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RECURSIVE AND RECURSIVELY ENUMERABLE MANIFOLDS. Π

VLADETA VUCKOVΊC

CHAPTER IV-MORPHISMS, TYPES AND TYPE-DEGREES

The most unpleasant feature of the Theory of REM's is that composi-
tions of recursive maps are not necessarily recursive. I shall remedy this
situation by considering some more restricted recursive maps, morphisms.
Obviously, morphisms will reduce to classical recursive maps in case we
consider enumerated sets only. My aim in this chapter* is to start a
classification of REM's using maps, more exactly: morphisms, between
pairs of REM's. Here, I have no analogy with the classical enumeration
theory to follow: the content of Chapter III is sufficient for classification of
enumerated sets; however, it is useless for comparison of atlases on
disjoint sets, and for classification of REM's.

By <A,«I>, <£,»>, <C,®>, I denote REM's, with usual notation for
atlases: W = {ap\pe P}, W = {βq\qe Q}9 <£ = {γr\reR}, . . .. Also I write
Ap, Bq, Cr, . . ., for respective ranges of ap, βq, γr, . . .. Sometimes I shall
use the REM (M, 9W), with 9W = {μ, I te T] and Mt = range of μ,. To shorten
these notations, I shall write a, b, c, . . ., m for REM's (A, SI), <£,«),
(C, <£>, . . ., (M, 3W> respectively.

Definition 4.1 (i) A map /: A -» B is compact iff, for every qe Q, f~ι{Bq)
can be covered by finite many Ap's.
(ii) θM-*S-)recursive and compact maps are called morphisms; and in-
morphisms, surmorphisms, and bimorphisms in case they are injective,
surjective, and bijective respectively.
(iii) A morphism f: A—> B, such that each/ M in (1.6) is injective, is called
a unimorphism.

Lemma 4.1 Composition of morphisms is a morphism.

*The first part of this paper appeared in Notre Dame Journal of Formal Logic, vol.
XVIII (1977), pp. 265-291.
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Proof: Let /: A -» B and g: B -> C be morphisms, and let /z = g°f: A -> C.
We have to prove: for every pair (p, r)eP xR there is a p.r. function/^,
with domain Dp>r = otp\f ~ι{Cr)) and such that

(4.1) HctpW) = γΛfp,rW) for al ine D f f f .

(The fact that ^"^Cr) can be covered by finite many Ap's is trivial.)

Suppose that {Bqv . . ., Bqm} covers ^"^Cr), and let fPtq., i = 1, . . ., m, be

partial recursive with

cΓ'CΓ^n^c,)))

as domain, and such that

A<*p(n)) = βqi{fp.qi(n)) for w e D ^ . .

Also, let fq.,r, i= 1, . . ., *w, be partial recursive, with β~q\(g~\Cr)) as

domain, and such that

g{βqi(n)) = γr(fqi,r(n)) for weD/^ .

Since (see Figure 4.1)

I ^NA-. Vis

\fp.qm — / /jim>r

^ AT

Figure 4.1
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h(ap(n)) = g{f(ap(n))) = g(βqi(fMi(n))) for ne Dfp ̂  ,

i.e.,

h(ap(n)) = y^/ M ί (/*,->))) for n c D ^ ,

we can define a p.r. function /p>r such that fp,r{n) takes one of possible
values fp>qi(fqi,r(n)) (for i - 1, . . ., m); then, (4.1) will hold, and the domain
of fp,r will be just as required.

I shall use morphisms for comparison of REM's. From the definition
of a recursively enumerable manifold it should be obvious that the cardinal
of its carrier plays a definitive role in its behavior. I shall now make this
role manifest.

Definition 4.2 (i) a is weaker (l-weaker) than b, in symbol a < b (a ^ b) iff
there is a morphism (unimorphism) /: A —» B.

(ii) a = b (a = b) iff a < b Λb ̂  a (a < b Λb ^ a).
v ' W v W - l W W v W - l W - l

One could call equivalence classes under = (respectively ^ degrees;
I prefer the name types (respectively 1-types). By [α]w ([α]W-i) I shall
denote the type (the 1-type) containing a.

Theorem 4.1 (i) The IRM n = (N, {l}), where I is the identity on N, has the
smallest type among all REM's.
(ii) A genuine REM a = (A, 21) is in the type [n]w iff 21 is finite.
(iii) The IRM a' - (N, 2ίf), where 2Γ = {allieN}, ot\(n) = σ2(i, «), has the
smallest type among all genuine REM's with at least denumerable atlases.

Proof: (i) If a = (A, 21) is any REM, fix pe P and set / = ap: N-* A. Then/
is a morphism of n into a, i.e., n ̂  a.
(ii) Suppose now that a < n and let /: A -* AT be a morphism. Then A = f"1(N)
can be covered by finite many Apfs, i.e., 21 must be finite.
(iii) If b = (B, Φ), where 3$ = {βi\ie N}, is genuine, then, for each ie N, there

M
is at least one b{ e B such that b{ e B{ - \^. Bj. (Bι = range of βt .) Define

j = 0

f: N-* B by /(α/(w)) = 6t for all neiNΓ. / is, trivially, recursive. Also,
f~1(Bi(=f"1({bi})=At

i; thus, / is a morphism. Similarly for larger
cardinalities of *3.
Theorem 4.2 Lέ^ ̂ 0 < A < S. T/ẑ w ẑ ^ can construct REM's (ez ew IRM's)
a = (A,n) and b = (B,«) swc/z taαf [a]w < [b]w.

Proof: We may suppose 4̂ c B. het Bo Φ Abe any denumerable subset of A
and let β0 be an indexing of JB0. Let P = B - J50. To every pe P correspond
the indexing βp: N-* Bo u {p} defined by βp(n) = p for » = 0, and β?(») =
βo(^ - 1) for w ̂  1. (See Example 1.1.) Let Po = A - Bo. Set a = (A, 21) and
b = <£,«), where 2( = {βp\pe Po] and^ = {β^lpe P}. Then IA> the identity on
A, is a morphism of A into £. However, there can be no morphism
f: B —* A. To see this, remark that in case / i s a morphism, f"1(Ap) can be
covered by finite many Bps. (Ap = range of βp for pe Po.) Then, J3 = /-1(A)
would be of the same cardinality as A.
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If we look for some ways to classify REM's, Theorems 4.1 and 4.2
suggest to start with REM's of the same cardinality. For genuine REM's,
this implies (except in the most trivial case of finite atlases) that the
atlases have to be of the same cardinality too; thus, we may assume that
the enumerations in all atlases we consider are indexed by the same set of
indices. Therefore, from now on, I suppose that a, b, c, . . ., are such that
*={ap\peP},X = iβp\peP},G = {γp\peP}, . . ..

Definition 4.3 a is reducible (1-reducible) to b, in symbol a < b (a ̂  b), iff
there is a morphism (a unimorphims) /: A —> B such that, for each/>eP,
ri(Bp) = Ap.

Defining a = b <-> a ̂  bλb ̂  a (respectively, a =x b «-> a ^ b Λ b ^ a),
we call the equivalence classes under = (respectively =x) type-degrees
(respectively type-one-degrees), in short TD's (respectively TOD's). [a]
will denote the TD containing a, and [a]x will denote the TOD containing a.

Since a < b (a ̂  b) implies f(Ap) <^BP, and / is $1-SB-recursive, to
every pe P corresponds a recursive (and injective) function fp: N—>N, such
that

(4.2) f(ap(n)) = βp(fp(n)), for all ne N.

