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A FIRST-ORDER LOGIC OF KNOWLEDGE
AND BELIEF WITH IDENTITY. I

SCOTT K. LEHMANN

In establishing the semantic completeness of a first-order system, we
customarily show how to generate, from a given hypothetically unprovable
formula, a set of formulae which provide, in a rather direct way, a
countermodel for the given formula. The "model sets" obtained by the
completeness procedure make possible a syntactic treatment of semantics.

By generalizing the notion of model set to that of "model system,"
Hintikka [ 1] has been able to provide insight into the logic of knowledge and
belief. However, his informal approach tends to obscure the underlying
semantical assumptions. In this paper, Hintikka's informal, partly syn-
tactic, partly semantic notion of model system is analyzed into the
syntactic and semantic components of a formal first-order Gentzen-type
system. With the semantics plainly open to view, it appears that some of
the difficulties [2] encountered in Hintikka evaporate or are at least to be
located elsewhere. In Part II the system is shown to be semantically
complete.

1 Language of 5<K, B) The primitive basis of 9(K, B) consists of the
seven improper symbols

N C E K B - ,

and the following proper symbols:

(1) the 1-ary functional constant P;
(2) the 2-ary functional constant I;
(3) an infinite set F of free individual variables;
(4) an infinite set B of bound individual variables;
(5) an infinite set of propositional variables; and
(6) for each n, an infinite set of n-ary functional variables.

We shall not specify the contents of these sets. However, as usual, we
shall assume that they are pairwise disjoint, that no improper symbol or
functional constant of J(K, B) belongs to any of them, that each is well-
ordered (alphabetically), and that membership in each is effectively
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decidable. We shall use a, aτ, al9 a[, a2, α2, . . . as metalinguistic variables
ranging over F, x as a metalinguistic variable ranging over B, and p as a
metalinguistic variable ranging over propositional variables. In giving the
formation rules of 9(K, B) we shall use symbols of 9(K9 B) as names for
themselves and juxtaposition for juxtaposition. In defining the quasi-
formulae of 9(K, B) we simultaneously define some functions on quasi-
formulae:

qfl. A propositional variable standing alone is a quasi-formula. (p)0 = p.
qf2. If / is an /z-ary functional constant or variable and for each i such that
1 < i ^ n, Oίi is a free or bound individual variable, then faλ . . . an is an
atomic quasi-formula of index n. {fax . . . α j o =/; if 1 ̂  i ^ n, then
(/(*! . . . oQi = at.
qf3. If A is a quasi-formula, NA is a quasi-formula. (NA)0 = N; (NA)X = A.
qf4. If Ax and A2 are quasi-formulae, CAiA2 is a quasi-formula. (CA^alo =
C; (CA^ad = A^ (0^^2)2 = A2.
qf5. If A is a quasi-formula, ExA is a quasi-formula. (E#A)0 = E; (ExA)1 =

x; (ExA)2 = A.
qf6. If A is a quasi-formula and a is a free or bound individual variable,
KaA and BaA are quasi-formulae. (KαA)0 = K; (BaA)0 = B; (KaA)1 = {BaA)ι =
a; (KaA)2 = (BαA)2 = A.

An object shall be a quasi-formula of 9(K, B) iff it can be shown to be by a
finite number of applications of (qfl)-(qfθ). A similar understanding shall
govern all other recursive definitions. Subsequently we shall use A, Af, Au

A[, A2, A2, . . . as metalinguistic variables ranging over quasi-formulae.
Suppose X is a set such that no member of X is a finite sequence of

members of X, and let σ = (xl9 . . ., x«)bea finite sequence of members of
X. If xe X, then σ*x = (#1? . . . , # „ , #); if T = (y1? . . ., y j is a finite se-
quence of members of X, then σ*τ = (xl9 . . ., xn, yu . . ., ym); if s and t are
members of X or finite sequences of members of X, then σ*s*t = (σ*s)*t.
Now let X be the non-negative integers, and let ξ0 be the null sequence of
members of X. We define (A)̂  = A, and if ξ is a finite sequence of
elements of X> xe X, and ((A)ξ)x is defined, then (A)^x = ((A)^)x.

The logical symbols 3 ("there exists"), V("for all"), 3 (<'(materially)
implies"), = ("if and only if" or "iff"), & ("and"), v ("or"), and - ("not")
will be used informally to clarify metalinguistic explanations. We de-
fine Q(ξu | 2 , A) s {((A)ξ2.0 = E) & ((A)ξl = (A)ξ2.d & 3ξ[(ξ2*2*ξ = ξj &
-3ξ3{3ξ4(ξ3*l4 = I) & ( U ) ^ 2 ^ o = E) & «A)ξ2.2 ξ3.i = (A)ξl)}]}. The predicate
is obviously functional, and for future use we define q(ξi, A) = ξ2 iff
Qiξu I2, A). A quasi-formula A is a formula of 9(κ9 B) iff Vξi[((A)^ e 5) D
3ξ2Q(ξi, ξ2, A)]. A(«A) is defined by Vξ{[Q(2*ξ, ξ0, EΛΓA) D ((A(a/x))ξ =
α)] & [~Q(2*ξ, ξ0, E'XΛ) =) (U(Λ/ΛΓ))^ = U)e)]}. Evidently, if EΛΓA is a formula,
so is A(a/x).

By an expression of 3(K, B) we shall understand a finite linear array
of symbols of 9(K9 B); for convenience of exposition we admit the 'array'
consisting of no symbols of 9(K9 B) as the empty expression. Empty and
non-empty formula-sequences of 9(K, B) are certain expressions of
J(K, B) defined as follows:
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fsl. The empty expression is an empty formula-sequence.
fs2. A formula standing alone is a non-empty formula-sequence.
fs3. If Γ is a non-empty formula-sequence and A is a formula, then Γ, A is
a non-empty formula-sequence.

We shall use Δ, Γ, Tl9 Γ2, . . . as metalinguistic variables ranging over
formula-sequences. The value of ,Γ shall be 9Al9 . . ., Aw if the value of Γ
is Aλ, . . ., An and the empty expression if the value of Γ is the empty
formula-sequence; Γ, is defined similarly. If (the value of) Γ is Al9 . . . , An,
then I Γ| = {Al9 . . ., An} and |NΓ| = {HAl9 . . ., HAn}; if (the value of) Γ is
the empty formula-sequence, then | Γ| = |NΓ| = φ. Sequents of J(K, B) are
expressions of the form Γ—* Δ. We shall use S, Sl9 S2, . . . as metalin-
guistic variables ranging over sequents. We write | Γ - » Δ | = | Γ | U INΔ| .

2 Defensibility Before describing the axioms and rules of inference of
9(K, B) we define and relate the notions of defensibility and satisfiability.

If μ is a set of formulae, then v(μ) will be the set of free individual
variables occurring in the members of μ. A set μ of formulae is a model
set provided:

ml. If HA e μ, then A {μ.
m2. If NNAeμ, thenAeμ.
m3. If CAιA2 e μ, then |NL4i e μ or A2eμ.
m4. If N C A ^ e μ, then Ax e μ and HA2 e μ.
m5. If ExA e μ, then A(a/x) e μ and Pα e μ for some β.
m6. If HExA e μ and Pa e μ, then HA(a/x) e μ.
m7. If αev(μ), thenlα#eμ.
m8. If / is an rc-ary functional constant or variable, faλ . . . aneμ9 \aiaeμ9

and 1 ^ i ^ n, then faλ . . . ai_1aai+1 . . . ane μ.

Let X be a set. X is countable iff there exists a one-to-one function/
defined on X with values in ω, the set of non-negative integers. The union
of X is denoted by ΣX, the power set of X by P{X)9 and the cardinality of X
by X If Y is a set, the set of functions from X into Y is denoted by Yx and
the cartesian product of X with Y by X x Y; we write X1 = X and Xn+1 =
(Xn) x X. If / is a function defined on X, the image of X under / is denoted
by f(X), and if YeP{X), the restriction of/ to Y is denoted by f\γ.

If X is a countable set of sets of formulae, xe X, and R e (/>(X2))v(Σx),
then A{x, X, R) e (P(X))(y(Xx)2) is defined by (i) if la^ex and (x, y)eR(a2),
then y e A(x, X, R)(au a2), and (ii) if y eA(x9 X, R)(ax, ά)9 (y, z)eR(a2)9 and
\aa2 e y9 then z e A{x, X, R) (al9 a2). We let A{x, Xy R) (a) = A(x, X, R) (a9

v(ΣX)).
Let Ω be a countable set of model sets and let Rk and Rh be elements of

(AΩ2))V(XΩ). (Ω, Rk) is a k-model system provided, for each a e v(ΣΩ):

kl. Rk(a) is reflexive.
k2. If KaA e μ € Ω and v e A(μ9 Ω, Rk)(a), then Aev.
k3. If NKαAeμeΩ, then for each ax such that \aaxeμ there exists some
î eΩ such that (μ, v) e Rkfai) and HA e v.
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(Ω, Rh) is a b-model system provided, for each αev(ΣΩ):

bl . If μ e Ω, then there exists some v e Ω such that (μ, v) e Ry(a).
b2. If BaA e μ e Ω and v e A(μ, Ω, %)(a), then A e i/.
b3. If NB&AeμeΩ, then for each aγ such that \aaγeμ there exists some
^ Ω such that <μ, y) e i^Ozj) and HA e v.

