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THE Q-CONSISTENCY OF 322

JONATHAN P. SELDIN

In his [CSC],1 Curry proved the consistency of a system, which he
there defines and calls 922, and which is closely related to the system 9$λ

of [CLg.Il] §15C.2 This is essentially a type-free intuitionistic predicate
calculus without conjunction, alternation, or negation but with quantification
over propositions and propositional functions. However, Curry's con-
sistency proof is rather weak, since it only proves that every theorem of
the system belongs to a class of obs (terms) which are defined to be
canonical (called canobs) and since the canobs are those obs which are to
be interpreted as propositions this proof leaves open the possibility that
every ob which is to be interpreted as a proposition is a theorem of the
system.

In this paper,3 a stronger consistency result is proved. This is done by
proving the elimination theorem (Gentzen's Hauptsatz). From this it
follows that if an atom (atomic ob, or atomic term) Q is introduced in a
natural way to represent equality, then \-QXY holds if and only if X = Fin
the underlying C-system (i.e., if and only if X is convertible to Fusing the
conversion rules of the underlying system of combinatory logic or λ-
conversion). Since it can be shown that S Φ K, it will follow that h-QSK does
not hold, and hence there is an ob, QSK, which is interpreted as a proposi-
tion (S = K) but which is not a theorem.

In addition, an error in the theory of canobs in [CLg.Il] §15B3 will be
corrected here.

Ί The theory of canobs Since the theory of 922 depends heavily on the
theory of canobs, I will begin with the latter.

The error in the theory of canobs of [CLg.Il] §15B3 occurs in Lemma
3.3. In the proof of that lemma, it is established that

(1) YX, . . . %n >- Z,

and it is claimed that from this, by property (ξ), it follows that

(2) F >- \xγ . . . xn.Z.

But this holds only if the underlying system is synthetic.4 If the underlying
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system is a system of λ-conversion, then this inference fails, as can be
seen by taking n = 1, Y = E, and Z = Ex, for we do have Ex >- Ex but not
E >- λX Ex.

The rest of this section will consist of a corrected theory of canobs for
the case in which the underlying C-system is λη-conversion. The theory
will be developed for the system 922,

 a n d hence will be based on Curry's
theory [CSC] (which is suitable for 922 if the underlying C-system is
synthetic). A theory of canobs for λ?7-conversion for the system of [CLg.Il]
§15B can be obtained by dropping clause (d) of Definition 1 below and the
corresponding references to H throughout the rest of the theory. The
assumptions about canonical simplexes will be the same as those of
[CLg.Il] §15B3.5

Definition 1 The ob ξ is a proper canob of rank m and degree n if and only
if

(a) ξ is a canonical simplex and m = n = 0;
(bl) ξ Ξ λx η where 77 is a proper canob of rank m and degree n - I;6

(b2) ξ#, wherex does not occur in ξ, is a proper canob of rank 0 and degree
n - I,6 and m = 0;
(c) ξ = Έζη where ζ and η are proper canobs of degree 1, n = 0, and rk(ζ) +
rk(r?) = m - 1; or
(d) ξ = Hη where η is a proper canob of degree 0, w = 0, and rk(η) = m - 1.

Definition 2 The ob ξ is a canob of rank m and degree n if and only if there
is a proper canob 77 of rank in and degree n such that ξ >— 77.

I shall now give an alternative proof of the analogue of [CLg.Π]
Theorem 15B3, which is the following:

Theorem 1 If Can (̂X) is interpreted to mean that X is a canob of degree k,
then the following hold:

Nl. Can^pO & X = Y-* Can*(F),
N2. Can^X) ^r Ca.nk+l(Xx.X),
N3. Can*(X) - Can^U) for any ob U,
NΞ. Can^X) & Can^F) ̂  Cano(ΞX7),
NH. Cano(X) ^ Cano(HX).

The theorem will follow from the following lemmas.