Thus, if A = /(A), ap = f°ap and $ϊ = $p\pe P}, we have:

Lemma 4.2 a ^ b implies that (a) = (A, S) is an REM, which is effectively a
submanifold of b. Thus, the atlas 21 is strongly reducible to the atlases.

Proof: άp(ή) = βp(fp(n)). Suppose that Bp Π BPl Φ φ and let gPtP be partial
recursive and such that

βp(n) = βPι(SP,Pl(n)) for all ne βp\BPι).

Then

ap(n) = βPl(gp>Pl(fP(n))) for all ne (oipΓ'iBpJ,

which shows that (a) is an REM. The remaining part of the proof is the
matter of definitions (see remarks after Lemma 2.1, and the Definition 3.3).

Lemma 4.3 Duplication of an REM does not change its TD.

Proof: /and f1 from Theorem 2.1 are morphisms, satisfying f'1(Bp) = Ap

andCΓT'CV =BP.

Theorem 4.3 The class [ϋ] of all TD's (of one fixed type) is an upper

semi-lattice.

Proof: Consider two REM's a and b of two TD's [a] and [b]. We may
suppose that An B = φ (Lemma 4.3). Define: C = A\J B, γp(2n) = ap(n) and

Ύp(2n + 1) = βp(n); set <S = {Ύp \p e P} and C = (C, <£>. Now, /: A - C, defined
by f(x) = x, satisfies f(ap(n)) = γp(2n) and/'^C^) = Ap, stnάg: B-+ C, defined
by g(x) = x, satisfies g(βp(n)) = γp(2n + 1) and g~ι{Cp) = Bp. Therefore, both
are morphisms, and we obtain a ^ c and b ̂  c. Suppose ό = (D, Φ),
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Φ - {δρ\p e P}> satisfies a ̂  d and b ̂  d. If hi: A —» D is a morphism, such
that h^1 (Dp) = Ap, and if h2: B —> D is another morphism, such that hΊι{Dp) =
5p, let /z: C — D be defined by

h(x)~ ίhiWίorxeΛ>
W ~ \h2(x)ϊovxeB.

h is a morphism, as is easily checked. Since h~1(Dp) = Cp, we obtain c ̂  d,
i.e., [c] is the least upper bound of [a] and [b].

Remark: [c] from the foregoing proof will be denoted by [a] v [b].

To the REM a = {A, %) we correspond its cylίndrifίcation acyι =
(A, Cyl^), where Cyl^is the cylindrification of % (see Definition 3.4). In
order to avoid confusion with notations for duplication of REM's, we shall
use the following notation for cylindrification:

Cyl* = % = Φp\ρ e P}, where &p(σ2(n, m)) = ap(m).

Consider the identity IΛ on A as a map of a c y ! into a. Since

\A(apW) = \A(ap(σ2

2(n))) = ap(σ2

2(n))

IΛ is a morphism of acyι onto a, i.e., acyι ^ a. From the other side, as a
map of a into ac yι, IΛ is a unimorphism, since

\A(a (n)) =3(σ2(0, n)).

Thus a <! a c yι.

Lemma 4.4 (i) a ̂ ! acyι and acyι ^ a;
(ii) b' < a implies b ̂ x a c y i;
(iii) b < a <r^ b c y, ^ a c y ! .

Proof: (i) was proved above, (ii) If /: B —» A is a morphism satisfying
f"1(Ap) = Bp, let each/p be recursive and such that/(β^(n)) = ap(fp(n)). Then,
f(βρM) - ap(<J2(n, fp{n))), which proves t h a t / a unimorphism of b into a, such
that f'1(Ap) = Bp. (iii) is now obvious (see the proof of Lemma 3.1).

Theorem 4.4 Every TD contains a maximal TOD.

Proof: Lemma 4.4 and a reasoning similar to the one of the proof of
Theorem 3.6.

Example 4.1 Let us consider TD's of all genuine denumerable REM's, with
denumerable atlases. We set P = N, and by A{ we denote the range of α, .

Let a' be as in Theorem 4.1 (iii). If a ̂  a r and /: A — Ar = U A/(= N)
i = 0

is a morphism, such that f"ι(A'i) = ̂  (A\ = range of α/), then we must have
i Φ j —* A{ Π Aj = 0. (Otherwise, if x e A{ ΓΊ Aj and x = a^n) and x = oij(m),
f will have to send x into two disjoint sets A\ and Aj). Suppose now that a
satisfies iΦj-* At Π Aj = 0. Define /: Af -* A by f(aj(n)) = αf (w). This
gives a' ̂ i a, i.e., we have
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(i) TD [af] consists exactly of all a such that i Φ j -* Ai π Aj Φ 0.

To measure the complexity of other REM's in our family, to every
a = {A, 31), 3Ϊ = (a* U e JV) correspond its measure of complexity Fa: A —» 2Nby

Fa(#) = {f e ΛΓ| # e A, } for * € A.

For example, if a e [af] then Fa(x) = {i} for xe Ai. We have

(ii) / / / : A —> B is α morphism satisfying f'1(Bi) = A{ for every ie N, then
Fa = Fbof.

To prove (ii) remark that f~ι{Bi) = A{ implies

Fa(x) = {i eNlxeAi} = {i c N\f{x) e B{} = Fbof(χ),

and that Fa = Fb °f implies, for every x e A,

{i eN\x e A{} = {i e N\f(x) e B{}.

The same reasoning gives at once

(iii) For α genuine a = (A, 31), 31 = {αf \ieN}, be [a] implies that there are
morphisms f:B-+A and g: A-> B satisfying Fb = Fa °f and Fa = Fb°g.

Since there can be only at most denumerable many morphisms
f: A-> B, satisfying f~ι(Bi) = Au i.e., fiβάrd) = βάfάn)) where /,- is recur-
sive, and since there is a continuum of possible Fas, we obtain

(iv) There is α continuum of TD's of genuine denumerable REM's with
denumerable atlases; each such TD contains at most denumerable many
members.

One can relativize the foregoing notion of reducibility to submanifolds
of a fixed REM, and obtain another analogy with the notion of reducibility
for subsets of N. I shall discuss this relativization very briefly, in order
to show an important difference with the classic theory.

Suppose we have fixed the REM m = (M, 9W); we consider its effective
submanifolds a, b, c, . . ., which are such that 31 = {ap|pe p], W = {βplpeP},
<& = {γp\pe P}, . . .. Then we may say that a is ^{-reducible (respectively
Wl-l-reducible) to b, in symbol a ^ b (respectively a ^ b) iff there is an
9W-9W-recursive (and injective) morphism /: M —» M, such that, for every
p e P a n d xeA

xeAp <->/(#)e Bp.

One would expect for this reducibility the validity of MyhilΓs theorem:

if a ^ b and b ^ a then there is an 9W-9W-recursive permutation
T: M -* M of' M onto M, such that τ(Ap) = Bp for all pe P.

The following example shows that such theorem is not true even in
very elementary REM's.
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Example 4.2 Let Mo be an infinite recursive subset of N, and let H be an
infinite immune subset of N, disjoint from Mo; let μ0: N —* Mo be recursive
and increasing, with Mo as range. Let h: N —> H be increasing, with H as
range. Define μ r N —> Mo u H by μi(2n) = μo(n) and μi(2n + 1) = ft(n). Let
Mi = M 0 U # be the range of μ1# Set M = Mι and Wi = {μ0, μL}. Since
ΛfonΛf1 = Mo and μό 1(^o)=^V and μ[ι{M0) = {2n\neN\ we can conclude
easily that (M, 9W> is an IRM.

