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LEIBNIZ'S SYLLOGISTICO-PROPOSITIONAL CALCULUS

HECTOR-NERI CASTANEDA

In his research in logical theory after 1680 Gottfried Wilhelm Leibniz
worked intensively at devising a formal calculus that would be interpreted
as a general logic. He was convinced that the classical types of categorical
propositions were the fundamental ones, so that the central core of his
general calculus had to consist of the theory of the syllogism. He conceived
the rest of the logical relationships between propositions as developments
of syllogistics. Thus, the calculus he was aiming at was not to be merely a
calculus that could have a double interpretation: as a syllogistic calculus
and, alternatively, as a calculus of other types of implication. His general
calculus was to have the principles of syllogistics and the other logical
principles together at once. His calculus would be powerful enough to
handle mixed inferences involving classical syllogisms and other reason-
ings.

Undoubtedly because of his algebraic researches and his view on the
nature of truth, Leibniz took it for granted that a fully satisfactory logical
calculus must be an equational one. Thus, his first efforts at treating the
theory of syllogism were directed toward the construction of an equational
syllogistic calculus. (And he anticipated some equations of Boolean
algebra.) His General Inquiries about the Analysis of Concepts and Truths
(1686), referred to here as [I],1 contains a series of reflections on the
syllogistic equations. He tries several approaches, and discovers some
valid equations. But two things are of special interest to us now:
(i) Leibniz formulates there principles that allow the generalization of
syllogistics to propositional logic; (ii) Leibniz moves toward a higher level
of abstraction. In his [2], The Primary Bases of a Logical Calculus
(August 1, 1690), he takes up the topic again, and this time he begins with
general logical principles and discusses applications to syllogistics. He
distills the general system in [3], The Bases of a Logical Calculus
(August 2, 1690).

My purpose here is to examine critically the system slowly developed
by Leibniz in those three papers. I want to determine how close he came to
formulate, or conceive of, a calculus that is at once adequate for both
syllogistic and propositional logic. Naturally, the precise way of measuring
the degree of accomplishment of his efforts consists of the completion of
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his system. The contrast between the finished whole and the missing part

illuminates the furnished fragment. Of course, this involves a distortion

here and a distortion there. But reconstructive or rational history of ideas

is founded on the postulate that the sole means of assessing philosophical

ideas is a series of properly delineated distortions that make an adum-

brated pattern explicit or complete. Briefly, in [l] Leibniz furnishes

formation rules for his general logical calculus and makes several

attempts at formulating axioms and rules of inference. In [2] he makes

another inconclusive attempt at formulating axioms and rules of inference.

His set of axioms and rules in [3] is almost completely adequate for the

propositional calculus. It is lamentable that he did not publish an article

summarizing the main results in these three works. Symbolic logic and

Boolean algebra would have been developed earlier and faster. The system

of logic that Leibniz almost formulated fully is worth enjoying for its own

sake.

I LEIBNIZ'S STRUCTURAL PRINCIPLES

Ί The official principles First I want to set up Leibniz's official principles

about the composition of propositions in his own words. The statements

are for the most part taken from [1], where they are scattered; but together

they make a better impression.

At least since 1679 Leibniz was firmly persuaded that all non-

syllogistic inferences are embellishments of the syllogism, since

(1) the categorical proposition is the basis of the rest, and modal, hypo-
thetical, disjunctive, and all other propositions presuppose it. ([4], par. 2.)

Leibniz, following the Aristotelian tradition, conceives of all propositions

as being of a subject-predicate form, so that

(2) A proposition is that which states what term is or is not contained in
another. ([1], par. 195.)

He also includes as propositions structures of terms that attribute

coincidence or identity to such terms. But Leibniz himself formulates

containment of a term in another as a special case of coincidence. Thus,

where '=' replaces Leibniz's own sign '<*>> for coincidence:

(3) Generally, "A is B" is the same as "A = AB"; for it is clear from this
that B is contained in A. ([1], par. 83; see also pars. 16, 36, 54, 88, 189,
199, etal.)

Hence, Leibniz justifiably characterizes a proposition more simply, thus:

(4) A proposition is [of one of the forms] "A coincides with B," "A does not
coincide with B." (A and B can signify terms, or other propositions.) ([1],
par. 4.)

The important generalizing parenthetical remark after his characterization

of propositions repeats a note attached to a previous passage, just two

paragraphs before Leibniz begins numbering the sections of [l]. It is, of

course, based on the principle that
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(5) Any proposition can be conceived as a term ([1], par. 109; see also pars.
75, 138, 189, 197, 198, and par. 55, where Leibniz declares: "I count the
whole syllogism as proposition also.")

This principle allows Leibniz to transfer the syllogistic machinery to other
propositions:

(6) Whatever is said of a term which contains a term can be said of a
proposition from which another proposition follows. ([1], par. 189.)

In par. 198 he says: "that a proposition follows from a proposition is
simply that a consequent is contained in an antecedent." But there is an
ambiguity here. The word 'follows' may be taken to mean implication,
rather than taken to represent the connective of conditionalization. On the
former interpretation the principle would be a special case of the Deduction
Theorem, i.e., a special case of the principle of conditional proof. In the
latter case the passage says that a conditional of the form "If p, then q" is,
in the light of (3) above, to be analyzed as the proposition "p = pq."
Undoubtedly both are true. But the second interpretation is the stronger
one. There is additional evidence in C 423:

(7) Une proposition categorique est vrai quand le predicat est contenu dans
le sujet; une proposition hypothetique est vrai quand le consequent est
contenu dans 1'antecedent.

Leibniz himself analyzes "If L then M" as "L = LM" (C 408).
One of the fundamental principles in Leibniz's philosophy is this: "In

every proposition the (concept of the) predicate is included in the (concept
of the) subject." From this principle he derives the important meta-
physical conclusion about each monad including a representation of the
whole universe, which conclusion is itself the basis for his preestablished
harmony. Thus, there cannot be true negative propositions, i.e., true
propositions in which negation has the largest possible scope. Hence, for
profound philosophical reasons Leibniz is committed to the view that
negation cannot be, in the end, a genuine propositional connective, but only
a term operator. This view is reinforced by his experience as an alge-
braist. The elementary algebra he knew is primarily a theory of equations.
Thus, the general logical theory he was searching for had to be fundamen-
tally an equational theory.

