ON THE INDEPENDENCE OF THE FUNDAMENTAL OPERATIONS OF THE ALGEBRA OF SPECIES

JEKERI OKEE

The aim of this article is to prove the results announced in [2]. That is, that the fundamental operations of the algebra of species are independent, in the sense that none of the four operations is definable in terms of the others. The fundamental operations of the algebra of species are: the species implication " \Rightarrow ", the species union " \cup ", the species intersection " \cap ", and the species complement " - ". For details see [6]. A species algebraic operation, say " \Rightarrow '", is definable in terms of the other operations, if given any term T of the algebra of species which contains " \Rightarrow " and does not contain any of the other three operations, there exists a term T^{*} which does not contain " \Rightarrow ", such that the formula ($T \Rightarrow T^{*} \cap T^{*} \Rightarrow T$) $=1$ is valid in every algebra of species. We shall call this the defining formula of " \Rightarrow ". We shall in each case prove the independence of each operation by giving a species algebra in which the defining formula of the operation is not valid.

Definition 1 Let $\mathfrak{M}=\langle S, A, \Longrightarrow, \cup, \cap,-\rangle$ be an algebra of species, and T a term of the algebra of species. The following formulae define (recursively) a function $F_{T, \mathfrak{M}}$ which correlates an element $F_{T, \mathfrak{4}}\left(X_{1}, \ldots, X_{n}, \ldots\right) \in S$ with every infinite sequence of elements $X_{1}, \ldots, X_{n}, . \quad \epsilon S$:
(i) $\quad F_{T, 21}\left(X_{1}, \ldots, X_{n}, \ldots\right)=X_{p}$ if $T=T_{p}(p=1,2,3 \ldots)$;
(ii) $F_{T, 2 \mu}\left(X_{1}, \ldots, X_{n}, \ldots\right)=F_{T_{1}, 24}\left(X_{1}, \ldots, X_{n}, \ldots\right) \Longrightarrow F_{T_{2}, 2 \mu}\left(X_{1}, \ldots, X_{n}, \ldots\right)$, if $T=T_{1} \Rightarrow T_{2}$ (where T_{1} and T_{2} are terms);
(iii) and (iv) Analogously for the operations '" \cup ' and " \cap ';
(v) $F_{T, 21}\left(\overline{\left.X_{1}, \ldots, X_{n}, \ldots\right)}=F_{T_{1}, \mathfrak{2 1}}\left(X_{1}, \ldots, X_{n}\right)\right.$, if $\bar{T}=T_{1}$.

We say that a term T is verified by the species algebra, in symbol $T \in \mathrm{E}(\mathfrak{A})$, if $F_{T, 21}\left(X_{1}, \ldots, X_{n}, \ldots\right)=A$ for all $X_{1} \ldots X_{n} \in S$.
Definition 2 A formula $\mathfrak{S}=(T=1)$ of the algebra of species is said to be valid in the algebra \mathfrak{M}, if T is satisfied by \mathfrak{A}, and $\boldsymbol{5}$ is said to be valid in the algebra of species if it is valid in every algebra of species.

Let

$$
\mathfrak{A}_{1}=\left\langle S_{1}, A_{1}, \Rightarrow, \cup, \cap,-\right\rangle^{1}
$$

be an algebra of species of a given subspecies of a given species A_{1}, with $S_{1}=\left\{A_{1}, A_{2}, A_{3}\right\}$ as shown in the table below. We may obtain a model of \mathfrak{n}_{1}, if we take A_{1} to be the species of all real numbers and A_{2} to be the species of all real numbers which are known to be rational or irrational. We shall prove the independence of " - " by showing that its defining formula is not valid in \mathfrak{A}_{1}. In the algebra $\mathfrak{\mu}_{1}$, we have

$$
A_{1} \Rightarrow A_{1}=A_{1} \cap A_{1}=A_{1} \cup A_{1}=A_{1} \text { and } \bar{A}_{1}=A_{3} .
$$