Now let a0 = μ0 and for i ^ 1

x _ ίMz - 1) for n = 0,
tt|WUo(w- D f o r n ^ l .

oθ

Let A f = range of α# , Λ = U Q A/ (= M) and % = {a{ \ ieN}. Then (A, 51) is an

IRM, which is effectively a submanifold of <M, 9W>. Let β, , z ^ 0, be defined

by βo(n) = μo(2n) and, for i > 1,

β ί n ) - l ^ o ( 2 i - D f o r w = 0 ,
1 \βo(n- D f o r w ^ l .

oo

Set Bi = range of β, , B = U β f (= Mo) and « = {j3, | f e iV}. Then <£,«> is an

IRM which is effectively a submanifold of <M, 9W>. Define/: M-* M by
/(μoW) = μo(2w), /(μi(2w)) = μo(2w) and/(μ1(2w + 1)) = μo(2w + 1); it is injec-
tive, recursive and, trivially, a morphism. Moreover,

xe Ai <-»/(#) 6 5/.

Similarly, g: M -^ M defined by

g (μo(2w)) = μo(n), g(μo(2n + 1)) = μx(2w + l),^(μi(4w)) = μ^w),
5<μi(4w + 2)) = μλ(2n + 1), ^(μi(4w + 1)) = μx(4w + 1),

and g"(μi(4w + 3)) = μi(4w + 3), is recursive, injective (and, trivially, a
morphism) such that

xe B{ <r->g{x) e A{.

Now suppose: there is a bijective, recursive τ: M-> M, such that τ(Ai) =
Bi (and τ~1(Bi) = Ai). Since A = M, we obtain τ(A) =A ΦB. Thus, such a
permutation cannot exist.

CHAPTER V-SOME GENERAL POST-LIKE CONSIDERATIONS
AND SOME SPECIAL MANIFOLDS

In this chapter I shall consider possibilities to extend notions' of
immunity, creativity and similar concepts from the classical recursive
theory to subsets of a given REM. As it will become manifest, the most
general case may be extremely empty: one can take as example an REM
for which every local neighborhood consists of one point only. Thus, in
order to be able to quote meaningful examples, I shall introduce first two
special REM's which have pleasant additional structures. Notations will be
the same as at the beginning of Chapter 4.
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Definition 5.1 An REM a = (A, 51) is finitary iff, for every poeP, the set
Po = {peP\ΛpΠ APo Φ 0} is finite.

Theorem 5.1 (Enumeration Theorem for Finitary REM's) If a is injective
and finitary then a set I C A is 5f-r.e. iff there is ψ\ P —> N such that
X = ωφ, where

(5.1) coφ = Uαp(ωφ(/,)).

Proof: If X is 51-r.e. then X = ωφ, for some ψ: P -* N, defining ωφ(/,) =
ap

ι(X). Conversely, for any poe P let Po = {pu . . ., ps], where Po is as in
Definition 5.1. Then:

s

α ; 0

1 ( ω φ ) = y α ; 0

1 o Q ; / ) . ( ω φ ( p . ) ) )

and each member of this union is r.e. Thus, ap*(ωy) is r.e. for every
p0 e P, i.e., ωφ is 5I-r.e.

Similar is the situation with 51-r.e. subsets of Am. If

ω<m) = {<Λl, . . ., nm) e Nm\ V T (£, nx, . . ., nm, y)}

(T is the well-known primitive recursive predicate in the Kleene enumera-
tion theorem), and

(5.2) ω > . . . , ^ = {{aPl(nx), . . ., aPm(nJ) \(nlf . . ., nm) e ω^}

then, in a finitary REM a = <A,«l>, a set I c / is 5(-r.e. iff there is
<p: Pm-> N such that X = ω{™\ where

(5.3) ω ^ = , U . mωpr-apw,,

and a is injective.

It is obvious that, in case a is a finitary REM, both {B, *8) from
Theorem 2.1 and the graph of a (in case a is positive, respectively solvable)
are finitary REM's. Similarly, direct products and direct sums of finitary
REM's are finitary. At last, submanifolds of finitary REM's are finitary.

Another well-behaved kind of REM's are amalgams, i.e., REM's a such
that for all pairs (p, pi) e P2 for which Ap Π APι Φ φ we have ap(n) = aPl(n) for
all ne ap

ι(Ap^} = ap*(Ap). (In case of IREM's, this reduces to: ap

1<>aPί are
identities on their domains.) I have already given an illustration for lifting
of addition and multiplication into amalgams. Let me now prove the general
theorem about such lifting.

Theorem 5.2 (Lifting of Functions in Injective Amalgams) Let the
REM a = (A, 51) be an injective amalgam and φ: Nm-> N a recursive func-
tion. For each pe P define a partial map φp: (Ap)

m —* Ap by

(5.4) <Pp(<*pM, . . ., ap(nm)) = ap(ψ(nu . . ., n j ) .

Then, each φp is an %-tyi-partial recursive map, and in case in which
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(xu ..., xm) e (Ap)
m Π (APl)

m and φp(xl9 . . ., xm) eApΠ APi or φPl(xu . . ., xm) e

Ap Π APl we have φp(xl9 . . ., xm) = φPl(xu . . ., xm).

Proof: I have to prove only the final part of the theorem. Let (xl9 . . ., xm)
and φp satisfy (xl9 . . ., xm) e (Ap)

m Π (APl)
m and φp(xl9 . . ., xm) e Ap Π APl.

Then Xi eApΠ APl for i = 1, . . ., m, and if X{ = ap(rii) then x? = aPl(n.i). Thus,
taking any such w, 's, we have

<fy(#i, . . ., # J = Ψ^oίpiapM, . . ., <fy(raj) = ap(φ(nl9 . . ., raj),

and, since ap(φ(nu . . . , wj) e Ap n A?i it equals ap^(nu . . ., raj); this gives

<fy(#i, . . ., xm) = aPl(nl9 . . ., Um))
= φpfaiM, . . ., aPl(nm)) = (p^ί*!, . . . , ^ w ) .

Thus, amalgams are REM's suitable for computational purposes. This
is not all. Let me call injective amalgams I-amalgams. Then we have

Theorem 5.3 (Lifting of Sets in I-Amalgams) Let a = (A,31) be an
\-amalgam. If E c TV is an ", . . .."-subset of N, then E& = | J (fy(£) is «n
"21-, . . .,"subset of A. PeP

Proof: Let £0 e P. Then:

< ( ^ Λ ) = Up a-pfa(E)).
PΦPQ

Since, for ne ap^(ap{E)), aPo(ri) = ap(n)9 we have ap^(ap(E)) c £, i.e., ap^(EA) =
E for all />0 e P.

As I have already said, finitary REM's and amalgams are well-suited
for construction of examples in some analogies with Post's recursive
theory. I shall illustrate this through several samples.

Definition 5.2 Let a = (A, 31) be any REM, and I C A We say that X is
"31-. . ." iff for every pep, the set a~p

ι{X) is an " . . ." subset of N.

As the first instance of Definition 5.2 let me consider the notion of
finitude. X c A is %-finite {^-infinite) iff every a~p

ι{X) is finite (infinite).
This leaves aside a large family of subsets of A which are neither 3(-finite
nor 3ί-infinite. I shall call such sets ^-indefinite.

Theorem 5.4 Let a = (A, 31) be a finitary IRM. Then every %-infinite 3ί-r.e.
set contains an %-infinite %-recursive subset.