(Ω, ΛA, Rb) is a kb-model system provided:

kbl. (Ω, Rk) is a k-model system.
kb2. (Ω, Rh) is a b-model system.
kb3. If a e v(ΣΩ), then Rb(a) c i^(α).

We shall say that Ω is a k-model system provided there exists a function Rk

such that (Ω, Rk) is a k-model system; we shall say that Ω is a b-model
system provided there exists a function Rh such that (Ω, Rh) is a b-model
system; we shall say that Ω is a kb-model system provided there exist
functions Rk and Rh such that (Ω, Rk> Rh) is a kb-model system. A set λ of
formulae is k/b/kb-defensible iff there exists some k/k/kb-model system
Ω such that λ c μ for some μ e Ω.

3 Satisfiability If λ is a set of formulae, Fn(λ) is the set of n-ary functional
constants and variables occurring in the numbers of λ, and A(λ) is the set
of propositional variables occurring in the members of λ.

An interpretation J(λ) of a set λ of formulae is a 10-tuple (X, x0, Y, ψ,
Z, Rk, Rb, X, 0, φ) such that:

11. X is a non-empty countable set with x0 e X.
12. Y is a non-empty countable set with ψ e {P{Y)) .
13. Z is a non-empty countable subset of F x .
14. Λ* and Λfe are elements of (P(X2))Z such that iff eZ, then

a. #£(/) is reflexive.

b. Rb(f)^Rk(f).
c. If xe X, then there is some yeX such that (x, y) eRb(f).

15. X e Z v ( λ ) .
16. If / e F w (λ), then θ(f) e 2 ( Y } i s such that

a. 0(1 )(α, β) = liίίa = β.
b. If ^ e Z , then θ(?)(g(x)) = 1 iff ^ M € ψ(x).

17. 06 2 Λ ( λ ) x X .

We are to think of I as a set of possible worlds and of x0 as the real
world. F is a set of possible individuals; ψ(x) is the subset of these
actually existing in x. Z is a set of trans-world personalities; each free
individual variable is assigned such a personality by X. 6 assigns to each
function symbol (the characteristic function of) an extension in Y; I is
assigned identity and P is made to correspond to real individuals, φ
assigns truth or falsity to primitive statements made in each possible
world.
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If xeX and Re(P(X2))z, then A(x, X, R) e (P(X)Ϋz2) is defined by (i) if
fι(x) = f2(x) and (x,y)eR(f2), then yeA(x,X,R)(fl9f2), and (ii) if ye
A(x, X, R)(fuf), <y, z)eR(f2), and/ty) =f2iy), then zeA(x, X, R)(fuf2). We
write A(x, X, R)(f) = A(x, X, R){f, Z). If ξ is not in the domain of a function
g, then a function / is said to be an extension of g to ξ provided the domain
of / consists of the domain of g and the element ξ and the restriction of / to
the domain of g is g. If we consider a function fe BA as a triple (A, B,
{(a, f(a))\aeA}), then there is nothing odd about functions defined on 0;
accordingly we let η0 = (<jb, Z, 0 ) . We define W3(<K) as follows:

wl. If A e λ, then (A, ξ0, η0, x0) € WJ(x>
w2. If (A, ξ, r;, #> e W,(λ), then

a. If (A)^o = N, then <A, ξ*l, 77, #>€ WJ(λ).
b. If (A^ o = C, then (A, ξ*l, 77, x)e W3(λ) and (A, ξ*2, η, x)e WJ(λ).
c. If (A)^o = E, then (A, ξ*2, ι>, #) e PFj(λ) for each extension v of r\ to ξ such
that ι/(|) € Z and i/(ξ)(#) e i//(#).
d. If (Λ)̂ #o = K/B, then (A, ξ*2, 77, 3>}e P^ ( λ ) for each y such that 3; e
A(x, X, Rk/b)(f) for some feZ such that f(x) = X((Λ)e i)W i f U)^*i € ^ and
/ W = τ)(q(ξ*l, A))(ΛT) if (A^.1 € B.

7j(χ) is defined on a portion of W (̂λ) as follows:

vl. If (A)^o is a propositional variable, then Fχλ)(A, ξ,η9 x) = φ((A)ξ*Q, x).
v2. If (A)ξ*0 is an n-ary functional constant or variable, then Vj(\)(A,ξ,η,x) =

θ((A)ξ.o)(<*i, ..,««), where a{ = X{{A)ξH){x) if (A)^e F, and α,- = rj(q(|*z, A))(x)
iί(A)ξ*i6B.
v3. If (A)^o = N, then 7J(λ)(A, ξ, η, x) = 0/1 if 7J(λ)(Λ, 1*1, r], ̂ ) = 1/0.
v4. If (Λ)^o = C, then VJ(λ)(A, I , ry, x) = 0 if FJ(λ)(A, ξ*l, 77, x) = 1 and
Ki(λ)(4> ξ*2, 77,*) = 0 , and VJ{λ)(A, ξ, 77, x) = 1 if F,(λ)(A, ξ*l, 17, #) = 0 or
Vj(λ)W, | * 2 , 77, x) = 1.
v5. If (A)ξ.o = E, then 7J(λ)(A, ξ, 77, Λ:) = 0 if VJ(λ)(A, ξ*2, 1/, Λ ) = 0 for each v
such that (A, ξ*2, j , , ΛΓ>€ PFJ(λ) and 7i ( λ ) U, ξ, 77, #) = 1 if VJ(λ)(A, ξ*2, 1/, ̂ ) = 1
for some v such that (A, ξ*2, y, x)e Wj(\y
vβ. If (A)̂ *o = K/B, then T^ ( λ )U, ξ, η, x) = 0 if for each feZ such t h a t / W =
X(U)£ i)M if U ) ^ i e i ^ and ^ΛΓ) = 77(q(|*l, A))W if {A)^eB there exists
some 3̂  such that (x,y)e Rk/b(f) and T5(λM»ξ*2,τ;,y) = 0, and VJ{λ)(A,ζ,η,x) =
1 if VJ{λ)(A, ξ*2, 77, y) = 1 for each y such that (A, ξ*2, 77, y)e WJ{λ).

We say that J(λ) gives Ae λ the z α Z ^ 0/1 as V3(λ)(A, ξ0> ?̂o> ̂ 0) = 0/1.
An interpretation of a formula A is an interpretation of {A}. An interpreta-
tion J(λ) of a set λ of formulae (simultaneously) satisfies λ providedJ(λ)
gives each Aeλ the value 1. A set λ of formulae is (simultaneously)
satisfiable if there is an interpretation of λ which (simultaneously) satisfies
λ.

4 Equivalence of Defensibility and Satisfiability We consider now the rela-
tionship between defensibility and satisfiability.

Theorem 1 If λ is a kb-defensible set of formulae, then λ is satisfiable.
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Proof: We suppose that λ c μ e Ω, where (Ω, Rk, Rh) is a kb-model system.

If x e Ω and a e v(ΣΩ), we correlate with (x, a) an object ζ(x, a) subject to the

condition that ζ(x, aj = ζ(y, a2) iff x = y and \a1a2ex. Let Y= ζ(Ω, v(ΣΩ))

and define ψ e (P(γ))Q by ψ(x) = {ξ(x, a) \ Pa e x}. Z shall be the set of

functions fe Ya such that for some αev(ΣΩ), f(x) = ζ(x, a) for all π Ω , If

f eZ and a is the least aλ such that f(x) = ζ{x, αx) for each xe Ω, then

Sk/h(f) = Rk/b(a). If ae v(λ), X(«)W = ζ(#, β) for each xe Ω. Define φe 2 A ( λ ) x Ω

by 0(/>, *) = 1 iff £e * . If fe Fw(λ), define 0(/) e 2 ( y W ) by flί/X^, . . ., an) = 1

iff there is some xeΩ, and for each i such that l ^ i ^ n some α, e v(ΣΩ)

such that ζ(ΛΓ, αz ) = α?, and faλ . . . ane x.

It is easily verified that J(λ) = (Ω, μ, F, ψ, Z, SΛ, SA, X, 0, 0> is an

interpretation of λ. To simplify the notation we drop the subscript 'J(λ)',

replacing W5(λ)/Vj(λ) by W/V. If (A, ξ, η, x)e W, let S(Alf A, ξ, η, x) iff for

each ξL, (Aι)ξι is a free individual variable such that ζdAjξ^ x) - ?7(q(ξ*ξi,

A))(x) if (A)ξ*ξ1 is a bound individual variable such that for all ξ2,

q(ξ*ξi, A) * ξ*ξ2, and {Aι)ξι is (A)^*^1 otherwise. Note that if Aeλ, then

SC4, A, ξ0, 770, μ) To show that J(λ) satisfies λ it therefore suffices to

prove the following:

Lemma If (A, ξ, η, x)e W, S(Al9 A, ξ, η9 x)9 and AjHA^ex, then V(A9 ξ,

η, x) = 1/0.