Although Leibniz discusses negative propositions, i.e., propositions
with negation as their primary connective, without apparent discomfort, he
is very much concerned with their reduction to non-negative propositions.
He is most desirous to formulate a strict equational calculus in which all
propositions are about the coincidence of terms (or propositions). Thus,
he argues that:

(8) "Not every" and "not some" may not properly occur in propositions;
for they only negate the proposition affected by the sign "every" or " some"
and do not make a new sign "not-every" or "not-some." ([1], par. 185.)

Leibniz claims somewhat inexactly, because of (3) and (4) above, that
"Every proposition which is commonly used in speech comes to this, that it
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is said what term contains what." ([1], par. 184.) At any rate, since
Leibniz knows how to eliminate negative propositions he can afford the lux-
ury to speak of them. One method of elimination (discussed in [1], par. 185)
consists of predicating falsehood of a term, rather than of negating truth of
it. He discusses a second method:

(9) If we use "AB exists" and "A not-B exists" for particular propositions,
and if for universal propositions we use "A contains B " or "A contains
not-B," we shall be able to dispense with negative propositions. (Marginal
note at the end of [1], par. 198; C 398, P 87nl.)

This elimination of negative propositions is surprising in its lack of
uniformity. Not only does Leibniz leave existence out of the analysis of the
universal propositions, but he does not treat here existence (or truth) as a
genuine term. Leibniz, having analyzed "Some A's are B's" as ΆB
exists," does not go on to interpret this as "AB contains existence," which
by principle (3) above would be symbolized as "AB = AB (Existence)." He
takes this step in [8] (G 213, P 117), but he leaves the concept existence or
entity somewhat isolated.

Leibniz comes, in [8], to the verge of distinguishing a universal
proposition with existential import from one without existential import. In
fact he fails to make the distinction and claims that the subject term is an
entity in full stare of his own symbolism that exhibits the distinction quite
openly. (See G ii 213ff or P 117ff.) He now proposes the following analysis
of the form of the classical categorical propositions:

A: All S's are P's E: No S is P
S not-P = S not-P not-Entity SP = SP not-Entity

I: Some S's are P 's O: Some S's are not P 's
SP = SP Entity S not-P = S not-P Entity

Clearly the A- and O-propositions are contradictory of each other just as
the I- and the E-propositions are each other contradictories. But it is not
at all clear that the A-proposition implies its corresponding I-proposition.
Undoubtedly, the A-proposition as symbolized above and the proposition
that S's exist do imply together that SP = SP Entity. But it is not clear that
"S not-P = S not-P not-Entity" implies "S = S Entity," that is, that S's
exist. We will say more about this in Part II, section 2.

We must note that the above chart is important also because it contains
a third way in which negation as a propositional connective can be
eliminated in favor of negation as a term operator. Leibniz is fully aware
of this and proclaims with satisfaction:

(10) So we have reduced all categorical propositions of logic to a calculus
of equivalences [i.e., of coincidence]. ([10], G vii 214, P 118.)

2 Unofficial principles The preceding principles (l)-(10), with the exception
of (7), are so to speak anatomic principles. They deal with the form of
propositions. In the development of a calculus they pertain to the formation
rules which determine the well-formed formulas of the calculus. Now I
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pass to discuss other formation rules that Leibniz did not state, but are
everywhere present in his discussion. They are extracted from his total
practice in calculus designing in the papers under discussion:

(11) Molecular terms are formed by negating a term and by conjoining two
terms. That is, if A and B are terms, not-A and not-B are terms, and so
are AB and BA.
(12) The copula which forms propositions out of terms is coincidence, and
no proposition has more than one copula.

Principle (11) needs no commentary. Leibniz has often been chastized for
his neglect of disjunction. (See, for instance, P lxi.)

The first part of (12) merely repeats part of (3) and (4) above. The
second part is my generalization from Leibniz's uniform practice. We
noted how in [l] Leibniz insists on treating propositions as terms and that
his term variables have both propositions and proper terms as substitu-
ends. Yet in the essays we are discussing only in [1], (25) and (61), does
he discuss a formula with iterated coincidence sign. In all three essays
under examination here Leibniz comes to junctures at which he should
iterate his coincidence sign, but he refrains from doing it and speaks, in
Latin, metalinguistically, of coincidence or equivalence or sameness. We
shall see some examples later on. The explanation seems to be the fact,
too obvious for him to mention in notes not intended for publication, that
algebraic equations do not contain equations as parts. Of course, it is open
to the reader of those texts to apply the Leibnizian principles (l)-(10) and
introduce, in spite of Leibniz, iterated copulae. Thus, we must distinguish
two Leibnizian logical calculi: (i) the straightforward calculus with iterated
copula, and (ii) the non-iterative calculus.

The non-iterative calculus creates an unavoidable problem. Proposi-
tions can be treated as terms; propositions have a copula, but terms do not;
hence, in order to treat a proposition as a term there must be a trans-
formation scheme that yields terms out of propositions. Of course, there
is no hint in the three essays under discussion that Leibniz was fully aware
of this problem. Actually, the solution to the problem is not far off in the
light of principle (11). Because of (11) the problem is that of transforming
a formula of the form "A = B" (in our notation) into an expression made up
of the terms in A or B, and negation and conjunction. I think that, although
Leibniz did not have a fully satisfactory conception of conjunction, or a
useful heuristic model for it, he would have solved this problem if he had
considered it in detail. He was close enough and he would have interpreted
conjunction as overlapping, so that a term like AB can be interpreted as the
overlapping of the concepts A and B. Thus, the coincidence of the concepts
(or terms) A and B is identical with the overlapping of the complement of
the overlapping of A and B and the complement of the overlapping of not-A
and not-Z?. For clearly, A and B will fail to coincide if either A overlaps
not-I? or not-A overlaps B. All of this was within the reach of Leibniz.

