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MONADS FOR REGULAR AND NORMAL SPACES

ROBERT WARREN BUTTON

Given an enlargement *(X, J) of a topological space (X, ), the monad
of a point x€ X is defined to be u(x) = [V{*F: xe Fe J}. It is known that for
any space (X, 3J), the family of monads {u(%): xe X} contains all the
information about ¥ in the sense that for each xe X, {F C X: u(x) C *F}is
exactly the neighborhood filter at x. However, it is possible to say some-
thing about 3 without resorting to this method. For example, a space X is
Hausdorff iff for any two points x and y in X, u(x) N u(y) = @. In this paper
some further relationships between the topology on X and {u(x): x¢ X} will
be shown, and particularly nice characterizations of regular and normal
spaces will be given. These characterizations will be in terms of a natural
topology on *X, the Q-topology. Let us briefly consider the Q-topology.

It is possible to write a formal sentence expressing the fact that 3 is a
topology on X, so in any enlargement *(X, J), *3 is closed under *finite
intersections (and hence under finite intersections) and under internal
unions. *J also contains @ and *X, so is the base for a topology on *X, the
Q-topology. Sets in *J are said to be *open, subsets of *X whose comple-
ments are in *J are said to be *closed, and so on. Robinson has shown that
an internal set is *open iff it is Q-open and *closed iff it is Q-closed. Also,
a standard set A is open iff *A is *open. We now introduce a new type of
refinement relation which is particularly suited for studying Q-topologies.

Definition 1 We shall say that the covering U, of X fills the covering U, of
X if for each Ven,, v=U{ven,: vc vl

Let ® be the collection of all finite open coverings of a given space X
and let FR be the filling relation restricted to & x 6. The left domain of FR
is @ since every covering fills itself and for each finite collection
M, ..., W, of coverings in &, {U;N...N U, UyeMy, ..., UeMN,} is a
covering in @ filling each of M,, . . ., W, so the relation FR is concurrent.
Hence, there is a covering of *X in *®, say ¢p, such that if U is a finite
open covering of X, ¢ fills *U. In general ¢g is not unique and we shall
speak of an arbitrary but fixed ¢gr. For each xe *X, {Pe Qp: X€ P} is an
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internal subset of the *finite set ¢y and is also *finite, so n{Pe @p: % € P}
is *open. Set ¢gp(x) = n{Pe @F: x € P} for each x € *X so that {¢p(x): x € *X}
is a *finite *open covering of *X filling ¢r and in turn filling *u for each
finite open covering M of X. Moreover, {cpp(x): Xe€ *X} has the additional
useful property that for each ze *X, ¢p(2) is the smallest set in {@g(x):
% € *X} containing z.

Theorem 1 A subset F of a topological space X is open iff for each x e *F,
@p(x) C *F.

Proof: If gp(x) C *F for each x ¢ *F, then it is true that *F is a *neighbor-
hood of each of its points, so *F is *open and F is open.

Suppose that F is open. Then {X, F} is a finite open covering of X and
*{X, F} = {*X, *F} is filled by ¢r. By the above, *F = |J{Pe ¢p: P C *F}.
Thus for each point xe *F there is a set Pe ¢r such that xe P C *F so
@r(x), which is a subset of each set in ¢ containing x, is a subset of *F.

The previous theorem contrasts with the theorem that F C X is open
iff for each xe F, u(x) C *F in two ways: ¢g(x) is internal and x need not
be standard.

Lemma 1 For each collection W of open sets in any space X, G =n{*U:
Uen}is Q-open.

Proof: If G = we are done, so suppose that G # . Then for each point

zeG and set Ue M, ¢p(2) C *U, so G =U{¢F(z): z€ G} is the union of a
family of *open sets.

Corollary 1 Fov any space X and x € X, u(x) is Q-open.

For any topological space (X, J) and subset A of X, the monad of A is
defined to be ﬂ{* U: A C Ue3J}and is denoted by u(A).

Corollary 2 For any space X and A C X, j(A) is Q-open.

Corollary 3 For any space X and family § of closed subsets of X, U {*F:
Fe3}is Q-closed. In pavticular, if X is a T,-space, then for each A C X,
A =U{{x}: xe A} is Q-closed in *X and if X is infinite, then it is not dense
in *X when *X is given the Q-topology.

