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1 Introduction In computer question answering and problem solving
programs many of the questions of modal and tense logics appear as
practical design problems. One problem of particular interest appears
when we allow events to have the truth value "unknown", a natural value to
assign to some events which occur at other times than the present.
However, allowing a third value is not as simple as it seems. Suppose that
statements P and Q each have the truth value "unknown". What values
should be assigned to {PΛQ)7 If (PvQ) is necessary, it should have the
value " t rue", otherwise it has the value "unknown". The "modal"
composition of truth values cannot be achieved in a three ("true",
"unknown", "false") valued truth functional logic. In fact, as shown by
Dugundji [l], no finite valued truth functional logic can be given the modal
interpretation. Consequently, semantic analysis of most modal systems
must be quasi-truth-functional or involve infinite matrices or both. For
example, Kripke [2] introduces the concept of a set of "possible worlds"
with a model which assigns to each well formed formula (wff) a set of truth
values, one for each world. If the set of worlds is infinite then each wff
will have an infinite sequence for its value. Furthermore, the composition
of truth values is not strictly truth-functional since it depends on the
"possibility" relation between worlds. Another example is the infinite
product logic, πC2, where C2 is the classical two-valued propositional
calculus [5]. In this logic wffs again have sequence for their values. These
sequences can be viewed as the value a wff takes over time [3] and thus
provide a link between modal logic and tense logic. A final example, out of
many others, is the probabilistic approach as discussed by Rescher [4], [5].
He shows that assigning a probability to each wff and applying certain
minimal features of a probability calculus yields a set of tautologies
equivalent to the theorems of S5. Here again the logic is infinite valued and
quasi-truth-functional in the compositions.

With a concern for computer applications such as question answering it
seems appropriate to discuss yet another approach, which appears to have
a simpler (though non-truth functional) decision procedure while requiring
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only three truth values. The system discussed (called system C) is a

propositional logic consisting of a set of rules defining derivability and a

somewhat unusual evaluation scheme.

Two kinds of implication are defined in the system: a material

implication for which all the classical two valued tautologies hold, and a

strict implication which satisfies all of the rules of S5, and in addition, the

rule

If not -N2i4v5 then \-Q(AvB) 3 (ΏAvΏB).

This latter rule shows that C is a system of logical necessity only, unlike

S5 which applies to other kinds of necessity as well. However, many of the

so-called "paradoxes of material implication" do not arise in C. This

paper presents the system C and shows that its set of theorems and its set

of tautologies are the same.

2 Syntax We assume an infinite set S of statements with variables

(A Q> r> s> , A, B, C9 . . .) ranging over S. There are three primitive

statement connectives, ~ (negation), v (disjunction), and D (necessity). We

allow abbreviations such as the following:

a) p*q = ~(~p v ~q) read "p and q"

b) p ^ q = ~ps/q read "Up then q"

c) p = q = (/> => q) Λ (# ^ p) read "p if and only if q"

ά) Op = ~D~/> read "possible/?"

e) p —» q = Π(p ^> q) read "p strictly implies q9ί

f) P <^> q=p-*q*q-*p read "p strictly equivalent to q"

g) Jip = Dp read "p takes the value 1"

h) Jip = ~Πp Λ ~ Π ~ £ read "p takes the value \"

i) Jop = Π~p read "p takes the value 0"

The connectives Jl9 J±, and J o (first used for a similar reason by Rosser

and Turquette [6]) are introduced here to simplify the completeness proof

given in section 6.

3 C -tautologies In order to define what it means for a statement to hold or

to be a tautology, we need to define what the evaluation rules of our system

are. The following paragraph presents a recursive definition of the

evaluation function (ev: S —* {0, | , l}). Note that it requires the standard

definition of two valued tautology.

Let p be a wff of the form F(pι,p2, -,Pn) f ° r some connective F.

Let 0?!, α2, . . ., otn be an assignment of values 0, | , and 1 to pl9p2, . . ,Pn-

Then the evaluation of p, denoted ev(p) is defined as follows:

a) if ϊ=p (p is a tautology in the classical two valued propositional logic),

then ev (p) = 1

b) Up -pi for some ί, then ev(p) = <Xi

c) if p = ~q then ev(p) = 1 - ev(q)

ά) if p = qvr then ev(p) = mαx(ev(#), ev(r))

e) if p = Ώq then ev(p) = [ev(#)] (the greatest integer less than or equal to

ev(tf))
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It should be noted that the values 0, | , and 1 were chosen to simplify the
presentation. We could have used more meaningful names such as "false"
for 0, "unknown" or "indeterminate" for | , and " t r u e " for 1.