Proof: The proof is by induction on the complexity of {A)ξ. The complexity

c(A) of a quasi-formula A is defined as follows: (i) if A is defined by (qfl)

or (qf2), c(A) = 1; (ii) c(NA) = cU) + 1, c ( C M 2 ) = cWJ + c(A2) + 1, and if α

is a free or bound individual variable, c(ExA) = c(KaA) = c(BaA) = c(A) + 1.

We suppose that (A, ξ, 77, #>e PFand S(Λ1} A, ξ, 77, x).

I. c ( ( ^ ) = 1.

A. (A)ξ = /). Then Ax = /). If />ex, then φ(p, x) = 1, so 7(A, ξ, η, x) = 1. If

N/?e AT, then by (ml), pfίx, so 0(/?, x) = 0, and therefore V(A, ζ,η, x) = 0.

B. (A)^ = fa1 . . . an9 w h e r e / i s an n-ary functional c o n s t a n t s variable and

each αf is a free or bound individual variable. Then Aγ- faγ . . . an, where

en = tti if α^eF and ζ(x, a ) = η{q(ξ*i, A))(x) if αf €-B. 7(A, | , η, x) =

β(/)(βi, - . . , & ) , where &•= Xfe)W if o?/ e F and ]3f = η(q(ξ*i, A))W if αf € J5.

Therefore F(A, ξ, 77, x) = θ(f)(ζ(x, a,), . . ., ζ(xf an)). If A.ex, then

β(/)(ζ(^, «i), •> C(^ ««)) = 1. Now suppose HA.ex and F U , ξ, 77, x) = 1.

Then for some a[, . . ., an and some y e Ω we have/βj . . . β«e y and for each

i, ζ(y, a ) - ζ(x, ai). But then y = x and \a\a{ex for each z, so by (m8),

faγ . . . ane x, contradicting (ml).

II. c((A)ξ) > 1. W e a s s u m e t h a t i f c((A%,) < c((A)ξ), (A', ξ ' , ηr, x ' ) e W,

S(Al,A', ξ',η', x ' ) , a n d A[/UA[exr, t h e n F ( A f , ξ f , 77', x r ) = 1 / 0 .

A. (A)^0 = C. Then (A, ξ*l, 77, x)e W and (A, ξ*2, η, x)e W. We verify

easily that U i ) 0 = C, S(Ui)i, A9 ξ*l, 77, x)9 and S(Ui) 2, A, ξ*2, 77, ̂ ) .

1. Suppose Aiβx. Then by (m3), NiAj^x or (i4i)2€^. If N(Ai)i e ΛΓ, then

F(A, ξ*l, 77, x) = 0 by the induction hypothesis, so F(A, ξ, 77, #) = 1. If
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{Aι)2ex, then V(A, ξ*2,η,x) = 1 by the induction hypothesis, so V(A,ξ,η,x) =
1.
2. Suppose UAλex. Then by (m4), (A1)ιex and N ί A ^ e x . Thus by the
induction hypothesis, V(A, ξ*l, 77, x) = 1 and F(A, ξ*2, 77, Λ:) = 0, so 7(A, ξ,
77,*) = 0.

B. (A)ξ.o = N. Then (A, ξ*l, 77, AT) e W. We verify easily that (A ̂  = N and
S((^i)!, A, ξ*l, r], #)• If Aiβ^, then by the induction hypothesis, V(A, ξ*l,
η, x) = 0, so F(A, ξ, T], x) = 1. If N A ^ x , then by (m2), ( A ^ e x ; thus by the
induction hypothesis, F(A, ξ*l, 77, A;) = 1, so V(A, ξ, 77, ΛΓ) = 0.

C. (A)^o

 = E. Then (A Jo = E. If Paex,f{y) = ζ(;y, α) for all y e Ω, and v is
the extension of 77 to ξ defined by y(ξ) = /, then (A,ξ*2, y , ^ ; ) e ^ and
S((A1)2(a/x), A, | * 2 , 1/, A:).

1. Suppose A ^ Λ : . Then by (m5), {A^)2(a/x) ex and P α e j for some a. Thus
if v is as above, 7(A, ξ*2, 1/, AT) = 1 by the induction hypothesis, so
7(A, ξ,τj,*) = 1.
2. Suppose NAiβΛ;. If ψ(x) = φ9 then V(A, ξ, 7?, Λ:) = 0. Otherwise, by (m6),
N(ΛI)2(Λ/AΓ) e A: for each α such that ?a e x. Thus if v is as above,
F(A, ξ*2, 1̂ , Λ:) = 0 by the induction hypothesis, so V(A, ξ, 77, ΛΓ) = 0.

D. (Λ)^o = K/B. Then (A 1)0 = K/B. Let / e Z be such t h a t / M = X((A)ξ^)(x)
if ( A ) ^ e ί 1 and /(x) = η(q(ξ*l,A))(x) if (A) ί # 1 e5, and suppose Sk/b(f) =
Rk/b(a) Then /(^) = ζ(z, a) for all z e Ω. If ( A ^ ^ e F , then (AJx = (Λ)^!, so
ζ(x,U1)ΰ = X((A1)1)(x) = Ά(A)ξ*1)(x)= f(x) = ξ(x,a); if (A^etf, then ?(x,
(Λjj) = 77(q(|*l,A))U) = /W = ζ(A;, «). Therefore I U I ) I « C A : .

1. Suppose Aίβx. If (A, ξ*2, 77, y) e TΓ, then S((A1)2, A, ξ*2, 77, y) and
j e A(ΛΓ, Ω, Sk/b)(f) for some / a s above. Then by (m8), yeA(x, Ω, i?^)(Ui)i) ,
so by (k2)/(b2), (AJa € y. Thus by the induction hypothesis, V(A, ξ*2, 77, 3;) =
1, so V(A, ξ,η,x) = 1.
2. Suppose NAi€ x. By (k3)/(b3), there exists some ye Ω such that (x, y) e
Rk/b(a) and H(Aι)2ey for each α such that \{A^γaex. If/ is as above,
yeA(x, Ω, Sfc/&)(/), so (A, ξ*2, 77, y)e W. But SiU,)^ A, ξ*2, 77, 3;), so
V(A, ξ*2, 77, 3;) = 0 by the induction hypothesis. Thus V(A, ξ, 77, x) = O.Q.E.D.

Theorem 2 If J(λ) = (X, A:0, F, ψ, Z, ΛΛ, Rb, X, θ, φ) satisfies λ and
Z - X(v(λ)) < F - v(λ), ί/ẑ ẑ λ zs kb-defensible.

Proof: If /e X(v(λ)), let w(/) = {a e v(λ) 1/ = X(a)}. If /e Z - X(v(λ)), define
w(/) = W> where α is the first member of F - v(λ) not already assigned.
Note that if a e w(/) and a e w(g ), then / = ̂ .

As before, we omit the subscript ' J (λ)\ If (A, ξ, 77, x)e W, let
Fy,(Al9 A, I, 77, AT) if for each ξ1? (1) if (A)ξ is atomic (and ξx Φ 0), then
(Aj^ewί/) for some feZ such that /(*) = X((A)ξ*ξι)(x) if ( % ^ e F and
fix) = r?(q(ξ*ξi, A))W if ( A ) ^ e J5, and (2) otherwise, (a) if (A)ξ.ξγ is a bound
individual variable such that for all ξ2, q(ξ*ξi, A) Φ ξ*ξ2, then (i) (Aj^e
w(?7(q(ξ*ξi, A))) and (ii) for each ξ2, if (A)^*^2 is a bound individual variable
such that q(ξ*ξi, A) =q(ξ*ξ 2, A), then (A^^ = ( A ^ , and (b) otherwise,
(Aι)ξl = U)ξ.ξι.
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lίxeX, define μW = {AjaA 3 ξ 3 77 [ i ^ A ^ A, ξ, η, x) & (V(A, ξ, η, x) =
\)]}Ό{V\A,\3A3^3η[FMu Ay ξ, 77, *) & (F(A, ξ, 77, x) = 0)]} U {Ptf I 3/[(/e
Z) & (α e w(/)) & (/(*) e ψ(*))]} uίlα^alaΛBΛtίΛ € Z) & (f2eZ) & (ax e
w(/ 1))&(α 2ew(/ 2))&(/ 1W = /2(x))]}. Let Ω = μ(X); if αev(ΣΩ), define
S*(«) and Sfr(β) on Ω by <μ(*), μ(y)> e Sk/b(a) iff <#, y) e Rk/b(f), where α e w(/).
We claim that <Ω, Sk, Sb) is a kb-model system.

(kl), (bl), and (kb3) follow easily from the corresponding properties of R&
and Rh.
(k2)/(b2). Suppose KaAjBaA^ μ{x) and μ(y) e A(μ(x), Ω, Sk/b)(a). There
exist A, ξ, and η such that (A, ξ, 77, x)e W, V(A, ξ, 77, x) = 1, and Fw(KαA!,
A, ξ, 77, #)/Fw(B«i4i, A, ξ, 77, * ) . If aevi(f), then 3; eA(#, X, Rk/b)(f). Since
(A)^o = K/B, we therefore have <A, ξ*2,77, 3?) e W, V(A, ξ*2,77, y) = 1, and
FjAi, A, ξ*2, 77, y); so yli e μ(y).