Lemma 1.1 If ξ is a (proper) canob of rank m and degree n, and if x is any
variable and U any ob, then [ί//#]ξ is also a (proper) canob of rank m and
degree n.

Proof: See [CLg.Il] §15B3 Lemma 3.1. There is a minor complication in
the induction step for clause (b2), where the assumption is that m = 0, ζy is
a proper canob of rank 0 and degree n - 1, y does not occur in ξ and is
distinct from x. If y does not occur in U, then we have by the induction
hypothesis that [ϋ/x] (ζy) = ([ϋ/x]ζ) y is a proper canob of rank 0 and
degree w - 1, and since y does not occur in [ί/A]ξ, the latter is a proper
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canob of rank 0 and degree n. However, 3; may occur in U. In this case,

let z be a variable which is distinct from x and does not occur in ξ or U.

Then it can be shown that ξz is a proper canob of rank 0 and degree n - 1

by a proof isomorphic to the proof that ξy is such a proper canob; for the

latter proof must have come from the statement that ξyuλ . . . un.γ is a

canonical simplex by repeated applications of Definition 1 (b2), and by

assumption (b) for canonical simplexes, it follows that ξzuλ . . . un.λ is also

a canonical simplex, from which it can be shown that ξz is a proper canob

by the same number of applications of Definition 1 (b2). Then, by the

induction hypothesis, we have that [ϋ/x] (ζz) is a proper canob of rank 0

and degree n - 1, and we can proceed as in the case in which y does not

occur in U. Q.E.D.

Lemma 1.2 If ξ is a proper canob of rank m and degree n, then there is a

proper canob v of rank m and degree k ^ n, where, if yl9 . . ., yk are

distinct variables which do not occur in v, then vyx . . . y^ is a canonical

simplex if m = 0 and is of the form of clause (c) or (d) of Definition 1 {and

hence k = 0) if m > 0, such that

(3) ξ = λxx . . . xn.k v>

Proof: By induction on the proof that ξ is a proper canob according to

Definition 1. For the basic step of the induction, it is sufficient to note that

ξ itself is such a v (with n = k = 0). For the induction step, there are the

following four cases, depending on which clause of Definition 1 is used:

(bl) ξ = vx.η, where n > 1 and άg(η) = n - 1. By the induction hypothesis,

there is a proper canob μ of rank m and degree k < n - 1 which satisfies

the conditions of the lemma for η such that

η = λ#j. . . . xn-k-i li-

lt follows that

ξ = \xxx . . . Jfe-jk-i μ.

Let v Ξ [Xi/x, X2/
XD ., xn-k/xn-k-ι]l± Then (3) holds. By Lemma 1.1, v is

a proper canob of rank m and degree k. Moreover, it follows by the

properties of substitution that v satisfies the other conditions of the

lemma.

(b2) ξx, where x does not occur in ξ, is a proper canob of rank m and

degree n - 1. By the induction hypothesis, there is a proper canob μ of

rank m and degree k ^ n - 1 which satisfies the conditions of the lemma

such that

ξX=λXί . . . Xn-k-l μ

Since the underlying system is assumed to be a system of λ-calculus, this

implies that n - k - 1 = 0, so that |ΛΓ = μ, and ξ itself i s a i ^ with the desired

properties (for k = n).

(c) ξ = Έζη. Then m > 0, n = 0, and ξ itself is such a v.

(d) ξ = H77. Then m > 0, n = 0, and ξ itself is such a v. Q.E.D.
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Remark: Since uyx . . . y^ can have the form of clause (c) or (d) of
Definition 1 only if k = 0,7 we have that k > 0 only if m = 0.

Lemma 1.3 If ξ is a proper canob of rank m and degree n, and if ξ >- Y,
then Y is a proper canob of rank m and degree n.

