case 1 Suppose j=k, then |ey/ <w* which implies by the preceding
lemma (b) that |e, ®e,| < wk =w'.

Case 2 Suppose j < k, then for at most finitely many x, v, wl >|e2"-3")]=
w’™" and for all but finitely many «, y, | €(2"-8)| <w/™'. Thus,

, _
(e @ e (2737 ) | = | (277 3") @4, €f(2™- 3) | <w™
for all but finitely many 2"-3%, y', sincej - 1< k-1 and our inductive

hypothesis. Suppose now w’™' < [¢,(223".3Y")| < w/, then since j< % - 1 by
the inductive hypothesis,
ley(22°% - 87") @, (27 )| < wi
where this can occur at most for finitely many 2°-3” y'. Thus, le; & erl <
w’,
Suppose the result is true for ¢, @, e;, consider now e, ® e;+, where
lerl < w for some j < k.

Case 1 Suppose j = k, then the result follows from the preceding Lemma,
e., lek ®kek+ll < wk,

Case 2 Suppose j < k and |,/ <w/. For at most flmtely many %, y, o' ™!
| ey(2% - 3y)|<w’ and for all other x, v, | (2"- 3y)|<w’ . Suppose w’”!
ley(223- 3")| < W, then

(e, ® €p0)(2% 3% )| = le, (2737 37) @4, (&, @ pa(2%-3)) | < 0!

<
<

by our inductive hypothesis since j<k -1 and ¢, ®, ek+1(2x-3y )eWkR, and
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this happens for at most finitely many 2*- 3237 If [gy(2297- 3")| < @™}
then

(e @ i) (2- 372 )| = 1,27 3") @, (€ @) 40,(2%F)) | <wi™

by our inductive hypothesis since j - 1<k - 1 and ¢, ®, ¢,,,(2°-3") e W{.
Thus |e, ®; el <w'. Q.E.D.

Note that we can define e, ®, e, for any n > &k + 1 by

er ®pen = ((€, ® er1) ®pyy €pys) . . . ®yy €,

where lefy,|=w*™, ... le/_,|=w"' andele WRfor i=k+1,...,n-1.
3 The construction of well-ovdevings of detevymined type Below H,,
Hy.2, - -+, Houn, . . . are certain fixed hyperarithmetic sets determined by
ae0, e.g., H,=H, where |a|=w and ae0, chosen so that we know |a;|
“‘effectively’’ (this certainly can be done up through gy). W refers to the
set of all indices of recursive well-orderings as in [10]. W, and Wg‘ refer
to sets of all indices of those well-orderings recursive and recursive in A
defined in section 2.

Lemma 3.1 For any x, we can effectively find e.(k) € W, such that

|ex(B)| < wk if xe Q@R
lec(B)| = wk if xe OGR),

Proof: xeO®® = Ex, Vy, ...Ex Vy, R(x, x4, 1, . . ., %, %), with R re-
cursive. Thus, xf Ok = ‘\7’xlEy1 ... V5EY, 1R(x, %1, . . ., %, 3) and, by
Lemma 2.2,

x¢ 00 = vy Ely, ... VGEly, S(x, %1, . . ., %, W)

By Lemma 2.4, take ex = e5, where S, = S(x, x,, . . ., %, ), then |e.| < w®
and |e,| = w* iff x¢ 0P,

For the following we modify Kleene’s T-predicate of [2] so that
T‘A(x y,2,n) iff TA(x 9,2) and only questions of the form ae A for (a), <n
are asked of the oracle. Then 1t follows that for a’'=3-5%0 EzTH“’(x y,2) =
.EnEzTH“’(x Y, 2,n) = EnEle %(x, v, 2, n) where Hg = {w: (w), < na(w)ge
H,,(w)} Clearly H,, <, Hay and He < Hg, usmg Lemma 3 [4]. Consequently,
for a primitive recursive ¢(x n) (Ez)T’l'I w(x,9,2,n) = (Ez)T1 “n(p(x,n), v, 2).
Thus, EzTH"’(x y,2) = EnEzTH “n(p(x, 1), y,z) In particular,

(2) 1T (w, y, 2) = (0)(2) 1T (g (x, ), v, 2).

Lemma 3.2 For any x, aeQ, |al =w, then we can effectively find e.(a) e W
such that

leda) | < w? if xe Ha
leda)| = w® if x¢ H,.