Remark: If NAi € μ{x), then there exist A, ξ, and 77 such that (A, ξ, 77, ΛΓ) € W,
V(A, ξ, 77, ΛΓ) = 0, and F w U i , A, ξ, 77, * ) . For suppose (A, ξ, 77, #)e W,
V(A, ξ, η, x) = 1, and Fw(NAi, A, ξ, 77, * ) . Then (A)^o = N, so (A, ξ*l, 77, x) e
W, V(A, | * 1 , 77, x) = 0, and FjAl9 A, ξ*l, 77, x).

(k3)/(b3). Suppose HKa^Ai/HBa^ eμ(x) and \axa2eμ(Λ ). Then either (i) axe
w(/i) and a2 e w(/2) for some fγ e Z and f2e Z such that /^ΛΓ) =/ 2 W, or (ii)
there exist A, ξ, and 77 such that (A, ξ, 77, #)e W, V(A, ξ, 77, ^) = 1, and
i^wOtfi^, A, ξ, 77, x). In case (ii), (A)ξ*0 = I, so V(A, ξ, 77, ΛΓ) = θ(\)(au a2),
where αf = X((A)^)(*) if (A)^,- e F and αf. = τy(q(|*<, A))W if (A)^eB;
V(A, ξ, 77, x) = 1 implies αx = a2; Fytiϊa^, A, ξ, 77, x) implies there exist
functions /f e Z such that α# ew(/ f ) and //(Λ:) = α f . Thus case (ii) collapses
into case (i). By the Remark, there exist A, ξ, and 77 such that (A, ξ, 77, x)e
W, V(A,ξ,77,#) = 0 , and FjKa1A1,A,!;,η,x)/Fyf(Ba1A1, A, ξ, 77, *). ^ ( K α ^ ,

A, ξ,τ], ^j/FwίBβiA!, A, ξ ,η,x) implies (A)^o = K/B, ΛW = X((A)ξ^)(x) if
(A)^ : e F, and fx(x) = τy(q(ξ*l, A))(ΛΓ) if (A^.i c 5. Therefore V(A, ξ, 77, ΛΓ) = 0
implies F(A, ξ*2, 77, 3>) = 0 for some y e X such that (x, y)eRk/b(f2). Then
(μW, μ(y)> e Sfe/^(α2) and F w Uχ, A, ξ*2,77, 3;), so NA^μίy) .
(m2). Suppose NNAieμW. By the Remark, there exist A, ξ, and 77 such
that (A, ξ, 77, x)e W, V(A9 ξ, 77, AT) = 0, and F^HA^ A, ξ, 77, #). But since
(A)^o = N, we have (A, ξ*l, 77, x)e W, V{A, | * 1 , 77, x) = 1, and Fw{Al9 A, | * 1 ,
77, ^). Therefore AΣ e μ(x).
(m3). Suppose CAiAaβμίΛ;). There exist A, ξ, and 77 such that (A, ξ, 77, x)e
W, V(A, ξ, 77, x) = 1, and FjCA.A^ A, ξ, 77, #). Since (A)ξm0 = C, <A, ξ*l,
77, Λr)e PΓ, <A, | * 2 , 77, #>ePF, ^(,4, ξ*l, 77, x) = 0 or V(A, ξ*2, 77, x) = 1,
FwίAu A, ξ*l, 77, x), and FW(A2, A, ξ*2, 77, x). Therefore NAieμW or
A2€μ(Λτ).
(m4). Suppose NCA1A2eμ(^). By the Remark, there exist A, ξ, and 77 such
that (A, ξ, 77, x)e W, F(A, ξ, 77, x) = 0, and F^CA^, A, ξ, 77, x). Since
(A)ξm0 = C, (A, ξ*l, 77, ̂ ) e 17, (A, ξ*2,77, x) e W, F(A, ξ*l, 77, x) = 1, F(A, ξ*2,
77, Λ;) = 0, FW(A!, A, |*1,77, Λ:), and F W ( A 2 , A, ξ*2,77, Λ:). Therefore Aλ eμ(x)
andNA2eμ(Λτ).
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(m5). Suppose ExAίβμix). There exist A, ξ, and 77 such that (A, ξ, 77, x)e
W, V{A, ξ, 77, x) = 1, and F W ( E ^ ! , A, ξ, 77, #). Since (A)^ o = E and V(A, ξ,

77, ΛΓ) = 1, we have V{A, ξ*2, v, x) = 1 for some extension v of 77 to ξ such
that v(ξ)eZ and ^(ξ)(#) €ψ(#). If α e w M ξ ) ) , then Pαeμ(λr) and F w Ui(α/tf) ,
A, ξ*2, y, ΛΓ), s o A i ( f l A ) e μ W .
(m6). Suppose UExAιβμ(x) and P α e μ M . By the Remark, there e x i s t s , ξ,
and 77 such that (A, ξ, 77, #} e W, F(A, ξ, 77, x) = 0, and FW(E^A 1 ? A, ξ, 77, x).
Suppose there exist A', ξ ' , and 77' such that (A',ζ',ηt,x)e W, V(A',ξ',η',x) =
1, and FjPa,Aτ, ζr,ηr, x). Since (A')ξ,.o = P, V U ' , ξ ' , 77', *) = β(P)(α),
where α = X((A%,*i)M if ( A ' ) ^ * i e F and α = τj'(q(ξ'*l, Ar))(x) if (A')^.i e B.
V(A', ζ\ηr, x) = 1 implies aeψ(x). Since F w ( P α , A f , ξ f , 77', AT), aew(f) for
some / e Z such that /(ΛΓ) = a. Thus if ^ is the extension of η to ξ defined by
j/(ξ) = /, v(ξ)(x)eψ(x). Therefore (A, ξ*2, v, x)e W, V{A, | * 2 , v, x) = 0, and
Fy/iAM/x), A, ξ*2, 1/, Λ:). Consequently, NA^βA) eμW.
(m7). Suppose αev(μW). Then if a e w(/), /W = f(x), so l«αeμ(x).
(m8). Suppose \aιa2eμ{x). As in the proof of (k3)/(b3), there exist functions
fι e Z such that a{ e w( /,-) and fx{x) = / 2 W

1. Suppose Pa1eμ{x). As in the proof of (mβ), there is a n / e Z such that
ax e w(/) and /(ΛΓ) e ψ(x). Thus / = fl9 so /2U) e I//(Λ;) and ?a2 e μ(x).
2. Suppose \a[af

2eμ(x), where a[ = a1. As in the proof of (k3)/(b3), there
exist fie Z such that ale w(//) and/ί(*) =/2

fW. Thus/J =/ x, so/ίW =/{W =
/ i W = Λ M , and so {a^eμix). The case where α2 = #i is similar.

3. Suppose fa[ . . . α ^ μ W , where / * P, / Φ I, and « | = aγ for some fe such
that 1 ̂  k ^ n. There exist A, ξ, and η such that (A, ξ, η, x)e W, V(A, ξ,
η, x) = 1, and F*(fa[ . . . an, A, ξ, η, x). U)^o = /, so 7(Λ, ξ, ry, ΛΓ) =
θ(f)(al9 . . ., an), where α, = X((Λ)^.i)W if (A)ξ i e F and on = η(q{ξ*i, A))(x) if
(A)ξ*i e B. Fy,(fa[ . . . an> A, ξ, η, x) implies there exist // e Z such that a\ e
w(//) and//ω = α, . T h u s / ^ / i , so f2(x) =fάx) =fί(x) = ak. Therefore
Fjfa[ . . . aUwLi . - -an, A, ξ, η, x), so /αf . . . ai,a2al+ι . . . a'neμ{x).

( m l ) . S u p p o s e Ai€μ(Ar) a n d HAγeμ{x), T h e r e d u c t i o i s by i n d u c t i o n on t h e
c o m p l e x i t y of Aλ.