Proof: Let i c i b e tl-infinite and 31-r.e. set. Then each ap

ι(X) is an
infinite r.e. set; thus, it contains an infinite recursive set, Rp say. Let

R = U ap(Rp).

Let p0 e P and let Po = {pl9 . . ., ps} be as in Definition 5.1. Then
s

We have to prove only that each set E, = a^oap.(RPi) is recursive. Let
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Di = ap^(Api) and S, = ap}(APo). Then both A and S, are recursive sets, and
both oίp^°aPo; Di -> Si and dp*o<χPi: Si -+ Di are bijective p.r. functions.
Remark that E, c Di. Let yeN-Si. (If N - S> = β we have to prove
nothing.) Define ft: N-* Si U { y} by

fίn) = W / o α f c 0

( n ) f o r n c Z ) ί 'y Λ ' \y for neN-Di.

fi is recursive, and E{ = ff1(Rρi), as the inverse image of a recursive set
under a recursive function, is recursive.

Some $I-notions have curious relation to classical notions. To give an
example, X c A is 51-productive iff every ap

ι{X) is productive, say under
the recursive function fp. (Thus, ωt c ap

λ(X) -^ fp(i) e aγ{X) - ω, .) Suppose
there exists an $l-productive set X. Let £ be any r.e. subset of A, say
E = ωφ = U cfy(ωφ(p)), where ωφ(p) = aZι{E), and suppose ωφ c X. This implies

ωφ(̂ ) c a^iX) and so fp(φ(p)) e α^X) - ωφ(^). Lifting into A, we obtain

{(*p(fp{φ(p))) \peP\C-X- ωφ.

We must say that i c i is %-creatiυe iff every cty^X) is creative.
This implies that every cΓp

γ(X) is r.e. with productive complement, i.e.,
X c: A is %-creative iff it is 51-r.e. and CX = A - X is W-productiυe. In
case a is an I-amalgam, the set KA = U OLP(K), where K is any creative

subset of AT, is ^-creative (Theorem 5.3). Already in a finitary REM,
KA is not necessarily $1-creative.

By Definition 5.2 i c i is %-immune (%-simple) iff every ap

ι{X) is
immune (simple). Here, I can prove

Theorem 5.5 Let a = {A, 51) be any REM. Then an %-infinite set X c A is
%-immune iff it does not contain any %-indefinite or any ̂ -infinite $f-r.e.
subset of A.

Proof: Let X c A be 5l-immune; then, each αj^ίX) is immune. If E c X is
an^l-infinite $l-r.e. subset of X then each a^iE) is an infinite r.e. subset of
the immune set oΓp

ι{X). If E is $l-indefinite then at least one ap

ι{E) is an
infinite r.e. subset of the immune set a^iX).

Conversely, suppose that X is 2l-infinite and does not contain any
51-infinite or ^-indefinite $I-r.e. subset of A. Then, no ap\X) can contain
an infinite r.e. set; moreover, each ap

ι(X) is infinite, thus each one is
immune, i.e., X is 51-immune.

If a is an I-amalgam, then SA = U θίp(S), where S c AT is simple, is an
peP

$1-simple subset of A. (Then CSA is the example of an $f-immune set.)
% -simple sets behave in many ways like simple subsets of N.

Theorem 5.6 In any REM a, an $I-r.e. set X c A is %-simple iff, for every
%-infinite $I-r.e. set, X Π E is an ̂ -infinite set, and, for every $1-indefinite
51-r.e. set E, X Π E is % -indefinite.
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Proof: First, if X c A is Sl-simple it is Sl-r.e. and CX is ίl-immune; by
previous theorem, CX does not contain any Sl-infinite or Sl-indefinite Sl-r.e.
subset of A.

Let E be an Sl-infinite Sl-r.e. subset of A; then X Π E is not empty.
Moreover, every χotpl(X Π E) = ap1(X) Π α^CE1) is the intersection of a
simple set apι(X) and of an infinite r.e. set apλ(E); thus, it is infinite, i.e.,
I Π E is SI-infinite.

Let now E be an SI-indefinite Sl-r.e. subset of A; then X 0 E is not
empty, and at least for one poeP, ap^(X Π E) = ap^(X) Γ\ ap^(E) is the
intersection of a simple set ap^(X) and an infinite r.e. set ap^{E), i.e., it is
infinite. Therefore, I ί l £ is Sl-indefinite (since at least one a.pl{E) is
either empty or finite).

Conversely, let X be Sl-r.e. and such that I Π ^ i s Sl-infinite for every
Sl-infinite Sl-r.e. set E, and Sl-indefinite for every Sl-indefinite SI-r.e. set
E. Then, CX cannot contain either one of those two kinds of sets, i.e., it is
SI -immune, by Theorem 5.5.

Corollary 5.6.1 (i) The intersection of two %-simple sets is an%-simple
set.
(ii) The union of two SI-simple sets is either SI-simple or has a complement
which is not SI-infinite.

Proof: (i) Let X and Y be Si-simple subsets of A. Then C(X Π F) = CX U CF
is obviously Si-infinite (both CX and CY are SI-infinite). Let now E be any
Si-infinite Sl-r.e. set. Then, by previous theorem, E Π X is Sl-infinite; it is,
trivially, S(-r.e. Then, anew by Theorem 5.6, (Ef]X)ΠY is Si-infinite.
Thus, (X (Ί Y) Π E is Sl-infinite for every Si-infinite Sl-r.e. set E. Let now
E be Sl-r.e. and SI-indefinite. Then, by previous theorem, EΠX is
Sl-indefinite and Sl-r.e.; therefore, (EίΊX)ίΊF is anew SI-indefinite. By
Theorem 5.6, X Π Y is Sl-simple (since it is, trivially, Sl-r.e.).

(ii) If X and Y are Sl-simple then C(X U Y) is either Sl-infinite or it is not
Sl-infinite. Suppose it is Sl-infinite. Then, since C(X U Y) = CX Π CY, it
cannot contain any Sl-r.e. set E which is either Sl-infinite or Sl-indefinite;
thus, by Theorem 5.5, it is Sl-immune.

Consider now notions of cohesiveness and maximality: X c A is
%-cohesive (%-maximal) iff each a.pl{X) is cohesive (maximal).

Theorem 5.7 Let a be any REM and X c A. Then:

(i) If X is SI-cohesive then it is ty-infinite and, for every Sl-r.e. set E,
either X Π E or X Π CE is not %-infinite.
(ii) If X is ty-infinite, and for every Sl-r.e. set E either X Π E or X Π CE is
%-finite, then X is %-cohesive.
(iii) Y c A is ^{-maximal iff it is Sl-r.e. and CY is %-cohesive.

Proof: (i) If X is SI-cohesive then each ^ ( X ) is cohesive and so infinite.
Thus, X is Sl-infinite. Further, if there is an Sl-r.e. set E, such that both
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X ΠE and X Π CE are 2I-infinite, then both a.p\X) C\a~p

ι(E) and a~p

ι{X) Π
Qotpl{E) would be infinite, for every p e P; contradiction, since every oipι{X)
is cohesive.
(ii) If X satisfies the given conditions then, for every peP, either a.pγ(X) Π
ap

ι(E) or ap

ι(X) Π Qa.pl(E) is finite for every r.e. set ap\E), i.e., ap\x) is
cohesive (being already infinite).
(iii) Let Y be $1-maximal. Then, each a.pl(Y) is maximal and each aγ{CY)
is cohesive. Thus, CY is $1-cohesive. Converse similar.