We hope to discuss Q-topologies in greater detail in a later paper.
The following theorem is central to this paper.

Theorem 2 Let P be a set property which can be expressed formally and
which is closed undevr finite intersections. Then for any topological space
(X, J) and x € X, the following conditions are equivalent:

(i) There is an internal *neighbovhood V C u(x) of x with property *P.

(i) px) = n{* U: U is a neighborhood of x with property P}.

(iii) The neighborhoods of x with property P form a base for the neighbor-
hood filter at x.
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Moveover, the *neighbovhood of x in condition (i) can be taken to be
*open iff theve is a base fov the neighbovhood filtev at x composed of open
neighborhoods of x with property P.

Proof: (i)=>(ii). Suppose that there is an internal *neighborhood of x
which is a subset of u(x) with property *P and let G be any open neighbor-
hood of x. Then *G contains a *neighborhood of x with property *P, so G
contains a neighborhood of x with property P. For each open neighborhood
G of x, let Vg C G be a neighborhood of x with property P and let W; C Vg
be an open neighborhood of x¥. Then,

u(®) Qn{*WG : XeGeS}gn{*VG:xeGe%}gn{*G: xeGeJ}= ).

Notice that the assumption that P is closed under finite intersections
was not used in this portion of the proof.

(il) = (i). Assume that p(x) = n{*U: U is a neighborhood of ¥ with property

P}. If U,,..., U, is any finite collection of neighborhoods of x with
property P, then U, N . . .N U, is a neighborhood of ¥ with property P and a
subset of each of U,, . . ., U,. Hence, there is a *neighborhood V of x with

property *P which is a subset of *U for every neighborhood U of x with
property P, so V C u(x) =[(V{*U: U is a neighborhood of x with property P}.

(i) =>(iii). Suppose that there is a *neighborhood of x¥ which is a subset of
u(x) with property *P. Then for every neighborhood U of x, *U contains a
*neighborhood of ¥ with property *P and U contains a neighborhood of x
with property P, so the neighborhoods of x with property P form a base for
the neighborhood filter.

(iii) =>(i). Suppose that the neighborhoods of x¥ with property P form a

base. Then for each finite collection Uy, . .., U, of neighborhoods of x
there is a neighborhood of x with property P which is a subset of
Uu,n...NnU, and so is a subset of each of U,, . .., U,. By concurrence,

there is a *neighborhood V of x with property *P which is a subset of *U
for each neighborhood U of x, so V C pu(x) = n{*U: U is a neighborhood of

Notice that again the closure of P under finite intersections was not
used in this portion of the proof.

The further result can be shown by considering the set property P’
defined by: a set A has property P’ iff it is open and has property P. If P
is closed under finite intersections, then so is P’.

One obvious corollary to this theorem is Robinson’s theorem that for
each topological space X and point xe€ X there is an internal *open
*neighborhood of x in u(x).

We shall say that a regular Hausdorff space is T; and that a normal
Hausdorff space X is T,.

Corollary 4 The following conditions ave equivalent for every space X:
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(i) For each point x € X there is a *open *neighbovhood V of x such that
VCuw.

(i) Fov each point xeX and every *open *neighbovhood V C u(x) of x,
V C u).

(iii) For each point x € X, u(x) is Q-closed.

(iv) For each point x € X, u(x) is a Q-zero-set.

(v) For each point x ¢ X, u(x) is Q-clopen.

(vi) X is vegular.

(vii) For each point x e X the closed neighborhoods of x form a base for the
neighbovhood filter at x.

Proof: Here P is the property of being closed. Condition (vii) is a well-
known and obvious equivalent to condition (vi). By the previous theorem,
(i) <= (iii) = (vii).

(ii) =>(i). We know that for any space X and point x ¢ X, there is a *open
*neighborhood V C u(x) of .

(iii) = (ii). If u(») is Q-closed, then the Q-closure of any *open V C pu(x) is
also a subset of j(x). The Q-closure of an internal set is its *closure, so
V C u(x) for each *open V C pu(x).

(iii) < (v). Trivial in the light of the result that u(x) is Q-open for any
point x of any space X.

(v) = (iv). Let u(x) be Q-clopen and define f: *X — &£ by: f(2) =0 for
z€ u(x), f(z) = 1 otherwise. Then f is continuous and p(x) = £~ (0).

(iv) = (iii). Trivial; zero-sets are closed.