1. c(Ai) = 1.

a. A L = p . T h e r e e x i s t A , A ; , ξ , ξ ' , 77, a n d 77' s u c h t h a t (A, ξ, 77, x)e W,
(A', ξ ' , 77r, Λ:>€ W, F(A, ξ, 77, x) - 1, F ( A ' , ξ f , 77', x) = 0, Fw(/>, A , ξ, 77, * ) ,
a n d Fjp, Ar, ξ f , 77', ̂ ) . But s i n c e (A)ξ = (A')ξl = />, F(A, ξ, 77, x) = V(A', ξ r ,
77f, x) = φ{p,x), RAA.
b. Aι = Pa. As in the proof of (m6), there is an fe Z such that aewif) and
f(x) e ψ(x). By the Remark, there exist A, ξ, and 77 such that (A, ξ, 77, x) e W,
V(A, ξ, 77, x) = 0, and Fw(Pw, A, ξ, 77, #). Since (A)^o = P, F(A, ξ, 77, x) =
θ(P)(a), where a = X((A)ξml)(x) if ( A ^ ^ e F and a = η(q(ξ*l,A)){x) if {A)ξ^eB.
F w (Pα,A, ξ, 77, ΛΓ) implies there exists s o m e ^ e Z such that aewig) and
g{x) = a. Thus g=f. But /(AT) € Ψ(ΛΓ) implies θ(P)(a) = 1, RAA.

c. Aι = \aιa2. As in the proof of (k3)/(b3), there exists /,- e Z such that
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#*• e w(/f ) and fι(x) = f2(x). By the Remark, there exist A, ξ, and 77 such that
(A, I, 77, x)e W, V{A, ξ, 77, x) = 0, and J ^ O ^ , A, ξ, 77, #). (A)^o = I, so
V(A9ξfη,x) = θ(\)(aua2), where αf = X((A)^)(#) if (A)^ e F and <*,- =
77(q(ξ*i, A))(#) if ( A ) ^ € £ . ^ ( l α ^ , -A, | , 77, x) implies f{(x) = αr# . But then
β(0(<*i, α2) = 1, RAA.
d. Ai =/βi . . . αw, where f Φ ? and / * I. There exist A, A', ξ, ξ', 77, and 77'
such that <A,ξ,77,*>e W, <A', ξ', 77', x)e W, V(A, ξ,η,x) = l9 F(A', ξ', 77', #) =
0, Fwί/fli . . . «n, A, ξ, 77, ΛΓ), and F^fa^ . . . an, A f, ξ f, 77', ^) . Since (A)ξ*0 =
f, V(A, ξ, 77, x) = 0(/)(of!, . . ., αM), where α, = X((A)^n)W if (A)^, e F and
α. = η(q(ξ *f, A))(x) if (A)̂ */ € J5. Since Fw(/«! . . . αw, A, ξ, 77, x), there exist
/ f e Z such that αf ew(/, ) and / t W = α f . Since (A')^/*o =/, F(A', ξ f , 77', x) =
θ(f)(βl9 . . ., βn), where β< = χ((A')^*/)W if U O ^ e F and βi = 77 f(q(| '^,
A f))W if (A')£<**• e B. Fw(/αχ . . . an, A', ξ', 77', x) implies there exist fjeZ
such that β. ewί//) and //(#) = j8, . Therefore /,- =fl, so αfz = /3, . But then
7(A, ξ,77,^)= 7(A f, ξ',τ7',*),RAA.

2. c(Aj > 1. We assume that if c(A2) < cίAj , then NA2eμ(;y) implies

^2 έβ(y) for each 3; € X.

a. Ai = NA2. By (m2), HAxeμ(x) implies A 2 €μW. Thus Aιfίμ(x) by the
induction hypothesis, RAA.
b. Aλ = CA2A3. By (m4), NAλeμ(x) implies A2€μ(#) and NA3eμ(Λ:). By (m3),
Aιeμ(x) implies NA2eμ(Λτ) or A3eμ(x), neither of which is possible by the
induction hypothesis, RAA.
c. Ai = EΛA2. By (m5), Ai€μ(Λ:) implies A2(a/x) eμ(x) and Paeμ(x) for some
a. By (m6), NAieμU) implies HA2(a/x)eμ(x), contradicting the induction
hypothesis, RAA.
d. Ax = KaA2/BaA2. By (k3)/(b3) and (m7), there is some μ( y) e Ω such that
<μ(#), μ(y)) e Sk/b(a) and NA2eμ(;y). Since μ(y)eA(μ(x)9 Ω, Sk/b)(a), A2eμ(y)
by (k2)/(b2), contradicting the induction hypothesis, RAA. Q.E.D.

5 Alternative Notion of Defensibility To facilitate the proofs of the Validity
and Completeness Theorems, we introduce here an equivalent notion of
defensibility. This concept is also closer formally to that given by Hintikka
[ l ] , and we shall conclude this section with a brief comparison.

Let Ω be a countable set of model sets and let Rk and Rb be elements of
(P(Ω2))V ( Σ Ω ). (Ω, Rk) is a k'-niodel system provided:

k ' l . If KaA e μ e Ω, then A € μ.
k f2. If K^iAeμ € Ω and ia^eμ, then Kα2Aeμ.
k'3. If NIG^Aeμe Ω and \axa2eμ, then NKa2Aeμ.
k'4. If KaA e μ e Ω and <μ, v) e ̂ ( α ) , then KaA e v.
k'5. If NKαA € μ € Ω, then there exist some i^eΩ such that (μ, v) e Rk(a) and
NAeiΛ

(Ω, Rb) is a b'-model system provided:

b ' l . If BaA eμ e Ω, t h e n t h έ r e i s s o m e veΩ s u c h t h a t ( μ , v) e Rb(a).

b f2. If BaλA eμ e Ω and \axa2eμ, then Ba^eμ.
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b f 3. If HBaλA e μ e Ω and \axa2 e μ, then NBα2A e μ.
b'4. If BaA e μ e Ω and <μ, v) e Rb{a), then BaA e v.
b'5. If BaA a μ e Ω and <μ, ι/) e #&(«), then Aci/.
b f 6. If HBaA e μ e Ω, then there exists some v e Ω such that (μ, ι/) e i^(α) and
ISlAeiΛ

<Ω, Rk,Rb) i s a &&τ-model system provided:

kb f l . (Ω, Rk) is a k'-model system.
kb f2. (Ω, Rb) is a b'-model system.
kb f3. If KaA eμ e Ω and (μ, i/> e #&(«), then KaA e v.

As before we shall sometimes omit reference to the relation functions Rk

and Rh and refer to Ω as a k'-, b f - , or kb'-model system. A set λ of
formulae is k'/b'/kb'-defensible iff there exists a k'/b'/kb'-model system
Ω such that λ C μ for some μ € Ω.

Theorem 3 If λ is kb1-defensible, then x is kb-defensible.

Proof: Suppose (Ω, Rk, Rh) is a kb f-model system such that \ C μ for some
μe Ω. If αev(ΣΩ), define Sb(a) = Rb(a) u{<μ, μ> I - 3A(BaAeμft and Sk(a) =
Rk(a) u Sb(a) u{(μ, μ)lμe Ω}. We claim that (Ω, Sk, Sb) is a kb-model sys-
tem.
(kl), (bl), and (kb3) are satisfied by construction (plus (b'l) in the case of
(bl)).
(k3)/(b3). Suppose NIKα^/NBα^A eμ and l α ^ e μ . By (kf3)/(bf3), N K α ^ /
HBa2Aeι±, and by (k'5)/(bf6), there exists some veQ, such that (μ, v) e
Rk/b(β2) and HAe v. Έ>x&Rk/h(a2) c Sk/b{d2) by construction.
(b2). Suppose BaAeμ and veA(μ, Ω, Sb)(a). Then there are sequences
<77o, . . ., ηn+i) and (a09 . . ., an+1) such that μ = η0, v = ̂ + 1 , « = Λ0, and for 0 <
ί < n, \aiai+lerii and (77 f , 77f + 1 ) e Sb(ai+1). We show by induction on i that
Bai+1Aeη{; we may assume that (ηi} ηi+i) eRb(ai+1). Ba0Aeη0 and \aQaιtμ,
so by (b'2), BtfiA e 770. Assume that Ba^Aeηi. (ηiy ηi+1) e Rb(ai+1), so by
(bf4), Bai+ιAeηi+ι. \ai+yai+2eηi+l9 so by (b'2), Bai+2Aeηί+1. Therefore
Ban+1A e ηn. But (ηn, ηn+1) e Rb(θn+1), so by (b f5), A e ηn+ι = v.
(k2). Suppose KaAeμ and veA(μ, Ω, S^)(α). Then there are sequences
<r7o, , ^«+i) and (a0, . . ., αw+1) such that μ = η0, v = ηn+l9 a = a0, and for
0 < i ^ n, \aidi+1e 77/ and (ηi9 ηj+1) e Sk(ai+1). We show by induction on i that
KaiAeηi; we may assume that (ηi9 r?/+1) e Rk(ai+1) or (ηi9 ηi+1) e Rb(ai+1).
KaoAeηo. Assume that K^Aer;,-. \aiai+1eηίi so by (kr2), Kai+iAeη^ If
(ηi,ηi+ϊ>eRk(ai+i), then K«/+1A e r]/ + 1 by (kf4); if (η{, ηi+^) e Rb(ai+1), then
Ktf/+i4 e ?7W+1 by (kbf3). Therefore Kai+1A e ηn+1} so A e ηn+ι = v9 by (k'l).Q.E.D.

Theorem 4 If λ is kb-defensible, then λ is kb'-defensible.

Proof: Suppose (Ω, Rk, Rb) is a kb-model system such that λ C μ for some
μ e Ω. We may assume that if a e v(ΣΩ) and v e Ω, then I aa e v.