I believe to have exhibited enough samples for the local variant of
Post's recursive theory. However, one can consider a variant which is
global, i.e., independent of projections.

Definition 5.3 Let a = <A, V) be jmyJ^EM, jind X c A. We_say that X is
globaly infinite (globaly finite) iϊtX=A(X< A). (Obviously, X and A denote
the cardinals of X and A respectively.)

I do not know yet how to define global productivity. However, I can
handle such a variant of immunity.

Definition 5.4 Let a be an REM a n d i c i Then:

(i) X is globaly immune iff it is globaly infinite and does not contain any
globaly infinite %-r.e. set.
(ii) X is globaly simple iff it is $I-r.e. and CX is globaly immune.

Theorem 5.8 Suppose the REM a = (A, SI) has the property that A = ~ί,
where= £ is the family of all globaly infinite 21-r.e. subsets of A. Then there
are 2A sets X ^ A such that both X and CX are globally immune.

Proof: (σ will denote Jthe cardinal of the ordinal σ.)_Let σ be the smallest
ordinal such that σ = A. (Thus, for every η < σ,η < A.) Well-order ί into
an ordinal sequence {ωξ)ξ<σ. To each ξ < σ correspond the ordered pair
(aξ, bξ) of elements of A so that

(i) aξΦ bξ, aξeωξ,bξe ωξ

and

(ii) both aξ and bξ are not in (J {&η, bη}. Let X consist of exactly one
η<ξ = = =

member of each pair {aξ, bξ). Then X = CX = A, and neither X nor CX

contains any ωξ. This choice may be done in 2A different ways.

Relative to the existence of globaly simple sets I can prove

Theorem 5.9 Let a = (A, 31) be an \-amalgam, such that, for every family

\Ep\p e P\ of non-empty sets Ep c Ap, U Ep = A iff at least one Ep is infinite.
^ r p€p ' r

Then there is a globaly simple subset of A (which is also %-simple).

Proof: Let S c N be any simple set. Set SΛ = U oίp(S). (By Theorem 5.3,
peP

SA is % -simple.) Now, SA is globaly infinite, since each ap(S) is infinite.
Since a^(SA) = S for every poeP, SA is 31-r.e. Now
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CSA = U {Λp - ap(S)}
peP

is globaly infinite, since each Ap - ap(S) is infinite. If CSA contains a
globaly infinite 5M-r.e. set E, then there is at least one poeP such that
E C\Ap is infinite. Then oίpl{E) will be an infinite subset of the immune set
C < ( S ) .

If a' = (AT, 51'), %' = {a'ilieN} where a\{n) = σ2(i, ή), is the IRM from the
Theorem 4.1, then a' does not satisfy the condition of Theorem 5.9. Let me

OO

show that in this case SA = U α/(S) is not globaly infinite. Its complement

CSA = U (A} - aι(S)) is also globaly infinite (i.e., denumerable). However,
2=0

by taking just one member XitAj - α* (S), we obtain the set X = {xi\ieN}
which is a globaly infinite $f-r.e. subset of CSA.

It is plausible that a slight change in the definition of global infinity in
the case of the manifold a' = (N, $!') (say, adding: at least one X Γ\A\ must
be infinite) could give a more workable notion for the global immunity in a'.
The generality of the notion of an REM suggests to consider global notions
with respect to the cardinality of particular REM's in question. I will
restrain here from such relativization.

CHAPTER VI-THE CATEGORY OF REM's

In [5] Ershov applied the vocabulary of the Category Theory to the
category of the enumerated sets. This application made possible a very
general conception of precomplete and complete enumerations in terms of
effective embeddings (or "e-partial objects" in terms of [5]).

In this chapter I engage into a similar venture with the category of
REM's; as a natural consequence of the notion of effective embedding I
obtain an effective notion of finitely reducibility. Also, I consider a very
strict generalization of precompleteness in order to illustrate a new
notion—the ordinalization of an REM. I restrain myself from any detailed
rendition of the content of [5], and I pursue only the directions which are
really new in comparison with [5]. However, I like to point out the influence
of Ershev's considerations upon the content of this chapter. I introduce
very few categorical notions; thus, I give the corresponding definitions, in
order to spare the students time and nerves. (For REM's I use notations at
the beginning of Chapter 4.)

A category tf is a class of objects a, b, c, . . ., such that to each pair
(a, b) corresponds a class [a, b]^of morphisms f ("of a into b"), for which
there is a partial operation ° (of "composition"), with following properties:

(K. 1) If h°g and gof are defined then (h°g) °/ = ho(g°f)
(K.2) To each object a corresponds an identical morphism lae[a, a]^, for
which la°/ = /andg*° la = g, whenever the left sides are defined.
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It is obvious that the class of all REM's a, b, c, . . ., as objects, with
the families of all morphisms / : a —* b, . . ., (i.e., / : A —* B), with composi-
tion of morphisms, is a category. I shall denote this category by €.

In the Category Theory, a morphism / : a —» b is called an isomorphism
iff there is a morphism g: b —> a such that g°f = la and f°g = lb. Since
g°f = 'a and / °^ ! = lb imply easily g = gi, g above is uniquely determined
by/ .

In the category € of all REM's, the demand that gof = la (i.e., g(f(x)) =
x for all xeA) and /©g = lb (i.e., f(g(y)) = y for all ye B) imply first that
both/ and £• are bijective and, then, that g = / " 1 . This gives

Theorem 6.1 In the category ί, a morphism/: a —» b is an isomorphism iff
it is bijective and f~ι: b —* a is a morphism.

A category tf0 is a subcategory of the category N iff ^ 0 c K in obvious
sense (for objects, morphisms, and composition); it is called a full
subcategory of N iff, moreover, for every a, b e No, [a, b]^ = [a, b]^.

It should be obvious that the category £/, of all injective REM's, is a
full subcategory of i. Also, the category £°, of all RM's, is a full
subcategory of €. The category £/ of all I RM's is a full subcategory both
of €0 and of £/. At last, if €' denotes the class of all REM's with
inmorphisms (as morphisms), then ί f is a subcategory of i which is not a
full subcategory of €.

In the Category Theory, a morphism / : a —» b is a monomorphism
(respectively an epimorphism) iff for any morphisms gΌ> £ Ί € [ c , a]^ (re-
spectively € [b, c]κ), f°g0 = f°gi (respectively go°f = gi°f) implies g 0 =£Ί.
(See Figure 6.1.)

^^~f°g0 -~-^^^ ^^-go°f^^^^

' ô v / \ ' f So \
C 4 a " ^ b a »h —% r.
\ o l ^ | \ o 1 vl

Figure 6.1

Theorem 6.2 /» ί/ẑ  category ί a morphism f\ a -^ b is a monomorphism iff
it is infective.

Proof: Let / be a monomorphism. If it is not injective let xγ Φ x0 be such
that f(xλ) = f(x0). Let C = {x0, Xj}; define γ: N — C by y(2w) = x0, γ(2n + 1) =
ΛΓX and set c = <C, {y}>. Define g0: c -> a and ̂ x : c -» a by go(xo) = x0, gofa) =
Xu giM = ̂ 1 and gi(xi) = ΛΓ0. Then £ 0 and ̂ Ί are morphisms and/°£Ό = f°gi
but^o ^ ^ Ί Thus, / m u s t be injective. Converse obvious.
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Let me remark that, in the category €, every surjective morphism
/ : a —» b is an epimorphism. However, I am unable to prove the converse of
this proposition except in case a has a finite atlas.