Proof: By induction on the proof that ξ is a proper canob of rank m and
degree n using Definition 1. For the basic step, it is sufficient to note that
if ξ is a canonical simplex, then so is Y by assumption (a) about canonical
simplexes. For the induction step, there are the following four cases
depending on the clause of Definition 1 used:

(bl) ξ = λx η. Then n^ 1. Now consider the reduction of λx.η to Y. Let
λx.Z be the last step of that part of the reduction which proceeds by
working entirely within η, so that η >- Z. If there is no next step, then
Y = λx Z; by the induction hypothesis since η >- Z, Z is a proper canob of
rank m and degree n - 1, and hence Y is a proper canob of rank m and
degree n by Definition 1 (bl). If there is a next step in the reduction of ξ
to F, then since it does not take place entirely within Z, it must be an
η-contraction for which the redex is \x.Z. Hence, Z = Wx, and the result
of the contraction is W (and x does not occur in W). The rest of the
reduction is a reduction from W to Y. Furthermore, since x does not occur
in W, it does not occur in Y. Now, since W >- Y, it follows that Wx >- Yx.
Since η >- Z = Wx, it follows that η >- Yx. Hence, by the induction
hypothesis, Yx is a proper canob of rank m and degree n - 1. Furthermore,
as in case (b2) of the proof of Lemma 1.2 we have that

YX = \Xι . . . Xn-k-i β

where n - k - 1 = 0 so that Yx = μ and hence has the form of clause (c) or
(d) of Definition 1 or else is a simplex. If Yx has the form of clause (c) or
(d) of Definition 1, then Yx = Ξζ?7 or Yx = Y\η where η is a proper canob of
degree 0 or 1. But then η = x, and x is a proper canob, which is impossible
(see note 7). Hence Yx is a simplex, and m = 0. It follows by (b2) of Defi-
nition 1 that Y is a proper canob of rank m and degree n.

(b2) ζx is a proper canob of rank m and degree n - 1 and m = 0. Since
ξ >- F, we have ξx >- Yx. Hence, by the induction hypothesis, Yx is a proper
canob of rank 0 and degree n - 1. Furthermore, since x does not occur in
ξ, it does not occur in Y. Hence, by Definition 1 (b2), Y is a proper canob
of rank m and degree n.

(c) ξ =Ξζη. Then n= 0 and ζ and η are proper canobs of degree 1 and
rk(ζ) + rk(η) = m - 1. By the property C-VC3 of [CLg.Il] §11F3, since
ξ >- Y, it follows that Y = ΈZW, where ζ >- Z and η >- W. By the
induction hypothesis, it follows that Z and Ware proper canobs of degree 1
and such that rk(Z) = rk(ζ) and vk(W) = τk(η). Hence, rk(Z) + rk{W) = m - 1.
Hence, by Definition 1 (c), Y is a proper canob of rank m and degree 0.

(d) ξ = Hη. Then η is a proper canob of rank m - 1 and degree 0 and n = 0.
By property C-VC3 of [CLg.Il] §11F3, since ξ >- Y it follows that Y = HZ
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where η >- Z. By the induction hypothesis, it follows that Z is a proper
canob of rank m - 1 and degree 0. By Definition 1 (d), it follows that F is a
proper canob of rank m and degree n.

Remark: In the case of the above proof for (bl), the following result was
established for λη-conversion: if λx.X >- F, then either Y = λx Z where
X >- Z or else X >- Fx. This result fails in the synthetic theory (with
strong reduction) since [x](\(Ux)) = S(KI)Z7 >- \U, where x does not occur in
U, but \U Ξ [x]z only if ZMί/^ and \(Ux) >- lί/x (as can be seen by letting
[7 be y i x).

Lemma 1.4 If ξ is a canob of rank m and degree n and if ξ = Y, then Y is a
canob of the same rank and degree.

Proof: By Definition 2, there is a proper canob η of rank m and degree n
such that ξ >- 77. It follows that Y = η. Hence, by the Church-Rosser
Theorem, there is a Z such that Y >- Z and η >- Z. By Lemma 1.3, Z is a
proper canob of rank ra and degree n. Hence, by Definition 2, F i s a canob
of rank m and degree n.