If X is a set of sets of formulae, xeX, and E e ( Λ l 2 ) ) v ( Σ Ω ) , define
ko(x, X, R) = ̂ La2A\3y3aλ[{xe A{y, X, R)(al9 a2)) & (KaλAe y)]} and bo(x, X,
R) ={Ba2A\3y3a1[{xtA{y,X,R){aι,a2))k{Ba1Aey)'\}. If x is a set of
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formulae, define k1(x)={NKa2A\3a1[(NKaίAex)&,(\a1a2ex)]} and bM =
{NBa2A\3a1[(NBa1Aex) & (\aλa2e x)]} U {Ba2A ^ ^ [ ( B ^ A e A:) & ( l α ^ e A:)]}.

If μ e Ω, let μ° = μ u ko(μ, Ω, #fe) U bo(μ, Ω, i^) and μ1 = μ° u ^ ( μ 0 ) U
δi(μ°). Define Λ*(α) and #&(α) for αev(ΣΩ) on Ω1 = {μMμe Ω} by (μ1, î 1) e
Rlk/b{a) iff (μ, v) e Rk/b{a). We claim that (Ω1, Rι

k, RJ,) is a kb f-model system.

Remark: (Ω1, Rι

h R$ satisfies (k2) and (b2).

(k2). Suppose KaAeμ1 and vιeA(μ\ Ω1, #£)(α). Then KαAeμ0 and ve
A(μ, Ω, /&)(α). Since \aa eμ and <μ, μ) e i2*(«), there exist η and «! such that
μ € A(η, Ω, i4)(«!, a) and Ka:A e 77. But then v e A(η, Ω, ΛjίαJ, s o i e K i ; 1

by (k2).
(b2). Suppose BαΛeμ1 and i^eAίμ1, Ω1, Rl)(a). Then i^eA(μ, Ω, Rb){a) and
since lααeμ, B^iAeμ0 for some #! such that la^aeμ.. If B^iAeμ, then A €
v c vι by (b2); otherwise there exist 77 and α2 such that μ e A(η, Ω, Rb)(a2, ax)
and B^aA € η, in which case veA(η, Ω, Rb)(a2), so A e ^ c z/1 by (b2).
(k f l). Suppose KαΛeμ1. Since lααeμ and ( μ \ μ1) eRι

k(a), μ1 e A(μ\ Ω^ΛίXα),
so A eμ 1 by the Remark.
(b rl) follows trivially from (bl).
(kf2). Suppose Ka^eμ1 and la^eμ1. Then l α ^ e μ and K α ^ e μ 0 . Since
lα^i e μ and (μ, μ) e Rkiad, there exist 77 and α3 such that μ e A(η, Ω,/2A)(β39βi)
and K«sA e 77. But then μ e A{η, Ω, ^ ( 0 3 , ^2), so Ka^A e μ ° c μ1.
(bf2). Suppose Ba^eμ1 and lαi<22eμ1. Then l α ^ e μ and since \axaιeμ,
Bα3A€μ° for some a3 such that \a^aλtμ. But then by (m8), \a3a2eμ, so
BαaAeμ1.
(k f3)/(b'3). Suppose NKα^/NBαiA eμ 1 and \aλa2eμι. Then \axa2eμ. Since
l α ^ i € μ, NKαaA/NBαaA e μ° for some a3 such that \a3aγ e μ; but then by (m8),
\a3a2 e μ, so NKαaA/NB^aA e μ1.
(kr4). Suppose KaAeμ1 and (μ 1, vι)eR\{a). Then KαA eμ° and <μ, v)eRk(ά).
Since laaeμ and (μ, μ)eRk(a), there exist 77 and αL such that μeA(η, Ω,
Rkίi^u a) and Kα^Aeη. But then ^€^(77, Ω, Rk)(a19 a), so KαΛ e v° c i;1.
(bf4). Suppose BaAeμ1 and (μ 1, i/^eΛ^β). Then (μ, v)eRb(a), and since
\aaeμ,BaιAeμ° for some fli such that Iβxαeμ. If BtfjA eμ, then i^eΛ(μ, Ω,
Rb)(al9 a), so BtfA € v°. Otherwise there exist η and a2 such that μ e A(η, Ω,
Rb)(a2> ai) a n c * Bα2A e T7, in which case v e A(r], Ω, Rb)(a2, a), so BαΛ e v°.
(b f5). Suppose BαAeμ1 and (μ 1, v1) e Rb(a). Since laaeμ, ^eAiμ1, Ω1, ^ ) ( α ) ,
so A e vι by the Remark.
(k'5)/(b'6). Suppose NKtfA/NBαA eμ 1 . Since lααeμ, HKa^/HBa^eμ for
some aγ such that lα λ αeμ. By (k3)/(b3), there exists some i^eΩ such that
<μ, v) e Rk/b(a) and NA e 1/; thus there exists some vι e Ω1 such that (μ1, î 1) e
Rl/b(a) and NAev1.
(kbf3). Suppose KaA e μ1 and (μ 1, vι) e Rι

b{a). Then KαA e μ° and (μ, ι;> e Rb{a).
By (kb3), (μ, v) e Rk{a), so (μ 1, vι)eRι

k{a) and the result follows by (kf4).

We easily verify that (m2)-(m8) continue to hold for elements of Ω1.
(ml). The supposition that ^ e μ 1 and NAieμ1 leads immediately to a
contradiction except where Aλ = KaA/BaA. Accordingly, suppose that KaA/
BaAeμ1 and UKaA/NBaA eμ1, and assume (ml) holds for formulae A j. with
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c U J <c(KαA)/c(BαA). By (kf5)/(bf6), there exists some vι such that
(μ1, vι)tRl/b{ά)2LnάHAev\ But by (k'4), (k'l)/(b'5), Ae v\ RAA. Q.E.D.

Let us now compare our notion of kb'-defensibility with that in [l].
Evidently, our notation differs somewhat from Hintikka's. We have written
l α ^ for his ax = α2, NA for his ~A, CAXA2 for his Aλ => A2, KαA for his
KaA, and BaA for his BaA. The 1-ary functional constant P does not appear
in [1], but its role is assumed there by formulae of the form Ex\ax, to
which ?a is "virtually equivalent". Hintikka's operators C, P, &, and U
may be regarded as defined symbols and have accordingly been omitted in
9(K, B).

More significant are the differences in the notions of model set and
model system. We have retained (C.KK*) in (k'4) rather than bothering
with its qualified form. The more important departure is that (mδ) and
(m6) replace less general but more complicated conditions dealing with
quantifiers. None of Hintikka's rules apply to quantifications over believers
or knowers (over 'subscripts', as he puts it), whereas (m5) and (m6)
contain no such restriction. Hintikka explicitly rejects (C.E0) and (C.U0)—
the partial corresponds of (m5) and (m6)—in favor of (108) and (109), then
(C.Eep) and (C.Uep), et al. He wishes, he says, to block inferences like
ExKalxciί from Ka\aγaγ. However, (C.E0) and (C.U0) are entirely adequate
for this purpose. It seems rather his desire to read ExKa\xaλ as ra knows
who «! is"1 that leads him to reject (C.E0) and (C.U0). Of course, it is of
interest to know whether the system can handle such locations. However, it
seems a tactical error to forego an investigation of how well it supports the
conventional reading Γthere is something—call it x— such that x actually
exists and a knows that x is a? in favor of attacking a more specialized and
probably more difficult problem.

It is easy to verify that the differences are significant. For example,
(1) Ex\xaλ "virtually implies" ExKa\xaγ in 9(K, B) but not in [1], while

(2) ExKaA "virtually implies" KaExA in [1] but not in 9(K, B). It can be
argued that the conventional reading of the quantifier supports J(K, B)
rather than Hintikka here. For (1), consider that one knows of each thing
that it is self-identical, whatever else one knows or fails to know of it; if aγ

exists, then there does exist something (namely aλ) known by a to be aly

since a knows a1 is al9 As for (2), imagine that one knows of something
through a work of literature one considers fictional, while in fact that thing
actually exists (something answers to the concept one has through reading
the work); of course, we must assume that fictionality is not part of one's
concept of the thing, but this does not seem unreasonable.

Theorems 1-4 show that the semantics of section 3 are implicit in the
notion of kb'-defensibility. The universe of discourse is a domain of
possible individuals; it is intended that membership be restricted to
entities capable of knowing and believing, although this condition could quite
easily be liberalized. As usual, the predicates are true or false of these
individuals. Essentially, with each possible world x are associated two
sets of possible individuals: those of which there is a concept in x (afforded
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by the use in x of some referring expression) and a subset thereof
comprising those actually existing in x. In general, if x and y are distinct
possible worlds and r is a referring expression used in both* andy, then
the possible individual to which r refers in x will be distinct from the
possible individual to which it refers in y. Accordingly, to make the
situation in x bear upon the situation in y, each possible individual of which
there is a concept in y must be connected to some possible individual of
which there exists a concept in x; this is accomplished by making each a
'part' (an 'aspect') of some transworld personality.