Proof: Choose ae 0 such that H,, = 0@ For each n,
E2T}(¢(x, ), x, 2) = (E2) T (4(x, m), x, 2) = glx,m) e O@",
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for a primitive recursive g(x,n). Let e, = eg(x,n)(n) of Lemma 3.1. Con-
sequently, xeH, iff for some 7, |e,| <w”. Define s; € W inductively as
follows: s, =e), ..., S;;1=5; ®;€;4;. Finally, let

ex(@) =Sy, 83 ..., Spy ... = U{{z}x it

ordered by first coordinates first and then as in s;}.

Suppose x € Hg, then let j be the smallest i such that |e;| < w?. By Lemma
2. 5 'S, 1, w] 1,

Isjl=lsj- @ il < lej] + 0™ <o,
Thus, |s;l=[s; ®e;1,1< w’ and by Theorem 2.1 for all & >j, |s,| < w’.
Thus, |e.(a)| = iz: Isi| < /. 1f x¢H, then for all n, |e.| = w”. Con-
sequently, by Lemma 2.5, |s,| = w” for all #. Thus, |e(a)| = w® Q.E.D.

Let e; € W then xee; —(Ez)T,w(e, 1, ¥,2) and xfe; —(Ez)Tl“’(e, 2, %, 2).
Thus, x€¢e; = ‘v’z q7He (€i,2,%,2) = ¢le; 2, %) € H.. For eachn > 1, let e,(x) be
the elements of W, associated with the question ¢(e; 2, ¥) € H{ by Lemma ii._l
(as in the proof of Lemma 3.2), i.e., for all n, |en(x) | = w” iff ¢(e;, 5, x) € H,
iff xee;. Consider the question ye Hw, as above prior to Lemma 3. 2
yeH, = EnEz Than(¢(y, n), y,2). Let |a,| = 2n for n> 1, then

yeH, = EnEz19%(p(y, m), y, 2) = g(y,n) € O+ = f(y, n) e 02"V,

Moreover, it is evident that we can assume g(y,n) e O™t — g(y,n + 1) €
0*" 1 Consequently, by Lemma 2.4 we can effectively find @,,,(3) € W,
(n=>1) such that yeHi iff En(|a,,(9)]=w"™) iff ERm(n =k — g,y |=
w™), i.e., y£HY iff Va(la,,(9) | < ™).

Now we define the basic construction. Given e, € WP“’, an X and a ¥, we
find recursively the sequences e,(¥) for n=1 and a,.,(y) for n=1, as
above. By S(¥)/ap1:(y), we mean the element of W constructed as in Lemma
3.2 from the sequence

el(x), e2(x)’ oo ey ak+1(y) ®k+1 ek+1(x)’ ek+2(x)’ LR

Hence, if for some i < k + 1, le;(#)| < w’ then [|s(%)/ap(¥)] < 0’ by
Theorem 2.1. If |ag(»)]| < w*™ or |lepn(x)| < o**, then |ay4(y) ®pnr
ep(®) | < w**™' by Lemma 2.5, and by Theorem 2.1, |s(%)/@,.(y)|<w**.
If the smallest i such that |e;(x)| < w? is larger than k2 + 1 and |a,4,(y)| =
wF* then |s(x)/ap+,(%) | < w?. Define

0(x,9) = s(x)/ax(y), s(x)/as(y), . . ., s(x)/4:(9),
i.e., the effective sum of these well-orderings. It has these properties:

(1) 16(x,9) ] =", if ye H;, and x¢€ Ha,,

(2) lo(x, y)l< w® if y¢ HY, and xe€ H.;

(3) lo(x,9)| < 0™, if x¢HL and ¢ is the smallest number such that
lej(x) | < w?

For any epe W,, 0(x, y)/e,f,; is the above except that we replace e (x)
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everywhere by ej ®e,(x). Thus, if |ef| <wk then |6(x,y)/el]l < w**" as in

(3) above. If |el| = w*, then (1), (2) and (3) indicate the size of lo(x, y)/ek.

Similarly, for 6(x,y)/es/ej where ej€ Wy, ef € W;, le/| <w’ implies |6(x,y)/
ei/efl <w'™.

Theorem 3.1 (a) For every e; ¢ W © we can effectively find e} ¢ W such that

leX| < w? - |e;| and le; | = ! zmplzes le}| = 0t wf = W@t

(b) For every e;€ W"‘“ ‘" we can effectively find e¥e W such that |e¥|<

w2 e | and le;| = wi zmplzes [ef| = W@t i = @ nHitt

Proof: For part (a), we define e} by induction on i. First let o(j) = jth
element of the form 2*-3” such that O <x <y and so that for all j, o(j) <
o(j + 1), (the range of ¢ is by definition the candidates for elements of any
ee W4, Define e* to be the effective sum in W of 6(c(0), ¥(0)), . . .,
6(o(n), y(n)), . . . where

y(n) € Ho = o(n) e e a(E2)(z > a(n)rz e ey).