Lemma 1.5 If ξ is a canob of rank m and degree n > 0, then for any ob U,
ζU is a canob of rank m and degree n - 1.

Proof: [CLg.Il] §15B3 Lemma 3.4 (but replace the reference to Definition
1 (b) by a reference to Definition 1 (bl) and the reference to Lemma 3.3 by
a reference to Lemma 1.4).

Lemma 1.6 The ob ξ is a canob of rank m and degree n if and only if λx.ξ
is a canob of rank m and degree n + 1.

Proof: [CLg.Il] §15B3 Lemma 3.5.

Lemma 1.7 The ob ΞXF is a canob of rank m and degree 0 if and only if X
and Y are canobs of degree 1 and m = rk(X) + rk(F) + 1.

Proof: [CLg.Il] §15B3 Lemma 3.6.

Lemma 1.8 The ob HX is a canob of rank m and degree 0 if and only if X is
a canob of rank m - 1 and degree 0.

Proof: Similar to that of Lemma 1.7.

Proof of Theorem 1: Nl-3 are just Lemmas 1.4, 1.6, and 1.5; NΞ is
Lemma 1.7; and NH is Lemma 1.8.

The rest of [CLg.Il] §15B3 is correct as is. It might be worth adding to
Theorem 15B5 of that section a new clause:

(d) ξ is not an Oi -ob.

This clause corresponds to assumption (d) made about canonical simplexes
at the beginning of the section.

It might be interesting to examine the theory of canobs from the point
of view of λ/3-conversion, but that is beyond the scope of this paper.
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2 The system 922. By the definition of Curry [CSC], the system 922 is
obtained from the 9$x of [CLg.Il] §15C2 by dropping H from the list of θ's
(canonical atoms). Since, as Curry shows in [CSC] by proving that
Cano(LX) ^ί Can^X), this.implies that H is not canonical of degree one, and
since the canonicalness of H was used in [CLg.Il] §15C2 to prove the
equivalence of the A- and T-formulation of 92l, it follows that this proof
breaks down for 922. Hence, we do not consider an A-formulation of J22>
but begin with a T-formulation (natural deduction system). This system
has as axioms the following:

(EA) l- E A, if A is an atom,8

(FE) hLE,

where we are taking T = E, the universal category, and H as a C-
indeterminate (atomic constant with no reduction rule), and hence

L = FEH,
F =\xyzmAx(Byz).

The rules of the system are as follows:

Eq: y , if X = F.

ΈXY Xϋ
~ e : Yϋ

[Xx] where x does not occur
Ξi* Yx LX in X, Y, or in any other

ΈXY ' premise.

X
H : HX "

EX EF
E : E(XY)

EX! EX2 . . . EXn
Hθ: H { θ χ ι tXn) , where n = άg(θ).

M ^ * H(ΞXF)

The derived rules Fi*, Pi*, and Πi can be derived as in [CLg.Il] §15C2.
The derivations of rules Fe, Pe, and Πe are relatively trivial.

In [CSC], Curry proves the following result:

Theorem 2 If ^-X is derivable in 922, then Cano(X), i.e., X is a basic canob
of degree 0.

This proof also goes through with the revised definition of canob for
the case of λ-conversion. This same proof will also prove the following:

Corollary 2.1 If M\-X is derivable in 922 and if each constituent of M is a
basic canob of degree 0, then so is X.
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As a further corollary to this theorem, Curry establishes the following:

Corollary 2.2 The ob X is a basic canob of degree k if and only if i-H&X is
derivable in 922.

3 An L-formulation of 922. In order to prove Gentzen's Hauptsatz, it is
normal to develop an L-formulation (calculus of sequents) of a system.
This will be done here for 922. I will follow the convention of [CLg.Il] in
writing

M\-TX

to indicate that X can be derived from the premises M in the system of
section 2. The system will be a restricted CL-system in the sense of
[CLg.Il] §12D1. Hence, its prime statements are the following:

(pi) X \a\-x, z/Cano(X),
(EX)* \a I-EX, where X is any ob,
FE* ίαi-LE.9

The rules of the system are the following:

Structural rules: *C*, *W*, and *K* from [CLg.Il] §12C2, but with the
requirement that the principal constituent of *K* must be a basic canob of
degree 0.