The supposed difficulty about 'identifying' individuals across possible
worlds which some have found in Hintikka [2] does not appear to arise here.
It can be posed as follows: how are the transworld personalities to be
constructed, i.e., how are we to decide which possible individual in world
x corresponds to a given possible individual in world y? But here it is
merely a matter of defining the appropriate function. There may be
practical difficulties in making the connections that show a given set of
formulae to be satisfiable, but they seem entirely comparable to those
encountered in ordinary first-order logic and not to require any excursions
into essentialism. While kb'-defensibility is not, as we have seen, quite
faithful to Hintikka, it seems unlikely that the semantic basis of a com-
pletely faithful formalization would introduce any additional difficulties of
this sort.

We turn now to some peripheral matters. We have taken account of the
shifting of reference involved in moving from one possible world to another
by altering the reference of names while keeping that of predicates fixed.
That is, a predicate / is assigned an extension in the domain of possible
individuals, and the case in which / is true of a in world x and false of a in
world y is handled by letting a refer to different possible individuals. An
apparently equivalent approach would seem to be to keep fixed the
reference of names while changing that of predicates, that is, to define θ on
pairs (/, x). However, this does not work. A set which ought to be
satisfiable (and which is defensible) is λ = {lαi<z2> Kα/<Zi, NKafa2}; under the
proposed change we would presumably require θ(\, xo)(oiι, cx2) = 1 iff aλ = oί29

but in this case there is no interpretation of/ which satisfies λ.
The substantive starting point of this investigation has, of course, been

kb'-defensibility. We have introduced kb-defensibility only because the
nonrecursive character of the conditions defining kbf-defensibility makes a
truth definition difficult. In view of Theorems 3 and 4, kb-defensibility has
the same force as kb'-defensibility, the rather strange rules (k2), (b2),
(k3), and (b3) notwithstanding. However, since the consequent of (k3)/(b3)
is not the negation of the consequent of (k2)/(b2), the evaluation function V
may be undefined at certain elements of W. I do not know whether kb-
defensibility can be formulated in a tidier manner, but it may be of interest
to record some formulations which do not work.

1. kb-defensibility is defined like kb-defensibility, except that (k3)/(b3) is

weakened to: if NKαA/NBαAeμ, then there is some ve A(μ, Ω, Rk/b)(°)
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such that HA e v. The interpretation rules can now be stated more cleanly,
and the analogs of Theorems 1, 2, and 3 can be proved. However, if λ is
kbx-defensible, then λ need not be kb'-defensible. For example, it is easy
to verify that λ = {NKα1Kα2l«i^2? Kαil«i<z2} is not kb'-defensible. But if
μx = {NKαiK^lα^, Ka^a^, \aλa2i \a2a1} \aλau \a2a2}, μ.2 = {l«i«i, l«2β2> l^3«3,
\aλa2, \aλa3, \a2al9 \a2a3, \a3au \a3a2], μ3 = {NKa2\a1a2, \axa2, \a2au \aιaι, \a2a2},
μ4 = ̂ \\aιa2,\aιau\a2a2), Ω = {μ1? μ2, μ3, μ4}, Λ*(αi) = Rb(a2) = %(«3) = flfe(«i) =
{<μi, μi>, <μ2J μ2), (μ 3, μ3), <μ4, μ4)}, Rk(<h) = ̂ ( β 2)u{(μ 1 ? μ2), <μ3, μ4)}, and
^(« 3 ) = #&(«3) u{(μ 2, μ3)}, then (Ω, i^, Rb) is a kbi-model system. Con-
sequently kbi-defensibility is too weak.

2. kb2-defensibility is defined by (kl), (bl), (kf2), (b f2), (k'3), (b f3), (k f5),
(bf5), (kb3), plus the following conditions: (a) Rk/b(a) is transitive, and (b) if
KaA/BaAeμ. and (μ, v)tRk/b(a)> t n e n Aev. Then the analogs of Theorems
1, 2, and 3 can be proved. However, the presence of (k'2), (b'2), (k'3), and
(b'3) gives rise to the same aesthetic difficulties in defining interpretations
as does kb-defensibility. Furthermore, if λ is kb2-defensible, then λ need
not be kb'-defensible. For example, it is easy to verify that λ = {Kdip,
NKaiClai^KciίKazp} is not kb'-defensible. But if μι = {K^p, p, \ayau la2a2,
NKαiClαi<z2KαiKα2/>}, μ 2 = { N C I « I « 2 K « 1 K « 2 ^ J P> l«i«2> l«2«i> \axaγ, \a2a2,
NKaιKa2p, HKa2Ka2p}, μ3 = {NKa2p, p, \a2a2}, μ4 = {NKa2p9 \a2a2], μ5 = {N^},
Ω ={μi, μ2, μ3, μ4 ) μ5}» Rbfai) = Rb(a2) = {(μ19 μi), (μ 2, μ2>, (μ3> μ3), (μ4 > μ4>>
<μ5, μs)}, Rk(<*i) = Rb(ai) u{<μi, μ2), <μ2, μ3), (Uu μ3)}, and Rk(a2) = Rb(a2) u
{<μ2, μ4), <μ4, μ5>> <μ2> μ5)? <μ3, μ5)}, then (Ω, Rk, Rb) is akb2-model system.
Consequently kb2-defensibility is too weak.

3. kb3-defensibility is defined like kb2-defensibility, except that (kf2)/(bf2)
and (kf3)/(bf3) are replaced by the following condition: if \aιa2eμ and
(μ, v)eRk/b{a^, then (μ, ι^)eRk/b{a2). Then the interpretation rules can be
stated more cleanly, and the analogs of Theorems 1, 2, and 4 can be
proved. However, if λ is kb f-defensible, λ need not be kb3-defensible. For
example, it is easy to verify that λ = {Kaλp, \axa2, NKαiKα2Kαiί>} is not
kb3-defensible. But if μι = {K^p, \a1a2, HKa^a^^p, Ka2p, p, \a2au \aγau

\a2a2, NKa2Ka2K«!p}, μ2 = {NK^Kα^, Kaλp, Ka2p, p, \axau \a2a2}, μ3 =
{NKβiί, Ka2p, p}, μ4 = {N^}, Ω = {μ1? μ2, μ3, μ4}, Rb(ax) = Rb(a2) = {<μ1? μx),
<μ2, μ2), (μ3, μ3), (μ 4, μ4)}, RkM = Rb(<*i) v{(Hi, μ2)? (μ 3, μ4>}3 and Rk(a2) =
RbM u{(μ 1 ? μ2), <μ2, μ3)}, then (Ω, Rk, Rb) is a kb'-model system. Con-
sequently, kb3-def ens ibility is too strong.

6 Provability The logical axioms of 9(K, B) are sequents of the form Γ,
A —* A, Δ. The identity axioms of 2(K, B) are sequents of the form
Γ —> \aa, Δ. A sequent is an axiom of 9(K, B) iff it is a logical axiom or an
identity axiom. The rules of inference of 9{K, B) are the following:

Propositional rules:

Γ-+A, Δ
N° Γ,NA-«Δ

Γ,A-*Δ
N l > Γ-.NΛ,Δ
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Γ -> Al9 A Γ, A 2 -> Δ

Γ, CAXA2 ^ A

Γ, A, -+ A 2, A

^ Γ - C Λ Λ A

Quantifier rules:

Eo. ' T-, _—i if a does not appear in Γ, Ex A —* A
Γ, c.xA —* A

Γ-> A(a/x), A Γ-> Pβ, A
hι' Γ->ExA, A

Identity ru les :

Γ, l α ^ , l ^ α , -> A
l o Γ, lα^-Δ

Γ, l^αί , /βi . . . #«, / α i . . . dk-iaίcik+i . . . αn -^ A
IF 0 . _ ^ r . " , w h e r e / is an w-ary

functional constant or variable and 1 ̂  ^ ̂  w

Γ, I t f^ -»/«! . . . αn, fai . . . dk-ia/ίak+i . . . aw, A
j F ^ where / i s an w-ary

functional constant or variable and 1 ̂  k ̂  n

Γ, lflig2> KQIA, Kayl -> A

Γ, lα^g, KaλA -* A

K l ' Γ, \a,a2 - K α ^ , A

Γ, lαxflfc, BαiΛ? B«2 A -• A
0 # Γ, \aιa2, Ba,A^ Δ

Γ, l α ^ —* BaγA, Ba2A, A
1# Γ, \aγa2 -* B^!^4, A

Operator rules :

Γ, KflA, A -^ A

^° Γ, KaA - A

KαAi, . . ., KaAn —• A
Ki. 7Γ-; JT—; jτ—r, where n may be zero

KaAι9 . . ., KαAw —• KαA
KαAi, . ., KaAn9 BaA[, . . ., BaAr

m, A[, . . ., A^ —
Bo ί ^ ir^—^77^ R^T* ' w h e r e n m a y b e

KαAi, . . ., KaAn, BaAl9 . . ., BaAm —*
zero
KαAi, . . ., KαAw, BαAί, . . ., BaAf

m, A[, . . ., Ar

m -> A
B l K β A 1 , . . . , K α A . , B β A ί , . . . , B β Λ L - B β A ' W h e r e " ° Γ m

may be zero
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Enabling rules:

T Γ ^ Δ

T°' Γ, A - Δ

T Γ ~ * Δ

Γ, A, A ^ A
D° Γ, A -. Δ

Γ-+A,A,Δ
D l Γ - A , Δ

A1? . . . j A ^ , A&+1, Ak, A&+2, . . ., Aw —» Δ
Ro. , where n > 1 and 1 < & < n

Aι9 . . ., Aw —* Δ
Γ -» A1? . . ., A ^ , A&+1, A*, A&+2, . . ., An

Rx. , where n > 1 and 1 ^ k < n
Γ > A1 ? . . ., Aw

A finite sequence <Sl5 . . ., Sn) of sequents Ŝ  is a proof (of Sn) iff for
each z such that l^i^n, either (1) St is an axiom, or (2) there exist
integers j , k < i such that S, is inferred by (Co) or (Ei) from S; and S ,̂ or
(3) there exists an integer j < £ such that Sf is inferred from S/ by a rule
other than (Co) or ( E j . A sequent is provable iff there exists a proof of it.