It is perplexing to see Leibniz not pursuing his ideas further in ways
that seem obvious to us (anachronistically, of course). If he had taken the
iteration step he would have fulfilled his claim to treat propositions as
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terms. The non-iterative calculus is also interesting, and if he had dwelled
upon his assumption (12) he would also have made some important
discoveries. It seems to me that the non-iterative calculus is the calculus
that Leibniz adumbrated and the one he was in the process of building up.
Besides his steadfast practice of refusing iteration there is his general
practice of algebraic equations and his idea of producing a mathematics of
reason, or an algebra of logic. Even his later calculi ([5] and [6]) are
uniform in treating negation and addition and subtraction as the only term-
forming operators, and identity or coincidence as the only proposition-
forming operator.

The same inspiration from algebra is the one we already saw operating
before in Leibniz's desire both to eliminate negation as a proposition-
forming operator, and to restrict it to forming terms.

II LEIBNIZ'S AXIOMS AND INFERENCE RULES

1 The official axioms and rules Leibniz's investigations in the three
essays under examination involve several attempts at axiomatizing his
system of logic. The most mature fruit appears in [3]. This is a two-page
piece containing axioms and principles with some deductions, but with no
discussion of applications or rules of formation. This is the relevant text
for us at this juncture. Again, we must consider the principles he
introduces explicitly and officially, so to speak, as well as those which he
introduces in his practice, i.e., in his demonstrations of theorems.

Leibniz puts forward the principles below each of which, in Leibniz's
own words, is numbered with the number Leibniz himself gives either to it
or to the paragraph where he discusses it:

(1) "A Ξ F ' is the same as "A = B is a true proposition."
(2) "Not-(A = B)" is the same as "A = B is a false proposition."
(3) A =AA.
(4) AB = BA.
{§) A = B means that one can be substituted for the other, B for A or A for

B, i.e., they are equivalent.
(6) 'Not' immediately repeated destroys itself.
(7) Hence, A = not-not-A
(8) Moreover, "A = B" and "not-not-(A = B)" are equivalent.
(9) That in which there is A not-A is a non-entity or a false term; e.g., if

C = AB not-B, C would be a non-entity.
(17) Not-£ = not-B not-(AB), i.e., not-B contains not-(AB), or not-B is

not-(AB).
(20) "Not-[not-(AB) = not-(AB) not-B]" and ζζΉot-(AB) = not-(AB) not-A"
are equivalent.

Principles (1) and (2) are presumably meta-linguistic, or second-
order, principles showing how propositions can be terms. Leibniz puts a
bar over "A = B," which is not exactly the equivalent of our quotation
marks. The overbar seems, rather, to be mainly a scope indicator as well
as a signal that what is under it is a term. Thus, we may construe (1) and
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(2) as not really having the coincidence sign at all, except for the implicit
one contained in the 'is' of 'is a true [false] proposition'. Yet Leibniz
refuses to go on to symbolize his analyses in (1) in the form (P):
"t(A = B) = t(A = B) Truth," where t maps propositions into terms, and is,
thus, in part like Leibniz's overbar. In any case (1) is the rule that (P) can
be inferred from "A = B" and that "A = B" can be inferred from (P).

Principle (2) is the schema, discussed in [l], par. 185, for the elimina-
tion of propositional negation. If so it is not an inferential schema like (1).
Principles (1) and (2) together determine the bivalence of propositions.
They do not apply to proper terms. Clearly, if a term AB is true, its
negation not-(AB) may also be true, for the former truth amounts to the
claim that AB's exist, which is compatible with there being A not-£'s as
well as not-AB's and also not-Λ not-jB's. This shows that Leibniz erred in
not distinguishing carefully the falsity of a term, which we saw above he
treats as non-entity (or no-existence), from the falsity of a proposition.
This is perplexing because one would expect his interest in separating
propositions from terms to have provided the basis for an insight into the
distinction between no-existence and falsity.

Leibniz did not seem to have realized that the bivalence of propositions
requires that they, or their corresponding concepts or terms, be treated as
singular concepts. Thus, the conditional proposition If P then Q is analyzed
as t(P) is in t(Q), where the subject t(P) is like an individual, or an
individual concept, like the Apostle Peter or the concept the Apostle Peter.
Hence, t(P) is in t(Q) is like The Apostle Peter is friendly. Metaphysically
this is fine, for it may be argued that just as the concept the Apostle Peter
is, if instantiated at all, instantiated by just one object, so, if a proposition
is true (or a propositional concept is instantiated), it will be made true by
(or be instantiated by) just one fact.

The bivalence of propositions is precisely what corresponds to
Leibniz's view that singular propositions are at once universal and
particular:

Should we say that a singular proposition is equivalent to a particular and to

a universal proposition? Yes, we should. . . . For "Some Apostle Peter"

and "Every Apostle Peter" coincide [and coincide with "Peter"], since the

term ["Peter"] is singular. ([8], very first paragraph; G vii 211 and P 115.)

Unfortunately, Leibniz apparently never put together the special principles
required by singular propositions with the general principles of his logical
system.

2 Unofficial principles In paragraph (13) of [3] Leibniz attempts to prove
"not-[AB = C not-(EB)]," which is perhaps a lapsus for "not-[A£ = CE
not-£]." In his proof he uses:

1. Indirect proof, i.e., reductio ad absurdum,

and

2. The associativity of conjunction, i.e., A(BC) = (AB)C.
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Thus we should consider his total system as having the latter axiom and
either an axiom or a rule for indirect proof. Here is another place where
Leibniz has to be chastized for not having been careful in formulating his
logical system. The case of association is tantalizing. Apparently he never
realized the need for a principle allowing it, even though he uses it widely,
especially in his proof that 2 + 2 = 4 is analytic, and in his late [7], ΓV, vii 10
(G v 394), he even indicates its use by means of braces. This is evidently
like the non-iteration of the copula because so obviously equations do not
contain equations: similarly the associativity of conjunction is so obvious
that it can easily escape notice.