Expansion rules: *Exp* from [Clg.Il] §12C2.

*Ξ If X and Y are canobs of degree 1,

M \a\-XU,L M, YU \a\-N
M,ZXY\ahN, L

^ Af, Xx \a, x\-Yx, L M \a\-LX,L

Irregular rules for H:

μ* M | α h X> L

M M ItthHX, L '

Hθ* Ifn = dg(0),

M \a\-EXly L; . . .; M\ahEXn, L
M |α I- H (ΘX1 . . . Xn), L

M \a Y-LX, L M \a\-LY, L

MltthH(Ξxy), L

From these rules follow the L-rules *F, *Π*, *P of [CLg.Il] and, in
addition,

M, Xx \a, x h Y(Zx), L M [n hLX, L
M I α h FXYZ, L

1 0 M, X \a v-Y, L M \a\-HX, L
M \a\-PXY, L
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The system, which will be called 9^29 may be either singular or
multiple. The conventions of [CLg.Il] have been used to treat both cases
simultaneously. It is easy to see that an ob X can occur as a constituent in
a theorem of 9^2 only if it is a basic canob of degree 0.

4 The elimination theorem.

Theorem 3 (ET) If

(4) M, X I α h Y, L

and

(5) M \a\-X, L,

then

(6) M\a\-Y, L.

The proof requires the following lemma:

Lemma 3.1 If

(7) M, U\a\-N,

where U consists of constituents of the form LE o r H ( E I ) , then

(8) MlahN.

Proof: Let Aλ , . . . , An be a proof of (7), and let Ak be

Mk, Uk \akhNk,

where Uk consists of the semiparametric ancestors in Ak of the constituents
of ί/in (7). LetA'kbe

Mk \ak\-Nk.

Since Ar

n is (8), it is sufficient to prove A[ for each k by induction on k.
There are the following cases:

(a) Uk is void. Then A[ = Ak.

(β) Uk is not void and Ak is prime.

Then Ak must be an instance of (pi), Uk must be singular, and Nk = Uk- The
common constituent of Uk and Nk is either LE or H(EX) for some X. In the
former case, A\ is an instance of FE*. In the latter case, we can proceed
from (EX)* as follows:

I t t h H ( E X ) "

and the conclusion is Ar

k.

(γ) Uk is not void and Ak is derived by a rule for which the constituents in
Uk are parametric. Let the premise(s) be Aif Aj, . . .. By the induction
hypothesis, A\y A], . . . are derivable. ThenA f

k follows by the same rule.



THE Q-CONSISTENCY OF J 2 2 125

(δ) Uk is not void and Ak is derived by an irregular rule for which the

principal constituent is in [4. The only such rules are the structural or

expansion rules (since there is no other irregular rule with principal

constituent on the left). Let the premise be Ait By the induction hypothesis,

A\ is provable, and A\ = A\.

(ε) Uk is not void and Ak is derived by a regular rule for which the

principal constituent is in £/&. Then the rule is *Ξ (really *F), and the left

premise, say A{, is

Mk, Uj, H(EZ) \ak\-Nk,

where Uj is that part of Uk left over when the principal constituent, which

must be LE, is removed. Then by the induction hypothesis, A}9 which is the

same as A^ is derivable. Q.E.D.

Proof of Theorem 3: If X has a semiparametric ancestor of the form LE in

the proof of either (4) or (5), then X >- LE. In this case, by [CLg.Il]

Theorem 12C7, there is a derivation of

M, LE \a ι-r, L.