In the usual way a C-tautology is defined to be a wff which takes only
the value 1 for every assignment of values to its component statement
variables. (We write f= p if p is a C-tautology.) Clearly then (by a) above)
every two valued tautology is also a C-tautology. Furthermore, such modal
laws as p —* (p*p) will be seen to be C-tautologies. However, the so-called
"paradoxes of material implication" do not arise in C, when we view " - + "
as strict implication. For instance, although p =) (q 3 p) is a C-tautology,
P -* (<ϊ -* P) is not, since rule a) does not apply, and when both p and q are
assigned the value | , p -* (q —» p) takes the value \.

4 C-theorems In this section we present a set of rules (proper rule
schemata and axiom schemata) which together with a definition of formal
demonstration specify the theorems of the system C. None of the rules is
in its most primitive form (using only ~ , v, and D). However, expansion of
an abbreviated wff is a straightforward procedure using the definitions of
section 2. In what follows we shall use abbreviated forms for various
reasons. However, it should be understood that when we speak of the length
of a wff or occurrences of a symbol in a wff that we refer to the primitive
form. Thus, we say that D occurs in both DA and in JιA.

Cl \-A^> (B^> A)
C2 HA 3 (B 3 C)) 3 ((A D B)o (A => C))
C3 H~A ^ ~£) 3 (B 3 A)
C4 \-A,hA^> B=Φ\-B
C5 h D A ^ A 1

C6 \-Ώ{A 3 B) 3 {ΏA 3 ΠB)
C7 \-CA 3 DOA (or ~DA D D~DA)
C8 f-A=^hDA
C9 If not -|=(Av£) then \-Π(AvB) ~D (ΠAVΠB)

We write ThA to indicate that A is derivable from the set of
statements Γ, that is, there is a finite sequence (called a derivation) of
wffs, D = (dl9 d2, . . ., dn) such that A = dn, and each di is an element of Γ,
or is some dj in D such that j < i, or follows from some wffs in dl9 d2, . . .,
<2f -i by rules C1-C9. If Γ is null we say that A is a theorem, or \-A.
Where there is a chance for confusion we write v^A.

Rules C1-C3 and C4 (modus ponens) comprise a set of axioms for
classical two valued logic, thus ensuring that b,A=#>ι^A. The addition of
rules C5, C6, and C8 gives the modal system M. Adding C7 gives the
system S5. C9 is the special axiom mentioned earlier which makes C a
system of logical necessity.

1. Sobociήski [7] has shown that in the classical axiomatization of S5 the axiom C5 is
redundant and hence it is redundant in the system C.
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5 Every C-theorern is a C-tautology {Soundness) This section shows that
any theorem of C takes the value 1 for every assignment of values to its
variables. It suffices to show that each rule of C is a C-tautology.

CS1-4 \=A^(B^A); 1= (A 3 (B D C)) 3 ((A 3 B) D (A => C));
1= (~A 3 - 5 ) 3 (^ 3 A); I=A, t=A 3 ^ => f=£

Proof: Obvious by step a) of the evaluation scheme.

CS5 t= DA 3 A

Proof: If ev(A) Φ 1, the ev(ΠA) = 0.

CS6 tg D(A => 5) 3 (DA 3 DJB)

Proo/; If ev(DA D D5) * 1 then ev(DA) = 1 and ev(D£) = 0. But then
ev(A) = 1 and ev(B) Φ 1. Hence ev(A D 5 ) M and ev(D(A 3 5)) = 0.

CS7 I^OA D DO A

Proo/; If ev(DOA) Φ 1, then ev(OA) = 0.

CSS 1= A => ίξ DA

Proof: Obvious by step e).

CS9 Ifnot-\=2(AvB)then I^D(A vB) D (DA vDΰ)

Proof: Assume not - |=(Λv5). Then if ev(DAvD£) ^ 1 then ev(DA) Φ 1 and
ev(\JB) Φ 1. Then ev(A) Φ 1 and ev(^) ̂  1. Then ev(A VJB) ^ 1 and ev(D(A v
B)) = 0.