If le,| =0, then |6(o(x), y(x))| < w® by (3) above and |ef|<w?® If |e,|=w,
then for each x € e,, y(n) e Hi, and |6(c(n), (7)) | = 0t by (1) where o(n) = x.
If |e,| # O, finite, then |0(c(x), y(x))| < w® for the largest x such that o(x) € e,
since y(n) ¢ He, and by (2), and for all & > x, |6(c(®), (k)| < w® by (3). Thus,
le¥| < w?t-|e,l. Suppose a(i) € W;4, for each i, by (e;/a(i))*, we mean

8(f(0), ¥(0))/ a(O) ., 8(f(n), y(n))/an),

so that if for all i, la(i | <w’ ‘, then for each n, |6(f(n), y(n))/a(x)| < w®,
and, hence, [(e,/a(i))*| <w® Similarly, for a fixed e € W},

(ey/ali)/ep)* = ((6(f(0), ¥(0))/ef)/a(O)*, . . ., (6(fn), y(m))/er/am)*, . . .,

so that if |e;] < w*, then |(e/a(3)/e)*| < w*
Suppose now we have defined for all e; € Wz ) e¥, (ei/a(f)*, (ei/a(j)/ex)*
as above, such that the following properties are obtained:

(i) If le;l = O, then |ef|<w® |(e;/a(h))*| <w® and |(e;/a(j)/ei)*| < w®.
(i) If lei] = w?, then |e}| = w®™ W'
(iii) If, for all j, la()| < w/™**, then |(e;/a(j))*| <w® and |(e;/a(j)/e})* | < w®

(iv) If, for some %, |a(k)|=w**" (and for all j > &, |a(j)| = w/*'), and |e;] =
w?, then |(e;/a(j))*| = w®**-w?,

(v) 1 |ekl <w*, then |(e;/a(j)/el)*| < b+,

(vi) If lepl=w*, leilfwi, for all j=k, |la(j)|=w/™ for some k, then
e;/a(j)/ep)*| = Wt - wt.
[(e;/a(j)/en)*| = ' - 0!

(vii) If O # le;| <w?, then |e} [< w®* -le; |, I(e;/a(iD* | < w“*' < |e; |, and [(e;/
a(j)/ep)*| < ot - le; .

Now define (e;4,)* for e;4, € W,ﬁff as follows: For each n, let

y(n) € HY) = (E2)(z € ;4,(0(n))) A (E2)(Ex)(x > naz € e;4,(0(x)).
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Let y(n)(j) € Wj4, such that
y(n) e Ho = (BR)G)G = & — [ym) (i) | = ™).
Let a(j) be similar except
ERG(G =k — la(i)| = w™) = (E2)(z € €;41) = EZEx(z € e;4,(0(x)).
el = (€;,41(0(0))/9(0)(1)/a(0)*, . . ., (ein(o(m)/y(m)(D/alm)*, . . .
(the effective sum in W).

Similarly,

(ei+1/5()* = (ei+.1(a(0))/((0)(5)/al0) &, b(0))*, . . .,
(e;41(a(n)/y(m)(j)/aln) ®pss D(M)*, . . .,

and

(ei1/b()/e)* = (€:4.(c(0))/¥(0)(j)/a(n) ® 4, b(n)/eD)*, . . .,
(ei(a(n))/y(n)(5)/a(n) ®pts (B(n))/er)*, . . ..

Suppose |e;4; /= O, then for each n, |a(n)|<w"*, a(n)e W,,, con-
sequently, by (v) |le;4.(c(x))/y(n)(j)/alx)| < w® and, thus, |ef4,| <w® Suppose
now |e;1,]#0, and suppose |e;y;|=w'*", then for infinitely many #,
leis(0(n) | = wi, and given such n, y(n) e H., and consequently, |y(@)(j)| = w'*
for all j >k for some k. Hence, by (vi), if also » is sufficiently large so
that |a(n) |= 0",

[(ei41(0(n))/v(m) () /a(m)*| = 0°* - e;s(0(n)) | = W - 0P,
Thus,

@+1

letil= ™,

.wi).w= ww+1,w
Now to show |ef,|<w®*-|e;4,l, it is clear that |e;4, | =:€z_2 le;4:(a(n) .