Suppose that the species complement "-", were definable in terms of the other three operations. Then there would exist a term T_{1} which does not contain " - " and such that ($\left.\bar{A}_{1} \Rightarrow T_{1} \cap T_{1} \Rightarrow \bar{A}\right)=1$ would be a valid formula of the algebra of species. Suppose we replaced every species variable in the above formula by A_{1}. Then T_{1} would be reduced to " A_{1} '". Then we would have ($\bar{A}_{1} \Rightarrow A_{1} \cap A_{1} \Rightarrow \bar{A}_{1}$) $=A_{1}$ or ($A_{3} \Rightarrow A_{1} \cap A_{1} \Rightarrow A_{3}$) $=A_{1}$ in the algebra \mathfrak{H}_{1}. But, in $\mathfrak{A}_{1},\left(A_{3} \Rightarrow A_{1} \cap A_{1} \Rightarrow A_{3}\right)=A_{3}$. Hence there exists no such term T_{1} and the defining formula of "-" is not valid in $\boldsymbol{\mu}_{1}$, and, therefore, "-" is not definable in terms of the other three operations.

Generally, as in the case of logical matrices, (see [1]), if three operations are class-closing on some proper sub-class of the elements of a species algebra \mathfrak{A}, while the fourth operation is not class-closing on the same proper sub-class of the elements of the algebra of species \mathfrak{M}_{1}, then the fourth operation is not definable in terms of the other three. In the algebra \mathfrak{A}_{2} following, $S_{2}=\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$ is a species of sub-species of A. To get a model of $\boldsymbol{\Re}_{2}$ we may take A_{1} to be the species of all real numbers, A_{2} the species of all known rational numbers, A_{3} the species of all known irrational numbers, and A_{4} the species of all real numbers which are known to be rational or irrational.

[^0]In the algebra \mathfrak{A}_{2}, the table shows that if A_{i} and A_{j} are elements of the subspecies $\left\{A_{1}, A_{2}, A_{3}, A_{5}\right\}$ then $A_{i} \Rightarrow A_{j}$ is an element of the subspecies $\left\{A_{1}, A_{2}, A_{3}, A_{5}\right\} ;$ and the only case where $A_{i} \Rightarrow A_{j}=A_{4}$ is when $A_{i}=A_{1}$ and $A_{j}=A_{4}$. Similarly $A_{i} \cap A_{j}$ is in $\left\{A_{1}, A_{2}, A_{3}, A_{5}\right\}$ when A_{i} and A_{j} are in $\left\{A_{1}, A_{2}, A_{3}, A_{5}\right\}$. We note that A_{i} is never equal to $A_{4}(i=1,2,3,4)$. Thus the operations " \Rightarrow ", " \cap ", and " - " are class-closing on the class $\left\{A_{1}, A_{2}, A_{3}, A_{5}\right\}$. But $A_{2} \cup A_{3}=A_{4}$. Now suppose that " \cup '" were definable in terms of the other three operations. Then there would exist a term T_{1} in which " \cup '" does not occur, and such that the formula

$$
\left(\left(A_{i} \cup A_{j}\right) \Rightarrow T_{1} \cap T_{1} \Rightarrow\left(A_{i} \cup A_{j}\right)\right)=1
$$

would be a valid formula of the algebra of species. Let T_{2} be the term that is obtained from T_{1} by replacing " A_{i} " by " A_{2} ", " A_{j} " by " A_{3} " and all other variables (if any) in T_{1} by A_{3}. Then we should have ($\left(A_{1} \cup A_{2}\right) \Longrightarrow T_{2} \cap$ $\left.T_{2} \Rightarrow\left(A_{2} \cup A_{3}\right)\right)=A_{1}$ in the algebra \mathfrak{M}_{2}. But since " \Rightarrow "', " \cap ', and " - " are class-closing on $\left\{A_{1}, A_{2}, A_{3}, A_{5}\right\}$, it follows that T_{2} reduces to a subspecies which is distinct from A_{4}, whereas $A_{2} \cup A_{3}=A_{4}$. The defining equation of ' \cup '", which then reduces to ($A_{4} \Rightarrow T_{2} \cap T_{2} \Rightarrow A_{4}$) $=1$, is not valid in \boldsymbol{A}_{2} since $A_{4} \neq T_{2}$ and, therefore, $\left(A_{4} \Rightarrow T_{2} \cap T_{2} \Rightarrow A_{4} \neq A_{1}\right.$ in \mathfrak{A}_{2}.