On the other hand, Leibniz did come to list a principle of indirect proof
under the name of inference by regress—i.e., regress to the premises so
as to posit one as false. This principle is stated in [9] (C 412 and P 107) in
the process of applying it to the derivation of the moods of the second and
third figures of the syllogism. In [10] (G vii 208, P 112), the principle of
regress is the fifth general principle listed on its own right. (This suggests
that [10] is later than [9].)

The development of his awareness of the primitivity of reductio ad
absurdum that Leibniz underwent beyond 1686 compares with the develop-
ment of his awareness of the primitivity for his calculus of the commuta-
tivity of conjunction. This property of conjunction is assumed in his
several attempts at axiomatics in [1], but it is listed separately as an
axiom only in [2] and [3].

In Part I, section 1, above we put forward a chart pieced together from
Leibniz's discussion in [8], where he eliminates negation as a propositional
connective in terms of the negation of the term Entity or existence. The
main point is this:

E: No S is P (a) SP = (SP) not-Entity

I: Some S's are P (b) SP = (SP) Entity

Leibniz has already in [3] given two other analyses of the E-proposition:

(c) S = S not-P

(d) not-(SP = (SP) Entity)

The crucial thing is that Leibniz so understands the concept of Entity (ens)
that (a), (c), and (d) are equivalent to one another. Leibniz is here groping
for an account of the existential quantifier in monadic quantification.

The equivalence between (a) and (c) can be illuminated by considering
the contraposition of (a), a principle which Leibniz derived in [3] (19) from
[3] (17). The contraposition of (a), after applying double negation, is
"Entity = Entity not-(SP)." Now, "not-(SP)," although just a term, is
undoubtedly equivalent to (c), "S = S not-P." Presumably this holds on the
ground that what Entity implies is true. Hence, (a) and (c) are equivalent.
Thus, the term Entity seems well-behaved.

The equivalence between (a) ("SP = (SP) not-Entity") and (d) ("not-
(SP = SP Entity)99) is both troublesome and peculiar. It cannot be part of
Leibniz's system if propositional negation is eliminated. The equivalence
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would have to be, on the one hand, an external procedure introducing
negative propositions as terms into the system, and, on the other, an
equivalence reflected by the propositional terms representing (a) and (d).
Clearly, one important case is the very fruitful representation used in the
preceding paragraph to show that (a) is equivalent to (c). Using it again we
find:

(a) SP = (SP) not-Entity (ar) not-((SP) Entity)
(d) not-(SP = SP Entity) (άr) (SP) not-Entity

We should have the equivalence between (a) and (d) reflected by the
equivalence between (a') and (df):

(e) not-((SP) Entity) = (SP) not-Entity

But (e) leads to serious trouble:

1. not-(SP) = not-(SP) [3] (3) and (5)
2. not-(SP) = not-((SP) not-Entity) (a), 1; [3] (5)
3. not-(SP) = not-not-((SP) Entity) (e), 2; [3] (5)
4. not-(SP) = (SP) Entity [3] (7), 3; [3] (5)
5. not-(SP) Entity = ((SP) Entity) Entity 4; [3] (5)
6. Entity = Entity not-(SP) (a), Contraposition: [3] (19)
7. Entity = not-(SP) Entity 6; [3] (4) and (5)
8. Entity = ((SP) Entity) Entity 7, 5; [3] (5)
9. ((SP) Entity) Entity = (SP) (Entity) Entity Association

10. Entity = (SP) Entity 9; [3] (3) and (5)
11. not-(SP) = not-(SP) not-Entity 10; [3] (19)

Now, step 10 says that everything is SP, while its contrapositive 11
says that the complement of SP does not exist. Each contradicts (a), which
says that SP does not exist. Thus, the E-proposition implies a contradic-
tion. By similar reasoning, the A-proposition also implies a contradiction.

Leibniz's Entity analysis of the classical categorical propositions
disturbs the relationships between the universal and the existential
quantifiers. Consider the proposition "Everything is A." On Leibniz's
analysis it is "not-A = not-A not-Entity." By his very own principle of
contraposition this is equivalent to ζtEntity = Entity A," i.e., Entity or
existence implies A. On the other hand, "A's exist" or "Something is A "
is "A = A Entity," i.e., A implies Entity. Thus, the above universal
proposition is the converse of its own existential proposition and does not
imply it without further principles.

Leibniz did not see the difficulties with his treatment of existence, or
Entity, as a term. The most obvious difficulty lies in the transitivity of
coincidence. On his approach, "A's exist" is analyzed as "A implies
existence." Hence, since AB implies A, regardless of the nature of A and
B, if A's exist, AB also implies existence, and, hence, AB's exist. This
difficulty can initially be avoided by keeping Entity, or existence, with a
fixed scope, i.e., by refusing Entity the property of associativity. This
would be the beginning of the treatment of existence, not as itself a term,
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but rather as a term-forming operator. Thus, Leibniz could have granted
that "A = A Entity" implies "AB = (A Entity) B," without the latter imply-
ing "AB = (AB) Entity" or "B = B Entity." He could then have allowed the
term "(A Entity) (not-A Entity)" to be consistent: it does not have the term
"Entity not-Entity . " The non-associativity of Entity would also stop the
above formal argument at step 9. But Leibniz was never really aware of
his assuming and using the associativity of term composition. Hence, he
was not in a position, when he wrote [8], to think of existence, or Entity, as
a term-forming operator.