In the Category Theory, the notion of embedding is usually given
relative to functors. Ershov ([5]) introduces the notion "partial object of
m" as a pair (a , / ) , where a and m are enumerated sets and/ an injective
{α}-{μ}-recursive map of A into M (a = (A, {a}), m = (M, {μ})); such a pair
represents obviously an embedding of a into m. This should explain my
first definition.

Definition 6.1 (i) In the category C, a pair (a, /) is called an embedding of
a into m, iff / is a monomorphism of a into m, such that each f(Ap) can be
covered by finite many Mt's.
(ii) Let (a,/) and (b, g) be embeddings into m. We say that (a,/) and (b,g)
are equivalent in m iff there is a bijective morphism h: a —* b, such that hΓι

is also a morphism and f = g°h (i.e., such that the diagram in Figure 6.2
commutes).

a h- >b

X yg

m *

Figure 6.2

The lemma which follows will be needed later; however, I bring it now
in order to illustrate the nature of embeddings, at least in a special case.

Lemma 6.1 Let (a,/) be an embedding into the positive REM m. Then, to
every pair (p, t) e P xT corresponds a p.r. arithmetic function gPtt, with the
set μ^ι{f{Ap)) as domain, such that, for every k e μJι(f(Ap)), μt(k) =

A<*p(gp,tW))

Proof: Since /: A —> M is $l-30ί- recursive, to every pair (p, t) e P xT
corresponds a p.r. function fPιt, with domain Dp>t = ap

ι{f~ι{Mt)), such that

(6.1) f{ap{n)) = μt(fp>t(n)) for all ne D M .

Let EPtt = μ;\f(Ap)). Since

keEp>t ^> μt(k)ef(Ap)
^^Y μt(k) =f(ap(u))
^>V μt(k) = μt(fP,t(u))*ueDp>n

and since 3W is a positive atlas, the set EPιt is r.e. for all p and t. Define
now gp>t as follows: its domain is Ep>t and for k e Ep>t

(h\ _ ί a n y ne&ρ,t such that either k = fp,t(n)9 or such that there is
gP't(k) ~ [k, in the range of fp>ί, such that μt(k) = μt(k,) and kγ =fp,t(n).
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gp,t(k) is obviously defined for all keEp,t; since 9W is positive gptt is a
partial recursive function. Now we have:

<*p(gp,t(k)) = otp (of some ne Dp>t such that μt(k) = f(ap{n)))

i.e.,

f(<*p(gp,t(k))) = Ht(k) for all ke ^\f{Ap)).

In general case, let (a,/) be an embedding into the REM m. Then / is
an injective morphism, such that each f{Ap) can be covered by finite many
Λf/'s, say by Mtζ U, . . ., U M%\ Since / is 5l-9W-recursive, there are p.r.
functions ψ\p), with domain DilP = otpl(f~ι(M(

tf)), such that

f(ap(n)) = μt.(ψ^p)(n)) for all neDi>p,

and O^i^s.

Define 51' = {a'p\pe P} by aj, =f°ap, and let A\ be the range of a}. Then

to every peP corresponds a finite set {t0, . . ., ts} c 71, such that U M#.
i=0 Z

covers ^ , and there are p.r. functions ψi, with domain D'tp = (θίtp)~1(Mti)
such that

<*p(n) = μti(ΨAn)) for all ne D/fP,

and 0 < f < s. This shows that 5ίf | 9W and that, moreover, each (aj))~1(Mu)
involved above is a r.e. set. (This was not demanded for finitely re-
ducibility.) Therefore, in order to obtain an adequate characterization of
embeddings and their equivalence, I shall introduce a slightly more
restrictive definition of finitely reducibility.

Definition 6.2 Let 51 and %$ be atlases on a fixed set A. We say that 51 is
effectively finitely reducible to *B, in symbol $( < $&, iff 51 ̂ *S and all sets
a^ι{Bq^ in Definition 3.4 are recursively enumerable.

In an obvious way we define

51 =F <S <̂ > 51 ^ * A « H 51

and we call the resulting atlas-degrees EFAD's {effectively finitely atlas-
degrees)) in a similar way we can introduce E ^ , effectively finitely one-
reducibility, and its degrees EFAOD's. Obviously, EFAD's form a
subdivision of FAD's. One should remark that 51 = *S implies that 51 and *S
are compatible, i.e., that 51 U Ŝ is an atlas on the set A in consideration. It
is clear how one can extend < to include subsets; thus, 51 ^ 3W expresses
the result of the discussion preceding Definition 6.2, and we have

Lemma 6.2 Let (a,/) be an embedding into m, let

<*'p=fO(*P> W = {oίr

p\peP} and A' =f(A).

Then af =/(a) = (Af,5lf) is an REM, which is effectively a quasi-submanifold
ofm = <M, $W>, such that 5lf ^ 9W.
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Following theorem establishes an important property of equivalence of
embeddings.

Theorem 6.3 Two embeddings (a,/) and (b, g) into m are equivalent in m
ίfff(A) = f(B) and%' =f «', where « ' = {foap\peP}andW = {goβq\qeQ}.

Proof: Suppose first that (a, /) and (b, g) are equivalent in m, and let h be
as in Definition 6.1 (ii). Since h(A) = B and / - g°h, we obtain f(A) = g(B).
For given p e P let {B(

qf |θ < i < s} cover k(Ap) = {h~ι)'\Ap), and let φγ] be
p.r., with domain D^ } = ap\h~ι{Bqi)), satisfying

(6.2) h(ap(n)) = βqi(φ\p)(n))9 neϋf, O^i^s.

Define: a'p = f°ap, β'q = g°βq, V = {a'p\peP} and « ' = {βq\qe Q}. Then, (6.2)
and / = g°h imply

(6.3) α/(n) = ̂ . ( ^ ( n ) ) for ne θ\p\

and for all i = 0, . . ., s. Now,

D^} = a-p

ι{h-\Bqί)) = a-p\r\g{Bqt)))
= a-p\Γ\Bq.)) = (αp" 1 ^.),

and (6.3) becomes

(6.4) afrn) = βj ί^di)) for ne (αp" 1 ^.),

where each (ap)~ι(Bq.) is a r.e. set. This gives $1' < ^8f. Symetric
reasoning, with h~ι instead of h, gives W < 21', i.e., <U' =F^δf.
Conversely, suppose that/(A) = g(B) and that (6.4) holds, with {a$~ι{Bqi)
r.e. Since/ and g are injective, we can define h = g'1 °f and obtain, from
(6.4),

h(ap(n)) - βqi(φ-p)(n)) for n*aΓp\h~ι(Bqi)),

which implies that h is a bijective isomorphism. Then, by a similar
reasoning, one proves that h~ι is a morphism too. (Remark: h = g"1 of
implies h"1(Bq) = f~1(g(Bq)).) Since g{Bq) can be covered by finite many
M/s, and since each f~1(Mt) can be covered by finite many Aps it follows
that h"1(Bq) can be covered by finite many Aps.

Theorem 6.3 induces a one-sided correspondence between embeddings
into m and effectively quasi-submanifoIds of m, whose atlases are
effectively finitely reducible to 9W. To explain this correspondence better,
let us remark that, for an embedding (a,/) into m, the REM a' =/(a) =
(A', 2Γ>, where Af = f(A), 2Γ = {aj,\pe P}9 a'p = f°ap, satisfies not only the
conditional' ^ 30Ϊ, but also the supplementary

Condition F: For every te T, the set A* Π Mt can be covered by finite many
local neighborhoods Aj,.