Supposé for some k |e;,(0(f))| =0 for allj > k. Let &, be the largest
number such that |e;+,(o(k1))| # O, then y(k,) ¢ Hi, and therefore |y(k)()|<
w/** for all j. Consequently,

[(e(o(R) /(R () / al k) * | < 0
by (iii) and also
[(e(o(n))/y(m)(5)/a(n))*| < w®, for n = k,
letnl =;L;z | (ei41(0(7))/v(m) (j)/ al3))*

< (Kz}'l Wt e;4(0()) D+ W’ w< Wt (K%-l le;r(a() ) + 1)

< w®t-le;q, ], (since |ej4.(k)| # 0).
If there is no % such that for all j = &, |e;4,(0(j))| = O, then

letil = 22 (esai(o(®)/y(n)(G)/a(m)*|
< ':Lz)w“’“ ‘(1 + lezlom ) <20 (1 + e;4.(0(n))

= @?H. Iei+ll.
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By similar arguments the other conditions (i)-(vii) can be checked at 7 + 1.
This verifies part (a).

The procedure is completely analogous for H.;, He.s, . ... For
example, given a question x € H;,.,, we find effectively e,(x) € wHo-1 guch that
for all n, |e,(x)| = w” iff x € H),. Define s,(x) = e,(x), . . ., S;4:(%) = 8; (%) ®;ps
e;(x), . .., and define e, = (s,(x))*, . . ., (s,(x))*, . .. effective sum in W
of those well-orderings constructed in part (a). If |e;(x)| < w’ for some i,
then |s,(x)| < w? for all », and, hence,

lexl = 22 1(su(x))*] < 25 &+ < (1 +] s4(%) ] sw“’“-zz) [1+ 5,(%) ]

< <.‘.,w+1 _w; - w&)+t+1.

This gives the basic construction for the W,!'| @2 argument. Thus, (b) holds
by induction. Q.E.D.

This technique yields the following result:

Theorem 3.2 Let n =1, then theve is an effective procedure to find e.e W
such that
lexl = w® ™ if xe HY .y
lex| < w??if x e HL..,.
Corollary 3.1 Let k =1, then theve is an effective procedure to jinu exe W
such that
lex| = w® ™tk if x e HEEE!
lex| < w mkif x e H2L,

Proof: xe HEL iff (x)Ey, . . . (x)E(2) R(x, %1, ¥y, . . ., Xk, V¥, 2), With R
recursive in Hy,.,. By the techniques of section 2 we can find S, a set of
k-tuples of N such that for recursive f, (x,, . . ., %) € Spiff flx;, . . ., %) €

HS.,, since the set Hi., is a complete set for predicates VzR with R
recursive in Hy., and |S,| = wk iff xe HEX! Let e, = the effective sum of
€/(x,...,xp) Such that (x,, . . ., %) € N* ordered first by (x,, . . ., x;) and next
as in e/(x,,...,x,), there es(x, ...,x,) is obtained as in Theorem 3.1. Clearly,
if |Skl = wk, then |ex| = W™ w* = W *** If |Si| < w*, then since w®”is a
principle number for addition it follows easily that |e.| < w®".w* = @tk

Q.E.D.

The following result generalizes a result of [8] originally noticed by
S. Tennenbaum.

Lemma 3.3 For any set A, {x}A(x) grows fastevr than any function recursive
in A,

Proof: By grows faster we mean there is no function f recursive in A such
that whenever {¥}*(x) is defined {x}*(x) < f(x). If F(x) were such a function,
take e to be a Gddel number of f(x) + 1 in A, then {e}*(e) = fle) + 1 < fle),
a contradiction.

Now we show Theorem 1.2 (b) is best possible. Namely, we construct
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a€0 such that |a| = w**® such that there is no function f recursive in 0%
such that a; < wkt. f(@) for all . Consider T?“”(x, x,w) by Post’s Theorem
and Lemma 2.2 this is equivalent to (E!2)(x,)(E!y,) . .. (g)(E!y) R(x, w, 2,
%1, . . ., ) With R recursive. Noting that T?(Zk (x,x,w) true implies w is
unique, consider for each number 2 - 3*