A difficulty that cannot be solved by merely excepting the term Entity
from associativity or other axioms is this. "AB's exist" implies "A's
exist," yet "AB implies Entity" does not in general, without special
principles, imply "A implies Entity." We need a principle like: from
"AB = (AB) Entity" infer "A = (A) Entity." Incidentally, the converse
approach, to treat "A's exist" as "Existence implies ,4," has the converse
malady. While "A's exist and JB's exist" does not imply "AB's exist,"
"Existence implies A and Existence implies B" does imply "Existence
implies AB."2

Apparently, then, Leibniz did not reach a theoretical understanding of
the existential quantifier. This, however, does not ruin his treatment of
Aristotelian syllogistics. On the Aristotelian assumption that the atomic
terms of his calculus all have instances (or as Leibniz puts it: "In all of
them is tacitly assumed that the ingredient term is an entity" ([8], G vii 214,
P 119), his equational calculus can handle the classical syllogisms.3

Ill THE LEIBNIZIAN CALCULI L.C AND L.Ci

In the light of our discussion in section 3, Part II, we conclude that
Leibniz did not have an adequate incipient grasp of the monadic predicate
calculus. Given his paramount concern with the syllogism one would have
expected that the monadic functional calculus would have been the natural
fruit of his attempts at generalizing the logical theory of his time.
Somewhat ironically, his generalizing efforts came very close to,yielding an
adequate formulation of the propositional calculus. This is what we
establish in this section.

We will formulate first the non-iterative logical calculus L.C, which
incorporates Leibniz's own axioms as nearly in his own versions as
possible. Besides the streamlining of Leibniz's formulations, L .C essen-
tially adds, to what Leibniz propounded or assumed, a scheme for trans-
forming propositions into terms. L.C contains a complete version of the
propositional calculus.

By the introduction of a transformation scheme as an axiom we
produce the iterative calculus L Ci.

1 The calculus L.C

A. Primitive signs The primitive terms of L.C are, (1) a denumerable
supply of primitive proper terms; (2) the term connectors; ~ (read as
'not'), '&' (read as 'and' or 'but'), and <e' (read as'exist(s)'); (3) the



LEIBNIZ'S SYLLOGISTICO-PROPOSITIONAL CALCULUS 491

propositional copula '='; (4) parentheses '(' and ') ' as scope indicators.
From now on we shall use the signs exhibited above autonomously. The
primitive terms are supposed to denote concepts or properties, just as
Leibniz wanted. Existence is, thus, treated as a term-forming operator.

B. Formation rules These rules define the terms and the well-formed
formulas or sentences of L.C.

1. The terms of L.C are each of the sequences A of primitive signs of L.C
that has one of the following forms: (1) A is a primitive term; (2) A is
(~B), where B is a term; (3) A is (B &C), where B and C are terms; (4) A
is (eB), where B is a term.
2. The well-formed formulas (wffs) of L.C are all and only those sequences
of primitive terms of L.C that are of the form: A = B, where A and B are
both terms of L.C.

Convention We shall delete the sign '&' as well as the outermost paren-
theses of a term.

C. Pro position-term transformation scheme Leibniz's idea that proposi-
tions can be treated as terms requires a mechanism that transforms the
former into the latter and vice versa. A simple mechanism that suffices
here as a primitive is this:

TS. A wff of L.C of the form A = B corresponds to the term

Convention on Variables In order to give more generality to our formula-
tion of L .C we adopt the convention of using square brackets around a wff
or the name of a wff of L.C in order to indicate the term corresponding to
the formula, regardless of the transformation scheme being adopted. Thus,
while "A = B" is a wff where A and B are terms, "[A = BY' is the term
corresponding to it. We shall also use the capital letters ζP9, <Q\ 'R', and
'S' with subscripts if necessary as meta-linguistic variables ranging over
propositional terms. We shall use the corresponding lower case letters as
meta-linguistic variables ranging over propositions. In a given formula or
set of formulas, 'P', 'Q', ζR\ and 'S' will each represent the term cor-
responding, respectively, to the proposition represented by *p9, (q9, V, and
V. We shall continue to use (A9, ζB', and (C9 as general meta-linguistic
variables ranging over all types of terms.

D. Axioms of L.C The axioms of L.C are wffs of L.C that have at least
one of the following forms:

General Axioms

[3] (13u-) Al. (AB)C = A{BC).
[3] (4) A2. AB = BA.
[3] (3) A3. A =AA.
[3] (17) A4. ~ £ Ξ ~B ~(AB).
[3] (7) A5. A = ~~A.
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Existence Axioms: We shall not provide them. The ones that Leibniz
adumbrated for his term Entity are not useful for term-operator e.

Special Term Axioms: Since L.C is not general enough to include the logic
of singular propositions, it does not include the needed axioms for the
treatment of individual concepts.

The expressions ΆV through Ά5' are our labels for the axioms. The
numeral within parentheses following '[3]' before each axiom label is the
number of the paragraph of [3], quoted above in Part II, section 2, where
Leibniz formulates the axiom in question. The letter 'u' means that
axiom Al is unofficial, and the sign '-' means that some distortion is
involved in our listing it, namely, the distortion of making explicit what is
implicit or unofficial in Leibniz.

E. Primitive rules of inference We assume that the sequences of symbols
mentioned below are all wffs of L.C. The symbol <pu . . .,pn\-q' means
that the wff q of L .C can be derived from the wffs ρl9 . . ., pn by the rules of
L.C. 'G(B)' represents any wff of L.C containing one or more occurrences
of the term B. We include as a wff G(B) the wff p itself. (G(B/A)' repre-
sents any wff of L.C resulting from a wff G(B) by the replacement of one or
more occurrences of B with occurrences of A. If G(P) is p, then G{P/Q)
is q.

General Rules

[3] (5-) R*. A Ξ B, G(B) \-G{B/A).
[3](13u-) Rl. Iff! ί w P = Q h Λ ~ A ^ ( ΰ ~ β ) ,

pu . . .9pnhP= ~Q.
[3] (1, 2, 9-) R2. p i—P =A{B ~ B).
[3] (1, 2, 9-) R3. ~P=A(B ~B)\-p.

The small distortions R* makes to Leibniz's paragraph (5) of [3] are:
(i) R* is weaker than Leibniz's own rule of substitution of coincidents or
equivalents by not including the replacement of the lefthand term A; (ii) R*
introduces more explicitly the special case P = Q, phq.

R.I involves the distortion of reaching to [10] and then of using
bivalence to introduce the negation of the assumption. This fits his plan of
not using negation as a propositional connective.