CS10 f̂  A =» ί= A

Proof: Follows from CS1-CS9.

6 Every C-tautology is a C-theorem {Completeness) This section estab-
lishes some theorems of C in order to illustrate the system and then uses
the theorems to prove the completeness of C. This, together with CS10
shows that the given axiomatization of C (C1-C9) is complete and sound
relative to the evaluation scheme given above. In the proofs below,
standard results are given in an abbreviated form (for example, C1-C4
means a theorem of ordinary two valued logic, C1-C8 means a theorem of
the Lewis system S5).

CC1 hA ^B=Φ hΏA ^ ΠB

Proof: 1. KA 3 £ hypothesis
2. HD(A D B) 1, C8
3. HD(A ^ B) ^ (DA z> DJB) C6
4. 1-DADDJ5 2, 3,C4

CC2 hJλA 3 j 0 ~A

Proof: 1. \-A^> ~~A C1-C4
2. HDA D D~~A 1, CCi
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CC3 V-JLA 3 JJL ~ A

Proof: 1. I A 3 A C1-C4

2. \-Π~~A 3 DA 1, CCI

3. I—DAD ~D~~A 2, Ci-C4

4. h~D~A 3 ~D~A 3, Ci-C4

5. I-(~DAΛ ~D~A) 3 (~D~A Λ ~ D ~ ~ A ) 4, Ci-C4

CC4 hJ0A ^J!~A

Proof: By C1-C4.

CC5 \-J{A D J1-f. - A

Proof: By definition from CC£-CC4.

Proof: 1. KAv£=> BvΛ Ci-C4

2. i-D(ΛVjB) 3G(5vA) 1, CCi

CC7 h J0(A v ΰ ) ^ J0(J5 v A)

Proof: l.\~~(AvB) ^ ~(BvA) C1-C4

2. hD-(Av5) 3 D~tBvA) 1, CCi

CCS hJi(Av5) D Ji (BvA)

Proo/; 1. hΠ(BwA) D D(Λv^) CC^

2. l—D(Av£) =) -D(-BvΛ) 1, C1-C4

3.hD~(BvA)3D~(Av5) CCZ

4. I—Π~(AvB) 3 ~Π~(£vA) 3, C1-C4

5. h(~Π(Av5)Λ~D~(Av5)) D (~Π(BVA)Λ

~D~(JBvA)) 2, 4, Ci-C4
CC9 hΠA D D(Av5)

Proo/; l . l -A3(Av5) CI-C4

2. h-DA DD(Av5) 1, C1-C4

CC10 \-ΠA D (</,£ D D(A vJ5))

Proo/; 1. h-DA D D(A v5) CC9

2. hDA D (J, 5 3 D(A vB)) 1, Ci-C4

CCii Y-JiA 3 (DJ5 DD(Av5))

Proo/: 1. h-DB D (J, A 3 D(B vA)) CCi(?

2. f-J.A 3 (DB 3 D(BvA)) 1, C1-C4

3. ί-j A 3 (DB 3 D(A vB)) 2, CC^, Ci-C4

CC12 \-J0A 3 (J0B 3 J0(A vB))

Proof: l . i — A ^ M ^ ^ t A v ΰ ) ) Ci-C4

2. hD~A D D M 3 ^(A vB)) 1, CCI
3. hD~A 3 (O~B 3 Π~(A vB)) 2, CCI
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CC13 hOB Dθ(AvE)

Proof: 1. I—(Avfi) 3 ~β C1-C4

2. i-D~(AvE) D Π~B 1, CCI

3.1—Π~J3 ^ ~D~(A vΰ) 2, C1-C4

CC14 h(D~A~~DE) => ~D(A vE)

Proo/; 1. h(Av5) 3 (~A => 5) Ci-C4

2. \-Π(AvB) D D(~A D 5) 1, CCI

3. t-D(A vJ3) D (Π~A 3 D£) 2, CCi

4. I—(Π~A DDE) D ~D(Av5) 3, Ci-C4

CCi5 hJ0A D (Ji 5 Z) Ji (A v 5))

Proo/: 1. hO5 =>O(Av£) CCi5

2. I-(D~ΛΛ~DJB) ^ - ( A V B ) CC14

3. H ( D ~ A Λ - D ^ Λ O B ) => (~Π(AVB)Λ ~ D ~ ( Λ V 5 ) ) 1, 2, Ci-C4

4. hD~A D ( ( ~ D S A O 5 ) D ( ~ D ( A V 5 ) Λ O ( A VJ5))) 3, Ci-C4

CCi5 h-Ji A D ( j o 5 D j i (Λ v JB))