If in the previous theorem and its proof we substitute a set A for the
point x, then we have another theorem and the following:

Corollary 5 The following conditions are equivalent for every space X:

(i)  For each closed subset A of X there is a *open *neighbovhood V of *A
such that V C u(A).

(ii) For each closed subset A of X and every *open *neighborhood
V C u(A) of *A, V C u(A).

(iii) For each closed subset A of X, u(A) is Q-closed.

(iv) For each closed subset A of X, u(A) is a Q-zevo-set.

(v) For each closed subset A of X, u(A) is Q-clopen.

(vi) X is normal.

(vii) For each closed subset A of X the closed neighborhoods of A form a
base for the filter of neighborhoods of A.

We omit the proof, which is essentially identical to the preceding one.

In each of the following corollaries, condition (iii) is known to be
equivalent to condition (iv).

Corollary 6 The following conditions ave equivalent for every space X:
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(i) Theve is a *zero-set *neighborhood V C u(x) of x for each point x¢€ X.
(i) (=) = n{* U: U is a zero-set neighborhood of x} for each point x € X.
(iii) X is completely vegular.

(iv) For each point xe X the zero-set neighbovhoods of x form a base for
the filter of neighbovhoods of x.

Corollary 7 The following conditions ave equivalent forv every space X:

(i) There is a *clopen *neighbovhood V C u(x) of x for each point x € X.
(i) u(x) = N{*v: U is a clopen neighborhood of x} for each point x € X.
(iii) X is zero-dimensional.

(iv) Each point in X has a neighbovhood base of clopen sets.

Corollary 8 The following conditions ave equivalent fov every space X:

(i) There is a *precompact (*open) *neighborhood V C u(x) for each point
xeX.

(i) plx) = n{*U: U is a precompact (open) neighbovhood of x} for each
point x € X.

(iii) X is locally compact.

(iv) Each point in X has a neighbovhood base of precompact (open) sets.

Corollary 9 The following conditions ave equivalent for every space X:

(i) There is a *connected *neighborhood V C u(x) for each point x € X.

(i) u) = n{*U: U is a connected neighborhood of x} for each point x€X.
(iii) X is locally comnected.

(iv) Each point in X has a neighborhood base of connected sets.

Corollary 10 The following conditions are equivalent fov every space X:

(i) There is a *regular open *neighborhood V C u(x) for each point xeX.
(i) p) =V{*U: U is a regular open neighborhood of x} for each point
xeX.

(iii) X is semi-regulayr.

(iv) Each point in X has a neighbovhood base of vegular open sets.

These corollaries have been particularly helpful in our study of
Q-topologies. Let us consider a few examples of how they can be used to
prove standard results.

Theorem 3 Any product of topological spaces is regular iff each factor
space is regulay.

Proof: Recall that for any point xe I!'Xa and each point ze*(HXa),
acey

aeY
z € ulx) iff z,€ u(x,) for each standard index a. Recall also that every
cartesian product of sets is closed iff each set is closed. Now it is trivial

that for each point x € IIx,, u(x) is Q-closed iff u(x,) is Q-closed for each
aed

standard index a.
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Theorem 4 The continuous, open and closed image of a regular space is
vegular.

Proof: Let X be regular and let f: X — Y be a continuous, open and closed
surjection. By continuity, f(u(x)) C u(f(x)) for each xe X so if V C u(x) is
a *open *neighborhood of x, then f(V) C u(f(x)) is a *open *neighborhood of
f(x). Now, V C u(x) so (V) = A(V) C p(f(x)) is a *closed *neighborhood of
Sflx).

Theorem 5 Every subspace of a vegulav space is vegular.

Proof: Given U C X, py(¥) = ux(x) N *U for each point xe U and uy(¥) is
Q-closed, so uy(x) is Q-closed in the relative topology.

Theorem 6 Every compact Hausdovff spaee is normal.

Proof: Let X be compact Hausdorff and let A C X be closed. Every
neighborhood of A is a neighborhood of each point xe€ A, so u(4) 2 U{u(x):
xeA}. Since A is closed, U{ u(x): xe A} D *A. It is known that X is compact
Hausdorff iff {u(x): x € X} partitions *X and each yu(x) is Q-open, so U{u(x):
xeA}=*x/\J{ux): x£A} is Q-closed. Now, U{(pp(z): ze*A}C U{cpp(z):

zelU{u@): xeaP =U{ukx): xea}, so U{(pp(z): ze*A} C u(A) is a *closed
*neighborhood of *A4.