(xl)(E!yl) RO (xk)(E'yk) R(x’ W, 2, Xy, ... xk)-

By Lemma 2.4, find e, (2”-3% x)e W, such that |ey(2”-3%x)| = w® iff
(%) (Ely) ... (%) (Ely) Rx, w, 2, x,, . . ., 5). Let e(2”-3% x)e W be w-
copies of (2" - 3% x), and let e(x) e W be the effective sum over e(2” - 3°, x)
for all possible w, z ordered first by 2” - 3 next as in e(2” - 3%, x). Clearly,
le(x)| < w*, if 1(Ew) TO®¥)(x, x,w). However, if EwT%®(x,x,w), then w*.
{x}o(”)(x) < le(x)| < w**'. Let a(¢) €O be found as in [5] Theorem 1 such
that |a;l = w +|1 + e(d)|. Let ap = a(0), ..., a;4; = a; +oa(i), clearly, |3-5% =
w**? and for all 4, w** - {{}9®®(;) < |g;|. Consequently, by Lemma 3.3 a' =
3.5 0% p1 where |b;|=w**'-i. Thus, by Theorem 1.1, H, #0** H,,,
but by Theorem 1.2 (b) Hy isomorphic to H, by function recursive in
0'%*+) | Thus, Theorem 1.2 (b) is the best possible result.

In order to show that Theorem 1.2 (a) at |a'| = w® is necessary, we
first build |a(k)’| = w® such that a(k); grows more rapidly to w® than w/® for
any function f recursive in 0 As in the previous sections, obtain for
each x, ¢,(2 3% x)e W, if w >k, let ¢ ,(2"- 3% x) = (2" 3% x) & ew
where e, € Wy, and |eu| = w¥ and if w £ &, €,,(2%- 3% x) = (2" 3% x). Let
e(x) e W be the effective sum of e, (2 - 3%, %) for all w, z. If EwT Q(Zk)(x, x, W),
then w?< |e(x)| < w® since for all 2“-3" except one |, (2%-3% x)| < w*
while | e (2" 3% x)| = w* for some z if TP®¥)(x, x,w), by Theorem 2.1. If
TEwT9®**(x, x,w), then |e(x)| < w* by Theorem 2.1. By Theorem 1 [5], let
c(k); € 0 such that |c(B);| = w - |1 + e(i)|. Define a(k)’ = 3-5%*) so that a(k)o =
c(R)o and a(k);.1 = a(k); +oc(k);y,. Clearly, a(k)’ grows faster to w® than
w/® for any f recursive on 0%, Finally, define

ap = a(l)y, . . ., @ix1 = @; +0(@(1) i1 +0a(2)i41 + . . . +0a(E + 1);44).
Clearly, la'| = [3-5°% = w® and a' ¢ O b' if b’'e 0 and |b; | = w* (suppose
a' < b' via f recursive in ok just choose an index e for f larger than &,
then {€}°®(e) < la(k).| < w/*® a contradiction). Thus, by Theorem 1.1,
Ha £9C% H,, for any k but by Theorem 1.2 (a) H, and H,; are isomorphic
by a permutation of N recursive in H,,.

A similar argument works for building a'e 0 such that |a'| = w
(¢ # O) such that a; grows faster to |a'| than does w®™**~Y .f(i) for any
function f recursive in Hy.n+2:-1. Since for k2 = 2,

wen+k

H -
T 1w.n+zk Yx, %, w) = Elz(x,)(E!y)(x,) R(x, w, 2, %1, 3, %)

with R recursive in Ho.s. By Corollary 3.1 we find e, € W such that w®"**.
w < eyl <w® " if T?a@n(x,x, w), and |ey| < w®™*!, otherwise. Let c; €0
such that l¢jl=w-|1+e;] by Theorem 1 in [5], then w® " -w < |¢;]<
w? "t if T';It(us-’n(i,i,W) and |c; | < w®”*, otherwise. Letao=co, . . ., @Gj4 =
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@ +oCiyy and a' = 3-5% Clearly, |a'|=w®"* and a' ¢ S, 0", if |b;]=
w® " .{, By Theorem 1.1 and 1.2, H, #'I‘éf)n Hy but Hy and Hp, are
isomorphic by a permutation of N recursive in HY,. Similarly, for H.,
being necessary for showing H, and H,, isomorphic if |a'| = ['] = 0"

These results are summarized by the following theorem.

Theorem 3.3 For all B<u? |a'l= |b'|=wPf, the H. determined as in
Theorem 1.2 is the smallest level possible in the hyperavithmetic hievarchy
in order to have all H, and Hy isomovbhic, using functions vecursive in H..
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