Proo/; 1. hj0JB 3 (jiA 3 Ji(JBvA)) CCi5

2. hJiA D (JO5 ̂ Ji2(BvA)) 1, Ci-C4

3. hJiA D (J o ^ 3 ji(Λ vS)) 2, CCS

C C i 7 / / WOί ( ϊ =j= I ) ffcew h J f A D (Jy J5 D Jmαxd',/) (A v JB))

Proo/: For i = j = 0, CC12. For z = 1, CCiO. For j = 1, CCii. For i = 0,

j = i CCI5. For z = i j = 0, CC16.

CC18 \-O(AΛB) ^O(AvB)

Proof: 1 . I - ~ ( A V 5 ) D ~ ( A A 5 ) C2-C4

2. l-D~(Λ v5) ^ D < V ( Λ Λ 5 ) 1, CCI

3. h~D~(AΛ#) D ~D~(A vJB) 2, Ci-C4

CCi^ If not - N2 (A v 5) ffcew h Ji A z> (Ji J5 DJi(Av 5))

Proof: Assume not -|=(Av5)

l . h D ( A v 5 ) D (DA v DB) C9

2. \-(~ΠA~~ΠB) => ~D(Av5) 1, Ci-C4

3. H ~ D ~ A Λ ~Π~5) D ~ Π ~ ( A Λ 5) 2, Ci-C4

4. K ~ D ~ A Λ ~ D ~ 5 ) Z> ~Π~(AVB) 3, CCiS, Ci-C4

5. K ( ~ D A Λ ~ D ~ A Λ ~ D 5 Λ ~ D ~ 5 ) D ( - D ( A V J B ) Λ - D - ( A V J B ) )

2, 4, C-Z-C4

6. I-(~DAAA) D ( ( ~ D £ Λ £ ) =) ( ~ O ( A V B ) A O ( A V 5 ) ) ) 5, Ci-C4

CC20 \-ΠA=Φ\-A

Proof: 1. ι~DA hypothesis

2. hA 1, C5, C4

CC21 h-J iAD^^A
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Proof; By C1-C8.

CC22 \-JLA => JOJXA

Proof: 1. I—ΠA => D~ΠA C7

2. l-JiA D J0Ji^4 1, Ci-C4

CC23 h-J0A => J o JiA

Proo/: 1. ^DA 3 A C5

2. I—A => ~D-4 1, Ci-C4

3. i-D-Λ^Π~DA 2,CCi

CC24 hJ,A ^J^JiA

Proof: By CC21-CC23.

CC25 h(J xA ^ J x £ ) => ((JiΛ 3 J i 5 ) => ((JoA => JiB) => JxB))

Proo/: 1. h(A ̂  fi) D (((~A A ~C) ^ 5) D ((C 3 J?) D 5)) C1-C4
2. (-(J^ D JγB) ^ (((~J\i4 Λ ~J 0A) D JXJB) D ((J0A ^ JγB) => J i ^ ) )

1
CC26 Let A be a wff composed in the usual way from the statement
variables pl9p2, ">Pk- Let al9 a2, . . ., oik be a given evaluation {assign-
ment of values) of pl9p2f . . ,,pk. Let p[, Pi, . . .,pibe Jaipl9Ja2p2> ,
JakPk<*ndA'beJwu)A. Thenp[,p'2, . . .,ρl*-A'.

Proof: The proof is by induction on the rules of formation. There are five
cases.

a) A is atomic. Then A=pi9A'= p\, and p\ \-p\ =>/>/ \-A'.
b) \=2A. Then Ar = JXA. By the completeness of two valued logic \=2A =Φ

\-2A. By C1-C4, \-2A==>^A. By C8, ^ JiA =^ ^A'. Thus pl,pi,...,

c) >1 = ~JB. By hypothesis of induction, we have p[, p'29 . . ., p[ hB'. Let i =

ev(B). Then 5 f = J, £ , ev(A) = 1 - ev(.B) = 1 - i, and A f = J L J Λ = J^ii-B).