From the above we conclude that " U " is not definable in terms of the other three operations.

We now consider the algebra $\mathfrak{\mu}_{3}$ which is the direct product of the algebra A_{1} by itself. In the algebra $\mathfrak{\Re}_{3}=\left\langle S_{3}, A, \Rightarrow, \cup, \cap,-\right\rangle$,

$$
S_{3}=\left\{A_{11}, A_{12}, A_{13}, A_{21}, A_{22}, A_{23}, A_{31}, A_{32}, A_{33}\right\} .
$$

In this algebra we have, for example, $A_{12} \Rightarrow A_{32}=A_{31}$, since $A_{1} \Rightarrow A_{3}=A_{3}$ and $A_{2} \Rightarrow A_{2}=A_{1}$ in $\boldsymbol{\mathfrak { M }}_{1}$. Similarly, $A_{22} \cap A_{31}=A_{32}$ in $\boldsymbol{\mathfrak { A }}_{3}$, since $A_{2} \cap A_{3}=A_{3}$ and $A_{2} \cap A_{1}=A_{2}$ in \mathfrak{A}_{1}. Further, $\bar{A}_{13}=A_{31}$ in \mathfrak{M}_{3}, since $\bar{A}_{1}=A_{3}$ and $\bar{A}_{3}=A_{1}$ in \mathfrak{A}_{1}. In the algebra \mathfrak{A}_{3}, the three operations " - ", " \cup ", and " \cap " are

Algebra \boldsymbol{M}_{2}

\Rightarrow	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}
A_{1}	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}
A_{2}	A_{1}	A_{1}	A_{3}	A_{1}	A_{3}
A_{3}	A_{1}	A_{2}	A_{3}	A_{1}	A_{5}
A_{4}	A_{1}	A_{2}	A_{3}	A_{1}	A_{5}
A_{5}	A_{1}	A_{1}	A_{1}	A_{1}	A_{1}

\cap	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}
A_{1}	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}
A_{2}	A_{2}	A_{2}	A_{5}	A_{2}	A_{5}
A_{3}	A_{3}	A_{5}	A_{3}	A_{3}	A_{5}
A_{4}	A_{4}	A_{2}	A_{3}	A_{4}	A_{5}
A_{5}	A_{5}	A_{5}	A_{5}	A_{5}	A_{5}

\cup	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}
A_{1}	A_{1}	A_{1}	A_{1}	A_{1}	A_{1}
A_{2}	A_{1}	A_{2}	A_{4}	A_{4}	A_{2}
A_{3}	A_{1}	A_{4}	A_{3}	A_{4}	A_{3}
A_{4}	A_{1}	A_{4}	A_{4}	A_{4}	A_{4}
A_{5}	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}

A	\bar{A}
A_{1}	A_{5}
A_{2}	A_{3}
A_{3}	A_{2}
A_{4}	A_{5}
A_{5}	A_{1}

$\Rightarrow \cap$	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}
A_{1}	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}
A_{2}	A_{2}	A_{1}	A_{5}	A_{2}	A_{3}
A_{3}	A_{3}	A_{5}	A_{1}	A_{3}	A_{2}
A_{4}	A_{4}	A_{2}	A_{3}	A_{1}	A_{5}
A_{5}	A_{5}	A_{3}	A_{2}	A_{5}	A_{1}