R2 and R3 involve the distortion of Leibniz's statement of them
consisting of taking a negated proposition rather than an unnegated one to
equate with a contradiction.

F. Some theorems and derived rules of L.C We adopt the standard
definitions of 'theorem' and 'derivation with premises'. Here we list some
simple theorems and derived rules that will for the most part be referred
to in the next sections. We do not give proofs, but indicate the major steps
in the proofs. Many applications of R* will go unnoted.

Tl. \-A =A.

Proof: A3: A = AA, A s AA; by R*: A=A.
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Definitions

Def. T. <T' is short for '[P = P ] \

Def. t. <V is short for 'P = P\

Def. F. '£' is short for '~[P = P ] \

T2. h t

T3. h T ^ ( p ~ p).

Proof: By TS: T = ~ (P - P) ~ (P - P); A3, by R*.

T4. F = ~T.

Proo/: By TS, Def. F and A3.

DR1. A = BY-B =A.

Proof: By A2 and R*.

DR2. A=B, G{A)\-G{A/B).

DR3. A = Bh~A = ~B.

Proof: ByTl : ~B = ~B; hypothesis; R*.

T5. HF =AF.

Proof: From T2 by R2 and T4 by R*.

T6. Y-¥ = B ^ B.

Proof: From T2 and R2 taking A to be B, then by Al and A2.

DR4. A =ABh~B = ~B~(A).

Proof: (Given by Leibniz in [3] (19).) By A4: ~J3 = ~B ~(AB); hypothesis;

replacement by R*.

T7. hA = AT.

Proof: From T5 by DR4, T4, and A5.

DR5. AB= ΎhA = T.

Proo/;

1. AB= T Hypothesis

2. HA Ξ= AT T7

3. A = A(AB) 1, 2; R*

4. A = (AA)B 3; Al; R*

5. A = AB 4; A3; R*

6. A = T. 1, 6; DR2

DR6. p I - ~ P = F .

Proof: From R2 by Al and A3 taking C and A as P.

DR7. phP= T.

Proof: From DR6, DR3, T4, and A5.
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DR8. A = B, C =DhΛC = BD.

Proof: From AC = AC, Tl, DR2, and hypothesis.

D R 9 . A=BfC = Bh-AC =B.

Proof: From DR8 and A3.

DR10. (Modus Ponens) P = PQ, P = T \-Q = T.

Proof:

1. P s PQ Hypothesis

2. P s i Hypothesis

3. HQ ="QT T7

4. Q Ξ QP~ 2, 3; R*

5. Q Ξ p 1, A2, 4; R*

6. Q s I 2; 5; DR2

DR11. P ^ pQf p = | h 9 ,

Proo/; From DR10, T2, and R*.

DR12. //Γ,Ps~Qh|Ξ|,ίΛβwΓhPΞQ.

Proo/; From Rl, T6, T3, T4.

T8. h[ps j ] = p.

Proo/:

1. TP= P T7, DR1, A2

2. ~|P= P 2, T4,DR3, A5

3. | s P g ' T5

4. ~ ( P g Γ P Ξ P 2, 3; DR2

5. ~(PE)~~P= P 4, A5; R*

6. ~(P ~ T) - (~ J°I) Ξ P 5; T4; T7; R*

7. ~(P ~ I) ~ (T ~'P) Ξ P 6; A2; R*

8. [ P Ξ l Γ Ξ P 7; TS R*

T9. H [ P Ξ g] = ^ p .

Proof: Similar to the preceding one.

T10. \-P~(PQ) = (P - Q).

Proo/;

1. - ( P ~(PQ)) = (P - Q) Assumption for Rl
2. ~P= ~p ~(~(PQ)P) A4

3. ~P=~P~(P~(PQ)) 2, A2;R*

4. - P = - P ( P ( P ~ Q)) 1, 3; DR2

5. ~ P = F 4, Al, T6, T5, R*

6. P= T ^ 5; DR3, A5, T4

7. - ( T ^ ( T Q ) ) = T - Q 6, 1; DR2
8. ~~Q=ZQ ~ 7, T7, A2; R*

9. ~~Q = ̂ Q ^ ^ Q 8, Tl, A2; DR9
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10. ~Q = ~Q ~~Q 8, Tl; DR9

11. ^ ^ Q Ξ ^ ( ^ Q ^ ^ Q ) 10; DR3

12. ~Q ~~Q = ̂ Q ~~Q) 9, 11;DR2

13. ~(P ~(PQ)) = ~(P ~Q) 1-12; Rl

14. J? ~ (PQ) = P ~ Q 13; DR3, A5

DTS. A wff of L.C of the form P = PQ corresponds to the term ~(P ~ Q),

i.e., h[P = PQ] = ~ ( p ~ Q).

Proof: By TS, [P = PQ] is: ~ ( P ~(PQ)) - ((PQ) ~P) . Now:

1. ~ ( P ~(PQ)) - ((PQ) - P) = ~(P -(PQ)) - ((P - P)Q) Tl, Al, A2; R*

2. ~(P ~(PQ)) - (PQ - P) = ~(P ~(PQ)) T6, T5, T4, A5, T7

3. ~ (P ~ (PQ)) ΞΞ ~ (p ~ Q) T10, DR2, A5

4. [ P Ξ P Q ] ^ ~ ( P ~ Q )

DR13. [P = F] = ξ h p .

DR14. ~ ( ~ ( P ~ Q) ~(Q ~P)) = I h - ( P Q ) ~ ( ^ P ~ Q) = T.