Then (6) follows by Lemma 3.1. If there is no semiparametric ancestor of

X of the form LE in the proof of either (5) or (6), then the proof follows the

usual three-stage pattern of proofs of (ET) in [CLg.Il], for example the

proof of Theorem 15B7. Stage 1 goes through as usual. After Stage 1, it

can be assumed that the head of X is Ξ, since all other cases have been

taken care of in that stage. In Stage 2, the case of FE* can be excluded

from case (β) by the assumption that no semiparametric ancestor of X in

(6) has the form LE; furthermore, the cases of the irregular rules for H

can be excluded from case (δ) by the assumption that X, and hence each of

its semiparametric ancestors, has Ξ at its head. Stage 3 goes through as

in the proof of [CLg.Π] Theorem 15B7; the right premise of Ξ* can be

ignored. This completes the proof.

Theorem 4 If the L-system is taken to be singular, then

M \*\-XτlM \-TX.

Proof: Similar to the proof of [CLg.Il] Theorems 14E2-3 (see also

Theorem 15B8).

5 Q-consistency. Let us now extend the system by introducing Q as a

canonical atom of degree 2 and postulating, in the T-formulation, the

additional axiom scheme

(p) hQXX, where X is any oby

and in the L-formulation the prime statement

(p)* I a h QXX, where X is any ob.

Then Theorem 4 still holds. Furthermore, we have by Rule Eq,

(9) X = Y -> I- QXY.
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The main consistency result of this paper is the converse of (9):

Theorem 9 If

(10) I- QXY

is provable in the T-formulation, then X = Y.

Proof: If (10) holds, then in the singular L-formulation, we have

(11) lαh-QXF.

Now the only rule of which (11) can be the conclusion is Exp*. Hence, the
proof of (11) consists of a sequence of statements, each of which has the
form

\ahQUV

where X >- U and Y >- V. The first of these statements must be an
instance of (p)*, and hence in this statement U = V. It follows by properties
of equality that X = Y.

This system still does not include all of the desirable properties of
equality. For although (9) holds, we do not have within the system

(12) QXY, ZXV-ZY.

In [EFT], a method of adjoining (12) to 92l of [CLg.II], provided that certain
restrictions were fulfilled, was presented. A method of doing the same
thing for 922 is presented in [EFTT].

NOTES

1. For an explanation of the letters in brackets, see the references.

2. Note that this is not the same system as the system also called 9$i of [SIC].

3. Presented at the Congres 1972 de Logique d'Orleans held at Orleans, France,
September 4-13, 1972. This research was supported by Illinois State appro-
priated funds administered by the Mathematics Department of Southern Illinois
University at Carbondale.

4. I.e., if the theory is based on a system of combinators. In all such systems
considered in this part of [CLg.II] clause (c) of the bracket algorithm, which
says that [x]Ux = U if x does not occur in U, holds. The result referred to in
the text depends on clause (c).

5. The terminology and symbolism of [CLg.Π] will be used freely throughout this
paper.

6. Hence, we must have n ^ 1 in this clause.

7. Because no variable can be a canob of any degree, since otherwise by Lemma
1.1., U would be a canob for any U, and this is known to be false.
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8. In case the system is based on λ-conversion, we must also have axiom (EA) in
case A is a basic combinator; see [CLg.II] §15C1, Footnote 3. An alternative
would be to postulate (EA) only when A is an atom and add the additional rule
FEEX \- EX. Then, to prove that \-EX holds for all obs X, it is sufficient to take
the proof for the synthetic system and add the following case for the case
X = λx. Y: by the induction hypothesis, we have hEF. Hence, using the (perhaps
dummy) premise Ex, Axiom (FE), and Rule Fi*, we can conclude hFEE(λΛr.F),
and then l-E(λΛ .F) follows by the new rule. This alternative will not be used
here.

9. The system is not quite a CL-system because of the presence of prime state-
ment FE*. However, the presence of this prime statement does not upset the
proofs of [CLg.II] Theorems 12C3-7, which will be used in what follows.

10. Note that the rules Ξ*, F*, and P* as given here differ from the rules usually
called by these names in [CLg.II]. The rules given here are used in [CLg.II]
§15C4.
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