Algebra \boldsymbol{M}_{3}

\Rightarrow	A_{11}	A_{12}	A_{13}	A_{21}	A_{22}	A_{23}	A_{31}	A_{32}	A_{33}
A_{11}	A_{11}	A_{12}	A_{13}	A_{21}	A_{22}	A_{23}	A_{31}	A_{32}	A_{33}
A_{12}	A_{11}	A_{11}	A_{13}	A_{21}	A_{21}	A_{23}	A_{31}	A_{31}	A_{33}
A_{13}	A_{11}	A_{11}	A_{11}	A_{21}	A_{21}	A_{21}	A_{31}	A_{31}	A_{31}
A_{21}	A_{11}	A_{12}	A_{13}	A_{11}	A_{12}	A_{13}	A_{31}	A_{32}	A_{33}
A_{22}	A_{11}	A_{11}	A_{13}	A_{11}	A_{11}	A_{13}	A_{31}	A_{31}	A_{33}
A_{23}	A_{11}	A_{11}	A_{11}	A_{11}	A_{11}	A_{11}	A_{31}	A_{31}	A_{31}
A_{31}	A_{11}	A_{12}	A_{11}	A_{11}	A_{12}	A_{13}	A_{11}	A_{12}	A_{13}
A_{33}	A_{11}								

\cap	A_{11}	A_{12}	A_{13}	A_{21}	A_{22}	A_{23}	A_{31}	A_{32}	A_{33}
A_{11}	A_{11}	A_{12}	A_{13}	A_{21}	A_{22}	A_{23}	A_{31}	A_{32}	A_{33}
A_{12}	A_{12}	A_{12}	A_{13}	A_{22}	A_{22}	A_{23}	A_{32}	A_{32}	A_{33}
A_{13}	A_{13}	A_{13}	A_{13}	A_{23}	A_{23}	A_{23}	A_{33}	A_{33}	A_{33}
A_{21}	A_{21}	A_{22}	A_{23}	A_{21}	A_{22}	A_{23}	A_{31}	A_{32}	A_{33}
A_{22}	A_{22}	A_{22}	A_{23}	A_{22}	A_{22}	A_{23}	A_{32}	A_{32}	A_{33}
A_{23}	A_{33}	A_{33}	A_{33}						
A_{31}	A_{31}	A_{32}	A_{33}	A_{31}	A_{32}	A_{33}	A_{31}	A_{32}	A_{33}
A_{32}	A_{32}	A_{32}	A_{33}	A_{32}	A_{32}	A_{33}	A_{32}	A_{32}	A_{33}
A_{33}									

\cup	A_{11}	A_{12}	A_{13}	A_{21}	A_{22}	A_{23}	A_{31}	A_{32}	A_{33}
A_{11}									
A_{12}	A_{11}	A_{12}	A_{12}	A_{11}	A_{12}	A_{12}	A_{11}	A_{12}	A_{12}
A_{13}	A_{11}	A_{12}	A_{13}	A_{11}	A_{12}	A_{13}	A_{11}	A_{12}	A_{13}
A_{21}	A_{11}	A_{11}	A_{11}	A_{21}	A_{21}	A_{21}	A_{21}	A_{21}	A_{21}
A_{22}	A_{11}	A_{12}	A_{12}	A_{21}	A_{22}	A_{22}	A_{21}	A_{22}	A_{22}
A_{23}	A_{11}	A_{12}	A_{13}	A_{21}	A_{22}	A_{23}	A_{21}	A_{22}	A_{23}
A_{31}	A_{11}	A_{11}	A_{11}	A_{21}	A_{21}	A_{21}	A_{31}	A_{31}	A_{31}
A_{32}	A_{11}	A_{12}	A_{12}	A_{21}	A_{22}	A_{22}	A_{31}	A_{32}	A_{32}
A_{33}	A_{11}	A_{12}	A_{13}	A_{21}	A_{22}	A_{23}	A_{31}	A_{32}	A_{33}

A	\bar{A}
A_{11}	A_{33}
A_{12}	A_{33}
A_{13}	A_{31}
A_{21}	A_{33}
A_{22}	A_{33}
A_{23}	A_{31}
A_{31}	A_{13}
A_{32}	A_{13}
A_{33}	A_{11}