Theorem T The continuous closed image of a normal space is normal.

Proof: Let X be normal and let f: X — Y be closed and continuous. For
any closed A C Y, B =f"%(A) is closed so there is a *closed *neighborhood
UC u(B) of *B. By continuity, f(u(B)) € u( f(B) so f(U) C u(A) and f(U)
is *closed. Note that V = *Y/( f(*X/°U)) C f(U) is a *open *neighborhood of
*4 and V C f(U), so Y is normal,

Theorem 8 Suppose that any space X has the heveditary property P, iff for
each point x € X, u(x) contains a *P, *neighbovhood of x. Suppose further
that for amy spaces X and Y and Ax BC X xY, A x B has property P,
whenever A and B have property P,, and that every space X has property
P,. Then an arbitvary product space has property P, iff each factor space
has property P;.

In our proof it might be considered an abuse of notation to write

*(HXa> = 11 *X,. No confusion should result, however, and the proof will
aeU ae*Y

be simplified. We will denote the projection of V C I—!‘Xa onto X, by p,(V).
ae
Proof: For each ae, X, is homeomorphic to a subspace of q‘Xa, so if
ae
HXa has property P,, then each factor space has property P,.
aeU
Suppose now that for each index a € ¥ and point x, € X,, u(x,) contains a

*P, *neighborhood U, of ¥,. For any point xe¢ E‘Xa and neighborhood V of
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X, pb(V) differs from X, on a finite collection of indices which we shall call

#. Define U C *(HX,,) as the product with factor U, for a e £ and *X, for
ae

ae*N/B. Then U = H U, x IT *X, is a *P, *neighborhood of x¥ and a
ael ae*W/B

subset of *V, so there must be a neighborhood of ¥ which is a subset of V'

with property P,. By Theorem 2 we are done.

We mention regularity in the following corollary to show the scope of
this theorem.

Corollary 11 An arbitrary topological product is vegulav (respectively
completely rvegular, zevo-dimensional) iff each factor space is regular
(respectively completely regular, zero-dimensional).

Proof: Regularity (respectively complete regularity, zero-dimensionality)
is hereditary. A finite product of sets is closed (respectively a zero-set,
clopen) if each set is closed (respectively a zero-set, clopen). Every
topological space is closed (respectively a zero-set, clopen).

We hope that these examples will make the corollaries to Theorem 2
easier to use. It was shown that any topological space X is regular iff for
each point xeX, u(x) is Q-closed. This theorem can be improved for
Hausdorff spaces by observing that for any Hausdorff space X and x € X, if
z € u(y) for some point y # x, then u(y) is a Q-neighborhood of z disjoint
from u(x). Hence, u(x) is Q-closed iff for each point z € *X/(U{p(y): ¥ eX})
there is a Q-neighborhood of z disjoint from pu(x). Notice the order of
quantification: VxVvz3U.

Theorem 9 A Hausdovff space X is rvegular iff for each point ze*X/
(U{u(y): Y eX}) there is a *open *neighborhood U of z such that U N u(x) =
O for each point x € X, i.e., iff ns(*X) = U{u(n): neX}is Q-closed.

Proof: <= In the light of the previous comment this is trivial.

=> Suppose that X is regular and let ze*X/ (U{u(y): yeX}) and
consider ¢r(z), which is a fixed *open *neighborhood of 2. For any point
x€X, 2¢ u(x) so there must be a standard neighborhood F of x such that
zf*F. Let G C F be a closed neighborhood of x. Then z £ *G, z e *(X/G),
@p(2) € *(X/G) and *(X/G) N u(x) = P, so Yp(2) N p(x) = P.

At this point the order of quantification is Vz23UVx. Moreover, U can
be taken to be a *open *neighborhood of z, not just Q-open. We also point

out that since p(x) is Q-open, ¢g(z) N u(x) = ® for each point x e X. The
same argument, slightly modified, proves the following:

Theorem 10 A Hausdorff space X is novmal iff for each family § of closed

subsets of X and each point z e *X/ (U{u(F): Fe%}) theve is a *open
*neighborhood U of z such that U N u(F) =@ for each set F e, i.e., iff

U{w(F): FeBY}is Q-closed.
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