By CCS we g e t / O ί , -ip'k^A'.
d) A = B vC. By hypothesis of induction, we have />{, />̂ , * . ., pf

k \-Br and
ί ί , Pί, - - ,Pk h C f L e t ^ = ev(B) and j = ev(C). Then Br = J,.(JB) and C f =
J ; (C), ev(A) = mαχ(z, j) (since case a does not occur), and Ar = Jmax(itj)A =
Jmαx(i,/)(5vC). By CCiZ or CCiP, we get p[, pi, . . . , p ί h i l f .
e) A = ΠB. By the hypothesis of induction we have p{, p2, . . ., Pi \-B\ Let
i = ev(B). Then 5 f = J t B, ew(A) = [z], and A1 = J^A = J[i]JiA. By CC24 we
get/>{,#, . . ,ρ'k\-Ar.

CC27 If Γ is a set of wffs and A and B are wffs, then Γ, A ^B implies

Γ ^.(A D J5).

Proof: Let D = (<#!, d2> Γ^«) b e a derivation of 5 from Γ u {A}. For each
z = 1, 2, . . ., n, define a sequence F t as follows:

a) If di is an instance of C1-C9 or an element of Γ, let Y{ be (d, , d{ 3

(A =>df ),A =>*) .
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b) If di = A let F, be a derivation of A z> A from the null set. (Since
\-2A ^ A we have ^ A^> A.)
c) If rf, follows from previous wffs of D, say dj and d^ = dj D <#t , by C4, then

let F, be (select the least j and k) (F ; , FA, (A ^ (rf; z> <*,.)) D ((A z> dj) D

U =5 df )), U => rfy) => (A =) di), (A ^ d{)).

It follows (by induction) that for each i = 1, 2, . . ., n, that F, is a derivation
of A 3 <2; from Γ. Since dn is B, Yn is a derivation oi A^ B from Γ.

The completeness theorem follows directly from CC26 and CC27.

CC28 \=A=^^A

Proof: Let A be a wff composed in the usual way from the variables
Pi, p2> - - •> Pk Define p[, pf

2, . . ., ρ'k, A
r a s in CC26. Then \=A impl ies for

every evaluation, ev(A) = 1, hence A' = JλA. By CC26, p[, pi, . . ., p[\^JlA
for every evaluation. In particular,

P\ > Pi* - •> ίi-i> JiPk *c ^ ^

^ ' , ^ 2 , ,Pi-i, J\Pk t J i A

By CC^Z,

ί ί , ί ί , .,Pi-i ^JiPk^JiA
PI Pi, .,PU ^J^Pk^JiA
PI, PL -,Pί-i ^JoPk ^JiΛ

By CC25, pi, pi,, . . ., pf

k_x ^JXA. By induction we can get ^JλA, and by

CC20 Y^A.

7 Conclusion

CCS1 \ΪA<=Ϊ^A

Proof: Follows immediately from CC28 and CS10.

Theorem CCS1 shows that the evaluation scheme given above assigns
the value 1, for all assignments of values to the component variables, to
those and only those wffs which are derivable from the axioms C1-C9.
Thus, the system C is complete and sound relative to the axioms and
evaluation scheme presented.

C is an interesting system in several ways. As mentioned, its strict
implication operator (-*) avoids many of the implication paradoxes which
are also avoided by the Lewis systems. Furthermore, no Godel sequence
(see [l] or [5]) holds for the strict equivalence; that is, wffs of the form

(Pi *->p2) v (p1 *->p3) v (p2 <r+p3) v (pι<r->p4) v (p2 ^>pd v

(P3 <^Pd V . . .V (pn-1'<r+pn)

are not theorems. The reason that C is not a counter example to Dugundji's
theorem is that it is not a strictly truth functional logic; that is, no finite
truth table could be constructed to replace its evaluation scheme.
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It seems reasonable (although it has not been shown here) to expect
that changing rule a) of the evaluation scheme so that "necessities" other
than logical necessity are captured would make C equivalent to S5. As it
stands, C is strictly stronger than S5 because of the axiom C9. Aside from
any intrinsic interest C may hold as a system for purely logical necessity,
it appears that its main value may be in computational areas. There are
many efficient methods for checking for two valued tautologies, so the
evaluation scheme should be easy to implement in a question answering
system. The ' 'unknown'' truth value could then be assigned to certain future
(or past) statements or events. Questions involving several events might
then take the value "unknown", provided they were not tautologies.
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