Proof:

1. (-(PQ) ~ ( ~ P ~ Q ) ) Ξ | Assumption for Rl

2. ~ ( P - Q) - (Q - P) Ξ F hypothesis, DR3, A5

3. P = P ~(Q ~P) ~ A4, A5

4. Q = Q ~ ( P ~ Q) A4, A5

5. P Q = PQ(~(P ~Q) ~(Q ~ P)) 3, 4, DR8, Al, A2

6. PQ = E 5, 2, T6, T5, DR2, R*

7. ~ P = ~P~(~QP) A4

8. ~Q Ξ ~Q ~(^PQ) A4

9. ~ P ~Q = ~p ~Q(~(P ~Q) ~(Q ~ p)) 7, 8; DR8, Al, A2

10. ~P ~Q = £ 9, 2; T6, T5, DR2, R*

11. ~(Z) ~ ( Γ Γ Ξ E 10, 1;DR2

12. I = E " 11; T4, DR2, A3

13. ~(PQ) ~ ( - P - Q) = T Rl; T4, etc.

DR15. ~ [ P = Q] = I h [ p = -Q] = T.

G. The deduction theorem in L.C If Γ, phq, then Γ h-P = PQ.

Proof: Let s1 } . . ., sffl be a proof of q from Γ and p. Then each Sf is (i) an

axiom, (ii) a member of Γ, (iii) p, or (iv) a consequence of previous s's by

R*, or (v) by Rl, or (vi) by R2, or (vii) by R3. We can construct a proof

from Γ to P = PSi by inserting steps of the form and making further

derivations as indicated below.

Cases (i) and (ii) We have s{ as premise. Therefore:

DR16. Si HP = PSi

l s4

2. ~S, = E 1; DR6

3. P ~Si~=PE 2, Tl; DR8

4. hg = PE ~ T5
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5. P~Si = Σ 4, 3; R*
6. ~ ( P ~ SiT= I 5, DR3; Def. T
7. ht_ ~ Tl, Def. T
8. P = PSi 6, 7; R* and DTS

Case (iii) \-P = PP. A3

For cases (iv)-(vii) we assume that we have a proof up to s ^ .

Case (iv) We have three subcases: (a) sh is />, (b) s ; is p, (c) both are p.

sh: Λ=B
SJ: G(B)
s, : G(B/A)

To derive P = P [ G ( ^ / A ) ] we apply Rl proceeding as follows for (a) - (c):

1. P = P[A= B] A3, or DR16
2. P = P[G(B)] A3,orDR16

3. Γ, ~ P = P [G(B/A)] Assumption for Rl
4. ~p ~p=~p(p[G(B/A)\) 3; T l , DR8
5. ~P = E 4; A3, Al, T6, T5
6. P = l~ 5; DR3, A5
7. [A =~B] Ξ x l, 7; DR10
8. A s 5 7, T2; R*
9. G(.B) 2, 7; DR10; T2, R*

10. G(B/A) 8, 9; R*
11. [G(B/A)] = ΐ 10, DR7
12. P[G(B/A)] = T 6, 11; DR9
13. ~ P = 1 3, 12; R*
14. P ~ P~= T 6, 13; DR9

Hence, Γ I — P = ~(P[G(B/A)]) 3-14; Rl
Γ HP = P[G(£/A)] DR3, A5; R*

Case (v) We have in the proof of s f : . . ., S = S", . . .,A ~ A= ~(B ~ B),
Si = ~s'/. We assume ~ P - p[s/ = ~s"] in order to derive, by Rl , P =
P[S/ = ~s"]. We derive thus: ~ P Ξ ~ P P [ S J = ~ S " ] ; ~ P = | ; P = T; - [ s j =
~ S " ] Ξ T; Si =Si\ . . .,A - A= -(J5 - 5 ) . Hence, by Rl,~ ~ P Ξ ~~P[S =
~ S " ] ; then, P = p [ s ; = ^sj/].

Case (vi) We have in the proof of s f : . . . s ; , . . ., ~S 7 Ξ ^ 4 ( £ ~ . £ ) . By DR16
or A3 the proof being constructed has: P = PSj. We want to derive P = P
[~Sj = A(B - B)]. We assume ~ P Ξ P[^Sy s A(.B - ^)] in order to derive a
contradiction. As in the preceding case we derive P = Ύ and [~S; =
A(£ ~ B)] = | . Then by DR10 we derive Sj = I , and hence byTk*, s ; . Then
as in the original proof we derive ~ S ; = A(B ~ B), and, then by DR7 we de-
rive [~S; = A(B ~ £)] Ξ T. Then we apply DR1 and DR4.

Case (vii) We establish this case by deriving a contradiction from the
assumption ~p=psi9 introducing also P = P[~Si = A(B ~ B)] by DR16 or by
A3.
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H. Completeness of L.C In order to prove the propositional completeness
of L.C we prove first the following:

Lemma Let Q be a term of L .C made up of occurrences of ~, &, and terms
Pi, . . ., Pn Consider an ordinary two-valued truth-table for Pl9 . . ., Pn,
each row of the table assigning Tor F to each P1 # Interpret ~ as negation
and & as conjunction. We represent each row r of the table by the sequence
(Pi)r, . . ., (Pn)r> where each (p1)

f is P{ = ΐif r assigns X to Pi} and P{ = E
if r assigns F to P{. Similarly for (q)r. Let row r ; assign T to q. Then:
(Pύ*, . . .,(PJΉ?)'.

Proof: Case 1 Q has only one occurrence of a symbol. Then (q)r is one of
the premises (/>*•)', and the lemma holds.

Case 2 We assume the lemma true for up to m - 1 occurrences of symbols.
Then: (i) Q is of the form ~R, or (ii) Q is of the form RS, where R and S
have less than m occurrences of symbols.

Subcase (i) R has m- 1 occurrences of symbols. Hence,

(Pi)', . . . ,(/>,) Ί - M '

By A5 and DR3 the lemma holds.

Subcase (ii) If r ; assigns I to Q, it assigns T to R and to S. Hence,
U>iV, ., (PnY H(r)', (s): Now, by DR9, R = τ7 S = ThRS = T. Hence,
(pi)r> •> (£«)' I- (<?)'• I f rj assigns g to Q, theiΓr ; assigns: (a)~I to R and
F to S, or (b) E to R and T to S, or (c) F to R and E to S. In subcase (a),
6>i)', , ( ί J ' ^ Λ = I , S = | . Hence, (pj7, . . ., (pn)

7hRS^ E, i.e., Q = F,
by DR8 and T5.