$\Rightarrow \cap \Rightarrow$	A_{11}	A_{12}	A_{13}	A_{21}	A_{22}	A_{23}	A_{31}	A_{32}	A_{33}
A_{11}	A_{11}	A_{12}	A_{13}	A_{21}	A_{22}	A_{23}	A_{31}	A_{32}	A_{33}
A_{12}	A_{12}	A_{11}	A_{13}	A_{22}	A_{21}	A_{23}	A_{32}	A_{31}	A_{33}
A_{13}	A_{13}	A_{13}	A_{11}	A_{23}	A_{23}	A_{21}	A_{33}	A_{33}	A_{31}
A_{21}	A_{21}	A_{22}	A_{23}	A_{11}	A_{12}	A_{13}	A_{31}	A_{32}	A_{33}
A_{22}	A_{22}	A_{21}	A_{23}	A_{12}	A_{11}	A_{13}	A_{32}	A_{31}	A_{33}
A_{23}	A_{23}	A_{23}	A_{21}	A_{13}	A_{13}	A_{11}	A_{33}	A_{33}	A_{31}
A_{31}	A_{31}	A_{32}	A_{33}	A_{31}	A_{32}	A_{33}	A_{11}	A_{12}	A_{13}
A_{32}	A_{32}	A_{31}	A_{33}	A_{32}	A_{31}	A_{33}	A_{12}	A_{11}	A_{13}
A_{33}	A_{33}	A_{33}	A_{31}	A_{33}	A_{33}	A_{31}	A_{13}	A_{13}	A_{11}

class-closing on the class $\left\{A_{11}, A_{12}, A_{22}, A_{33}\right\}$, while $A_{12} \Rightarrow A_{22}=A_{21}$, and, by similar arguments as shown above, we conclude that " \Rightarrow " is not definable in terms of the other three operations.

Finally " - ", " \cup ", and " \Rightarrow " are class-closing on the class $\left\{A_{11}, A_{12}\right.$, $\left.A_{13}, A_{33}\right\}$, while $A_{12} \cap A_{31}=A_{32}$. Hence, we conclude, by similar arguments as shown above, that " \cap " is not definable in terms of the other three operations. This concludes the proof that none of the four fundamental operations of the algebra of species is definable in terms of the others.

We note also that since the algebra of species is isomorphic with the intuitionistic propositional calculus (see [5]), the independence of the propositional functions $\rightarrow, v, \wedge, \sim$ imply the independence of the speciesalgebraic operations $\Rightarrow, \cup, \cap,-$. Further, the completeness of the algebra of species (see [3] and [4]), together with the above results, means for example that a formula which contains "_", cannot be equivalent to one which does not contain "-".

REFERENCES

[1] McKinsey, J. C. C., "Proof of the independence of the primitive symbols of Heyting's calculus of propositions," The Journal of Symbolic Logic, vol. 4 (1939), pp. 155-158.
[2] Okee, J., "On the independence of the fundamental operations of the algebra of species," Notices of the American Mathematical Society, vol. 20 (1973), p. A-499.
[3] Okee, J., "On the completeness of the algebra of species," Notices of the American Mathematical Society, vol. 20 (1973), p. A-446.
[4] Okee, J., "Completeness of the algebra of species," Notre Dame Journal of Formal Logic, vol. XVII (1976), pp. 392-394.
[5] Okee, J., "A species-algebraic interpretation of the intuitionistic propositional calculus," Notre Dame Journal of Formal Logic, vol. XVII (1976), pp. 222-232.
[6] Okee, J., "Untersuchungen über den einstelligen intuitionistischen Prädikatenkälkul der ersten Stufe," Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 18 (1972), pp. 37-48.

Makerere University
Kampala, Uganda

[^0]: ${ }^{1}$ The algebraic tables for algebras $\mathfrak{\varkappa}_{2}$ and $\mathfrak{\varkappa}_{3}$ are given on pages 528 and 529 .