To see this, remark that (since/ is a morphism) f~1(Mt) =f~1(At Π Mt)
can be covered by finite many Aps, say, by APQ\J . . . U ^ s . Then the

relation f"1{A1 ΠMt) c IJ Ap. implies
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s s

A'ΠMt c U f(Λpi)=Ό A'

Definition 6.3 The REM a' = {A1, 2Γ) will be called m-effective iff:
(i) af is an effectively quasi-submanifold of m;

(ϋ) 21' ̂  m,

and

(iii) 21' satisfies condition F above.

Corollary 6.3.1 There is a bijectίυe correspondence between embeddings
into m and m- effective quasi-submanifolds of m, under which two em-
beddings (a, /) and (b, g) are equivalent iffW = /(2l) andW = g{%$) are in the
same EFAD.

Proof: One part of this corollary is an immediate consequence of
Theorem 6.3. To prove the converse part, we have only to correspond to
each m-effective REM a* = (Ar, 21') a corresponding embedding (a,/), in
such a way that af =/(a). First, define /: af —» m to be just the identity on
Af. Since 21' ^ 9W, then to every p e P (I suppose 21' = {α£l£ e P} correspond
finite many fs, say t0, tu . . ., £s, such that MtQ U Mtγ U . . . U Mh covers
Aj,, where A'p is the range of αj,, and there are p.r. functions /0, Λ, . . .,/ s

such that

α (̂n) = μίf.(Λ(w)) fornc (αp^M,.),

0 ^ i ^ s, where each (αj))~1(Mti) is a r.e. set. Thus,

f(α'p(n)) = μti(giM) forneDp>i,

where D^ = domain of ^ = /,- Uαp'^Λf^.). This proves that / is 2Γ-3W-
recursive. It is also a morphism, since f~ι{Mt) = Ar Π Mt can be covered
by finite many Aps. Thus, (a',/) is the embedding in question.

Following lemma introduces cylindrification into the study of EFAD's
and EFAOAD's.

Lemma 6.3 Let a be effectively α quasi-submanifold of m, such that
21 ^ 9W {respectively le( a be m-effective). Denote by acyι = (A, Cyl^) the
cylindrification of a. Then, acyι is effectively a quasi-submanifold of m,
such that Cyl«j| ^ 9W {respectively then acyi is m-effective).

Proof: If α^M,) is r.e. then

is also r.e.

Theorem 6.4 Let 21 and %$ be atlases on A and B respectively, where
Ac B c M, Then:
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(i) 5ί E ^ Qf\%and Cyl^ ^ 91;
(ii) % f?% implies % ^ Cyl*,;
(iii) W ^51 ^ Cyl^ g^'Cyl*.

Moreover, if % ^f 3W and 3$ ^p $K then Cy\% <p 9W <md Cyl<g ^p 9W.

Proof: Previous lemma and the proof of Lemma 3.1.

Corollary 6.4.1 (i) Every EFAD contains a maximal EFAOD.
(ii) The EFAD's on a fixed set form an upper semi-lattice.

Let me point out that Example 3.1 demonstrates that on N there is no
difference between FAD's and EFAD's. (See later Theorem 6.6 for a more
general statement.)

The nature of embeddings will be illustrated in large measure by
considerations of principal atlases.

Definition 6.4 (i) Let 51 be an atlas on A c M. We say that 51 is effectively
principal (in m) iff 51 ^ SPΊ and, for every other atlas *S on A, *S < 9W
implies <S *=_5ί.
(ii) An embedding (a,/) into m is effectively principal (in m) iff 5(f =/($l) is
an effectively principal atlas (in m).

Theorem 6.5 If m = (M, 9W) is positive and A c M an 9W-r.e. set, then there
is at least one atlas 51 on A which is effectively principal.

Proof: See the proof of Theorem 3.7.

Theorem 6.6 Every embedding (a ,/) into a positive REM m is effectively
principal (in m).

Proof: Let a'p =f°ap, A'p =f(Ap) = range of a'p and 5ί' = {a'p\p e P}. Suppose «
is an atlas on A1 = (J Al which satisfies S* ^ W. Then, for given a eQ, Bq

peP ' E F

 s

can be covered by finite many Mt's say by IJ Mt? , and there are p.r.
functions fjq) such that

βqW = μti(fiq)W) to* aline β-^M,.),

0 < i ** s, where each β~q

ι{Mti) is a r.e. set. Since/: A —• M is a morphism,

each/'^M^-) can be covered by finite many Aps, say by j j Ap... Then

U A'ϋ. . covers i ' Π I / . thus, the finite family {AL . \θ ^i ^s. 0 ^j ^ sΛ

covers Bq. Moreover,
Si

β-ι(Mti)=Όβ-ι(A'Pij),

where each set β~x(A'p .) is r.e. To verify this last statement remark that

n e β-\A'p. ) <r+ βq(n) e f(Apj,j) n M,{

<^ \ιH(f-q\n)) e f{Api .) Π MH Λ ne β}ι(Mt{)
^ V μt.(ήq\n)) =f(ap. («)) Λ ne β-\MH).
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Since / is 2Ϊ-9W-recursive, there are p.r. functions h{tj, with domain
D / ; =a;lJ(f-1(Mt.)), such that

f(aPij (u)) = μH{hitj (u)) for all ue Dit , .

Thus

neβ-q\A'p ) <^ V(ueDi,i * μti(fi<\n))

Since m is positive and β'^M^.) r.e. it follows that β^CA^ .) is r.e. Now, if
g ̂ ' s are as in Lemma 6.1, we obtain that, for all ne β"q(Ap. .),

βq(n) = μti(f(fyn)) =A*p(gp , U(f\q\n))))

since each β ^ 1 ^ . .) is r.e. and the family of all Ap. . covers Bq, we obtain
B ffA.

Thus, embeddings into a positive REM m correspond to effectively
principal atlases on fixed subsets of M, which, moreover, satisfy condition
F (preceding Definition 6.3).

Definition 6.5 An embedding (a,/) into m is effective iff it is effectively
principal (in m) and A1 = f(A) is an 9W-r.e. subset of M.

Theorem 6.7 Let (a,/) be an embedding into m for which Ar = f(A) is
9W-r.e. Then, (a,/) is effective iff for every te T, for which A' n Mt φφ,
the set A1 Π Mt can be covered by finite many neighborhoods Ap = f(Ap), say
by APo U . . . u Aj,s, and there are p.r. functions gp. f , with domain μJ1(At

p.)y

such that, for every k e μ^iAj,.),

βt(k)=f(aPi(gp.t(k))),

0 ^ i^ s.

Proof: Suppose first that <a,/> is effective. Let A'=f(A), A'p=f(Ap),
oίP=f°oίPf 2Γ = {a^lpeP}. Then 5lf is effectively principal on the set Ar

(in m). Let Γ o c τ b e defined by

te To *-> μ7\A') Φ<jb.