Subcase (b) is like (a).

In subcase (c), {pj', . . ., (pn)' hR = ξ. Hence, (pj'9 . . ., (pn)'hRS = | ,
Q Ξ F, by DR9. Thus, the lemma holds in all cases.

Metatheorem If Q is a term of L .C, as in the preceding lemma, and every

row of the truth-table for Pί9 . . ., Pn assigns T to Q, then \-Q = T.

Proof: By Lemma, {p)r, . . . , Y-Q = I for every row. Hence, (p)r, . . . , (pn-i)r,
Pn = T\-Q = Tanά(p)r,... (pn-ι)r, Pn = F H Q s χ# By the deduction theorem
in section G, from (£i)Γ, .• . ., (pn-i)f we can derive:

1. [ P W = T ] ^ [ P W = T][Q Ξ l ]

2. [ P w

Ξ ϊ ] Ξ [ P n Ξ E ] [ Q Ξ T ]

3. ~ [ Q ^ T ] Ξ - [ Q Ξ T ] - [ P « Ξ T ] 1;DR4
4. ~[Q = T] ̂  ~[Q s j ] . [Pw Ξ F ] 2; DR4

5. ~[Q B X] Ξ ~[Q Ξ T ] (~[PW = T] ~ [P« Ξ E]) 3, 4; A2, DR9

6. [Pw = χ T = P w T8

7. [Pw = E l Ξ - P w T9
8. ~[Q = j ] Ξ ~[Q ^ i ] (~Pn ~~Pn) 6, 7, 8; R*

9. ~[Q Ξ | ] Ξ | 8, T5; R*



498 HECTOR-NERI CASTANEDA

10. [Q = X] = I 9; DR3, Def. T
11. Q = T ~ 10; Tl, R*

By n - 1 similar derivations, we arrive at H Q Ξ J .

2 The iterative calculus L.Ci As we noted in Part i , section 2, Leibniz
spoke of equivalence of propositions as if he were ready to consider a
logical system that allows the iteration of the copula in well-formed
formulas. Such a calculus will have to include an axiom relating conjunc-
tion and the copula in its new additional role as a term-connector. An
adequate axiom that serves well is the derived transformation scheme DTS,
which was proved for L.C with the help of theorem T10. Appropriate
modifications of the rules of term-formation, and adjunction of DTS as an
axiom yield the Leibnizian logical system L.Ci. This is adequate for
propositional logic.

We will not consider variations of L.C which are nicer in that they
have only R* as the rule of primitive detachment. With appropriate
axiomatic versions of rules R2 and R3, axiom A5 of double negation may be
immediately proven. We will not investigate other changes of L.C. After
all our primary interest is the historical one of attaining a detailed insight
into Leibniz's logical works in [l]-[3].

Ill CONCLUSION

We have examined Leibniz's logical system as he developed it through
[l]-[3], with some glimpses of related later thoughts. Our formulation of
L.C uses the principles that Leibniz formulated as well as those which he
assumed in discussing it. His idea of a general calculus for syllogisms and
propositional logic works rather well on the assumption that all atomic
terms have existential import (i.e., are not vacuous). His brief effort at
working the logic of existence was a strepitous failure. Yet the system L.C
we have constructed upon Leibniz's work, containing really only few simple
distortions, is adequate for propositional logic.

I do not claim that Leibniz had a clear idea of L .C and that he was
deliberately constructing it. I claim that Leibniz had in his logical reflec-
tions seen the principles involved in L.C with different degrees of aware-
ness—perhaps the only exception is the term-formation schemes TS and
DTS. He had insights into the distinctions among rules of formation,
axioms, and rules of inference. He had a good idea of all the rules and
axioms, as indicated at the proper place.

It is really a pity that Leibniz did not publish a paper containing the
main results of [l]-[3], even without his clearer conception of indirect
proof in [10]. That paper would undoubtedly have attracted the attention of
Euler, if of nobody else, and logic would have developed faster.

NOTES

1. See the index to references at the end of this essay. Our citations from [l]-[4]
are taken from Parkinson's translations with minor modifications.
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2. In [1] (144) ff, whose translation by Parkinson is not reliable, Leibniz treats exis-
tence as a copula. This idea leads to his developing, in [8], an equational calculus
that can be interpreted either as having no existential import or as lacking it. See
next footnote.

3. There is a verbal issue between Couturat and Parkinson on this point. Couturat
interprets the Leibniz quotation just given as showing that for Leibniz all (cate-
gorical) propositions have existential import. Parkinson argues (LR 21f) that
Leibniz holds, instead, that neither universal nor particular propositions have
existential import. Parkinson bases his argument on the fact that in [8] Leibniz is
engaged in a protracted discussion of the validity of the inference "Every laugher
is a man, therefore, some man is a laugher." Leibniz notes that if there are no
men, the inference appears invalid. He holds, on the other hand, that the inference
is for the most part valid, even though there are two domains of interpretation for
the quantifiers, (i) possible entities, (ii) actually existing entities. He claims that
if we hold fast to the same domain in both the premise and the conclusion, the
inference is valid, but, of course, there is invalidity if we take (i) for the premise
and (ii) for the conclusion. Hence, Parkinson is right in claiming that Leibniz
does not take either the universal premise or the particular conclusion as having
existential import in the sense that the domain of quantification has to be a set of
actually existing objects. Yet formal logicians tend to speak of existential import
in a generalized sense, namely, as the assumption that the atomic terms being
dealt with are not empty. To this extent Couturat is correct. The interesting
things in Leibniz's discussion are: (a) his conception of different domains of
quantification, (b) his consideration of existence as a logical term determining the
logical form of the categorical propositions, and (c) his inability to conceive of a
logical system without vacuous terms, i.e., without existential import in the
generalized sense. Of course (c) is connected with his not conceiving the peculiar
features of existence as a term-forming operator, rather than as a mere term,
and this in its turn depends in part on his never really seeing the role of associa-
tivity.
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