7 Validity Theorem An interpretations of a sequent S is an interpretation
of Is I; J gives S the value 0/1 as J does/does not simultaneously satisfy \S\.
S is valid iff \s\ is not simultaneously satisfiable, i.e., iff each interpreta-
tion of S gives S the value 1.

The main result of this paper is that S is provable iff S is valid. The
easier half is proved here.

Theorem 5 If S is provable, then S is valid.

Proof: In view of Theorem 2 it suffices to show that if S is provable, then
\s\ is not kb-defensible (since v ( | s | ) is finite, the variable condition is
satisfied).

We first verify that if S is an axiom, then \s\ is not kb-defensible. If
S = Γ, A —> A, Δ, then by (ml), | S\ cannot be a subset of any model set. If
S = Γ —» [aa9 Δ, then by (m7), \s\ cannot be a subset of any model set.

We now show that if S is inferred from S19 . . . by a rule of inference of
9(K, B) and | S j , . . . are not kb-defensible, then \S\ is not kb-defensible.

(No). If S = Γ, NA — Δ and Sλ = Γ -> A, Δ, then \S\ = | S j .
(Nx). Suppose S = Γ — NA, Δ and Sλ = Γ, A -> Δ. If \S\ c μ, where μ is a
model set, then by (m2), Aeμ, so | s j C μ.
(Co). Let S = Γ, C A Λ -> Δ, Si = Γ — Λ1? Δ, and S2 = Γ, A2 - Δ. If | s l c μ,
where μ is a model set, then by (m3), either NAi e μ or A2 e μ, so either
| S j c μ o r | S 2 | c μ .
(Ci). Let S = Γ -> CAXA2, Δ and Sx = Γ, Aλ -> A2, Δ. If \S\ c μ, where μ is
a model set, then by (m4), Aj. e μ and NA2 e μ, so | Sx | c μ.
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(Eo). Let 5 = Γ, ExA -* Δ and Sλ = Γ, A(a/x), ?a -> Δ, where a does not
appear in S, and suppose \s\ is kb-defensible. By Theorem 1, \s\ is
satisfiable; let J = (X, x0, Y, ψ, Z, Rk, Rb, X, 0, φ) be a satisfying interpre-
tation. Let / be the first ge Z such that if v is defined on {ξ0} by ^(ξ0) = g,
then Vj(ExA, 2, v, x0) = 1. Since v ( | s | ) is finite, the conditions of Theorem
2 are satisfied. If ge (X(v(|s|)) - {/}), let vj'(g) = w(#); if ge(Z - (X(v(|s|))U
{/})), let w'(g ) = {ax}, where ax is the first variable of F - (v( | s | ) U {«}) not
already so assigned; if /e X(v(|s|)), let w'(/) = w(/) U {a}; and if fe (Z -
X(v((SI))), let w'(/) = {a}. If the proof of Theorem 2 is now carried out with
wf in place of w, we obtain a kb-model system Ω such that | s j c μ(x0) e Ω.
(Ei). Let S= Γ->ExA, Δ, Sχ= Γ — A(a/x), Δ, and S2 = Γ -> Pα, Δ, and
suppose that \s\ c μeΩ, where Ω is akb-model system. If Pαeμ, then by
(m6), Ni4(α/λr)eμ, so | s j c μ. If Pα/μ, then μ' = μ u{NPα, lααjis a model
set, Ω' = {μ'}u (Ω - {μ}) is a kb-model system, and \S2\ c μ\
(Io). Let S = Γ, \aγa2 -* Δ and Sι = Γ, l α ^ , Ia2a1 -> Δ. If | s l c μ, where μ
is a model set, then by (m7), \aιaλeμ, so by (m8), \a2aιeμ, so I Si I c μ.
(IFO). Let S = Γ, \akak) fax . . . an — Δ and Sx = Γ, 1 ^ , / ^ . . . αw,
faγ . . . a^aldk+i . . . α» -* Δ. If | s | c μ, where μ is a model set, then by
(m8), / « ! . . . αfc.i«ίαjb+i . . . α«eμ, so | s j c μ .

(iFi). Let S = Γ, l α ^ —> /αx . . . αw, Δ and Si = Γ, l%α^ -* /«i . .««,
faι . . . ak^alak+1 . . . αw, Δ. If Isi c μ, where μ is a model set, then
/«! . . . ak_γa[ak^ . . . α w /μ, since then by (m7) and (mδ), faλ . . . αweμ,
contradicting (ml). Thus μ f = μ U {N/«! . . . ak_λa[ak^γ . . . αw} is a model
set, and | Si I c μ f.
(IKO). Let S = Γ, \a1a2, KaλA -• Δ and Sx = Γ, \aιa2) KaλA9 K α ^ -> Δ. If
| S | c μeΩ, where Ω is a kb'-model system, then by (kf2), Ka2Aeμ, so
I s j c μ .

(IKI) . Let S - Γ, l α ^ — K«iA, Δ and Sx = Γ, \axa2 -* KaxA, KαaA, Δ. If | s l c
μeΩ, where Ω is a kb f-model system, then by (k'3), NKα2Λ eμ, so | s j c μ.
(IBO). Let S = Γ, \aγa2, BaxA -• Δ and Sx = Γ, \aιa2, BαiA, Bα 2^ -• Δ. If \s\ c

μeΩ, where Ω is a kb f-model system, then by (b'2), Ba2Aeμ, so | s j c μ.
( I B I ) . Let S = Γ, \aλa2 -• B^iA, Δ and Sx = Γ, l α ^ -> B«iA, Bα2A, Δ. If \s\ C
μeΩ, where Ω is a kb f-model system, then by (bf3), NB<V*.€μ, so | s j c μ.
(Ko). Let S = Γ, K«A — Δ and Sx = Γ, KaA, A -* Δ. If | s | c μ e Ω, where Ω
is a kb f-model system, then by (k'l), Aeμ, so I Si I c μ.
(Ki). Let S = KaAlf . . ., KaAn -> KaA and Sx = KaAl9 . . ., KaAn -> A, and
suppose | s | c μeΩ, where (Ω, Rk, Rb) is a kb f-model system. By (kf5),
there is some i/eΩ such that (μ, v) e Rk(a) and HA e v\ by (k'4), KaAi e î  for
each i, so ISLI c î .
(Bo). Let S = KaAl9 . . ., KaAn, BaA[, . . ., BaA'm -• and Sx = KaAx, . . .,
KaAn, BaA'u . . ., BaA'm, A[, . . ., AJ, -•, and s u p p o s e | s | c μ e Ω,
where <Ω, Rk, Rb) is a kb'-model system. By (b'l), there is some ve Ω such
that (μ, v) e ^ ( « ) ; by (kbf3), KαAz e i/ for each i; by (bf4), BaA- e v for each
i; and by (b f5), Aje v for each z. Therefore | s j c i/.
(BO. Let S = KaAx, . . ., KaAn, BaA[, . . ., BaA'm -> BαA and Si = KαAi,
. . ., KaAn, BaA[, . . ., BaA'm, A[, . . ., A!

m -^ A. Suppose \s\ c μ e Ω, where

(Ω, #£, Λfe) is a kb'-model system. By (bf6), there is some n Ω such that
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(μ, v) eRb(a) and NA e v\ by (kb'3), KaA{ e v for each i\ by (b'4), EaA\ e v for

each i; by (b r5), A\ e v for each i. Therefore | s j c ^.

(To). If 5 = Γ, A -> Δ and Si = Γ — Δ, then | S j c \s\.

( T j . If 5 = Γ-^A, Δ andS x = Γ — Δ, then j s j c | s | .

(Do). If 5 = Γ, A -> Δ and S x = Γ, A, A — Δ, then | s j = | s | .

( D j . If S = Γ — A, Δ and Si = Γ - » A , A, Δ, then | s j = \s\.

(Ro). If 5 = Ax, . . ., An - Δ and S x = Au . . ., A^ 1 ? ΛA+1, A^, ^ + 2 , . . ., An -*

Δ, then | S J = | S | .

(RO. If S = Γ — A1 ? . . ., Aw and SL = Γ — AL, . . ., A^^, AΛ+1, AA, A^+2, . . .,

4 , , then | S X | = |S |. Q.E.D.
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