For every te To let mt be recursive with range μ^OA')—which is a r.e. set
(since A* is 9W-r.e.). Set βt(n) = μt(mt(n)) for all neN and all te To; let
« = {βt 11 e To}. ThenSS ^F 9W. Since « is an atlas on A1 and W is effectively
principal there, we conclude: *B ^ 51'. This relation implies that each Bt

can be covered by finite many sets AL say by U Al., that each βJ1(AL) is

r.e. and that there are p.r. functions fif with domain D ,̂ = β^iA^),
satisfying

βt(n) = aj,.(Mn)) forneDtJ,

0 ^ i ^ s. Since Bt = Ar Π Mt and D/fi = β~t

ι{A'p.) = mJ^μ^iAj,.)), we obtain
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mtiβ'^Up) = μj^pi) ΓΊ mt(N) = μ.^{A'pi) Π Range of mt

= μΓ 1 ^) Π μjW = μΓ1^.),

which proves that every set μj 1 ^^.) is r .e. Remark now the following: for
keμJ1(Aj,i) there is at least one ueDtii such that k~mt{u). Therefore,
the function u, defined for all ke (ii1(Aτ

p.) by u(k) = some yeDtti such that
k = mt(y), is partial recursive, and

βMk)) = βt(inΛu(k))) = μt{k)
= a'p.(fMk))) =f°ap.{fMk))) ΐorkeμ;ι(A>Pi).

This, with gp.ιt - fi °u, completes the proof of the necessity of the condition
of the theorem.

Suppose now that the condition of the theorem holds, and let $8 be an
atlas on A' such that *B |* 9W. Thus, for every q e Q there are t0, . . ., ts e T,

such that IJ Mt. covers Bq, and there are p.r. functions hi, with domain

β"q\MH), satisfying

(6.5) βq(n) = μ,.(hi(n)) for all ne β'q
ι(Mt.)9 and a l H = 0, . . ., s.

Suppose that U A'p. . covers A'nMt.; since ΰ ? c A f, it follows that
s ei

 7~°

\)\JA'P.. covers Bq. By (6.5), neβ-q

ι{MH) implies hi(n) e μ^(Bq)9 i.e.,

hi{n) e μ'/ί y Ap. .); thus, (6.5) and the condition of the theorem imply

(6.6) βq(n) = a'κ. (gp..>ti (Λf (n))) for a l l n e β^U^ ),

and 0 ̂  i ^ s, 0 ̂ j ^ ei. This implies $8 < 3ί f. It remains to prove that each
β'^A^. .) is a r .e. set. I shall prove: for every pair (q, p) e Q x P, βq\A0
is a r.e. set. By Definition 6.1 (i), Ap can be covered by finite many M/s,
say by MtQ U , , , U I / s . Thus,

s

j3ί1(^)=]J βq

ι(A'pnMti).

Now, using (6.5)
n€j3-1t^)<->]3ί(fi)€i4;

<-> V Af(n) e μ .HAfJAne βq\MtX

By condition of the theorem, every set μJ^Aβ is r .e., and by our supposi-
tion, every set β~q

ι(Mt.) is also r .e. Thus, βq

ι(Ap) is r.e., and we obtain

Let me interpret Theorem 6.7 in case of enumerated sets. I shall
suppose m = (M, {μ}) and a = (A, {a}). Then (a,/) is an em bedding into m
iff /: ̂ 4 —* M is an injective {en}-{μ}-recursive map. Let Af = f{A) and
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a' =f°a. Then {α'} is effectively principal iff μ" 1^') is a r.e. set and for
every enumeration β of A\ for which β = μ°b, where b is recursive, we
have also β = aoblf where bγ is recursive. Thus, here, already the fact that
{#'} is effectively principal implies that (a,/) is effective. In this way, we
obtain:

Corollary 6.7.1 Let m = (M, {μ}) and a = (A, {a}) be enumerated sets and
let f: A —> M be an injective {a} -{μ} -recursive map of A into M. Let A1 =
f(A) and a* =f°a. If A' is a {μ}-r.e. set, then {a*} is principal on A1 iff
there is a p.r. function g, with domain μ""1^'), such that, for all ke μ" 1 ^ ') ,
μ(k)=f(a(g(k))).

Remark: In [5] (section 4, Lemma 3) Ershov gives a proposition which
differs from Corollary 6.7.1 in demanding that the domain of g contains
μ"1{Af). Since μ'̂ -A') is already a r.e. set, this demand reduces trivially
to the demand of our Corollary 6.7.1.

Another interesting feature in the category ί are retracts.

Definition 6.6 An embedding (a,/) into m is a retract of m iff there is a
morphism h: m —» a such that h°f= la (la = identity on a).

Remark that, for a retract (a,/) of m, xe A', where A' = f(A), implies
f(h(x)) = x. Namely, if x=f(a),aeA, then h(x) = h(f(a)) = a and so f(h(x)) =
f(a) = x.

Theorem 6.8 Let (a,/) be a retract of m. Then, to every pair (p, t) e PxT
corresponds a p.r. function gp,t, whose domain contains the set ιΓt

ι(f{Ap)),
such that

μ.t(ή) = f(ap(gPtt(n))) for all ne μ^\f{Ap)).

Proof: Let h: m —> a be as in Definition 6.6, let gPtt be p.r. with domain
&p,t = liJ1(h~1(Ap)), and such that

h{μt{n)) = <*p(gpιt(n)) for all ne Dp>t.

By the remark following Definition 6.6

ΛHμt(n))) = μt(n), i.e., f(ap(gp>t{n))) = μt(n)

for all μt(n) ef(Ap), i.e., for all ne μ~t

ι{f(Ap)). Now, remark that

OPtt = μ't\h'\Ap)) = μ;1(h'1(h{f(Ap)))) D μ~t

ι{f{Ap)).

There are some difficulties in the adaptation of the notion of "pre-
complete" to REM's. For enumerated sets such difficulties do not exist,
since the enumerated set n = (N, {l}), where I is the identity on N, is a
universal reference-manifold for enumerated sets: every such set can be
considered as embedded into n. Such a universal manifold does not exist
for REM's. However, for REM's of a fixed cardinality, I can define a
half-substitute for this reference-manifold.

To every REM b = (B,&), W = {βq\qe Q}, I shall correspond its ordi-
nalization σ(b) = <Ωσ, Hσ)y where {Ωσ, Hσ) is as in Example 1.3, with
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otξ{n) = ξ +n, as follows: σ is the smallest ordinal whose cardinal is Q. In
the same time I shall well-order Q in the order type of σ, and I shall set
Q = felξ < σ} σ(b) will serve as an etalon for b and for all REM's with
atlases of the same cardinality as Q, the index-set for the atlas $$. (This
is almost equivalent with: "with the same cardinality as B".) In 3$
considering morphisms k: σ(b) —» b, I shall say that such a morphism is
rigid iff (see Example 1.3 for notations) h{Uξ) c £^ . With all this, σ(b) is
not subtle enough to characterize precompleteness without fault.

Definition 6.7 The REM b is precomplete iff for every effective embedding
(a, /) into σ(b) and every morhpism g: a -» b there is a rigid morphism
h: σ(b) —* b such that g = h°f (see Figure 6.3).

a >σ(b)

Figure 6.3

I can give only a necessary condition for precompleteness.

Theorem 6.9 If b is precomplete, then for every family {φq\qeQ} of
arithmetical p.r. functions there is a family {fq\qeQ} of recursive func-
tions, such that, for every q e Q.

(6.7) βq(φq(n)) = βq(fq(n)) for all n e Dq,

where Dq is the domain of φq.

The proof of Theorem 6.9 is straightforward. It should be obvious that
either a change in condition ong and/in Definition 6.7, or on h, there could
make possible a full characterization of precompleteness. I will not enter
into the discussion of those changes at this place. I introduced Definition
6.7 only in order to outline the possibilities and needs for future construc-
tions.
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