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A FIRST-ORDER LOGIC OF KNOWLEDGE
AND BELIEF WITH IDENTITY. I

SCOTT K. LEHMANN

In establishing the semantic completeness of a first-order system, we
customarily show how to generate, from a given hypothetically unprovable
formula, a set of formulae which provide, in a rather direct way, a
countermodel for the given formula. The ‘‘model sets’’ obtained by the
completeness procedure make possible a syntactic treatment of semantics.

By generalizing the notion of model set to that of ‘‘model system,’’
Hintikka [1] has been able to provide insight into the logic of knowledge and
belief. However, his informal approach tends to obscure the underlying
semantical assumptions. In this paper, Hintikka’s informal, partly syn-
tactic, partly semantic notion of model system is analyzed into the
syntactic and semantic components of a formal first-order Gentzen-type
system. With the semantics plainly open to view, it appears that some of
the difficulties [2] encountered in Hintikka evaporate or are at least to be
located elsewhere. In Part II the system is shown to be semantically
complete.

1 Language of 3K, B) The primitive basis of #(K, B) consists of the
seven improper symbols

NCEKB—,
and the following proper symbols:

(1) the 1-ary functional constant P;

(2) the 2-ary functional constant I;

(3) an infinite set F of free individual variables;

(4) an infinite set B of bound individual variables;

(5) an infinite set of propositional variables; and

(6) for each x, an infinite set of n-ary functional variables.

We shall not specify the contents of these sets. However, as usual, we
shall assume that they are pairwise disjoint, that no improper symbol or
functional constant of 3(K, B) belongs to any of them, that each is well-
ordered (alphabetically), and that membership in each is effectively

Received Mavch 1, 1971



60 SCOTT K. LEHMANN

decidable. We shall use q, a', a,, a, a,, a,, . . . as metalinguistic variables
ranging over F, x as a metalinguistic variable ranging over B, and p as a
metalinguistic variable ranging over propositional variables. In giving the
formation rules of (K, B) we shall use symbols of #(K, B) as names for
themselves and juxtaposition for juxtaposition. In defining the quasi-
formulae of (K, B) we simultaneously define some functions on quasi-
formulae:

qfl. A propositional variable standing alone is a quasi-formula. (p), = p.
af2. If f is an n-ary functional constant or variable and for each ¢ such that
1<i<mn, a; is a free or bound individual variable, then fa, ... a, is an
atomic quasi-formula of index n. (fa,...a)o=f; if 1<i<mn, then
(fay . . . ap); = a;.

qf3. If A is a quasi-formula, NA is a quasi-formula. (NA), = N; (NA), = A.
qf4. If A, and A, are quasi-formulae, CA,4, is a quasi-formula. (CA,A4,), =
C; (CAA,y), = Aj; (CALA,), = A,.

af5. If A is a quasi-formula, ExA is a quasi-formula. (ExA), = E; (ExA),=
x; (ExA); = A

af6. If A is a quasi-formula and a is a free or bound individual variable,
KaA and BaA are quasi-formulae. (Ka4), = K; (Bad), = B; (KaA4), = (Ba4), =
a; (KaA), = (Bad), = A.

An object shall be a quasi-formula of (K, B) iff it can be shown to be by a
finite number of applications of (qf1)-(qf6). A similar understanding shall
govern all other recursive definitions. Subsequently we shall use A4, A, A4,,
Al, A,, A;, . . . as metalinguistic variables ranging over quasi-formulae.

Suppose X is a set such that no member of X is a finite sequence of
members of X, and let o0 = (X, ..., X, be a finite sequence of members of
X. If xe X, then oxx = (%, ..., %, %); if T=(y,, ..., ¥, is a finite se-
quence of members of X, then o7 =(%;, ..., X3, Y1, . . ., Ym); if S and ¢ are
members of X or finite sequences of members of X, then o*sxt = (oxS)*Z,
Now let X be the non-negative integers, and let £, be the null sequence of
members of X. We define (A)fo =A, and if ¢ is a finite sequence of
elements of X, x¢ X, and ((A);), is defined, then (4),., = ((4),)x.

The logical symbols 3 (¢‘there exists’’), V(¢for all’’), D (‘‘(materially)
implies’’), = (“if and only if’ or *‘iff’’), & (‘‘and’’), v (“‘or’’), and - (‘‘not’’)
will be used informally to clarify metalinguistic explanations. We de-
fine Q(&1, &, A) = {((A)gz*o =E) & ((A)f1 = (A)fz*l) & JE[(E42%E = £)&
‘353{3 La(bsxty = £) & ((A)§2*2*§3*0 =E) & ((A)§2*2*53*1 = (A)El)}]} The predicate
is obviously functional, and for future use we define q(&,, A) = &, iff
Q(&1, &2, A). A quasi-formula A is a formula of (K, B) iff V£,[((A)z, € B) D
HEZQ('EI, &, A)]' A(a/x) is defined by V¢ {[Q(Z*‘;‘, £os ExA) D ((A(a/x))f =
a)] & [-Q(2x¢, &, ExA) D ((A(a/x)); = (A),)]}. Evidently, if ExA is a formula,
so is A(a/x).

By an expression of 3(K, B) we shall understand a finite linear array
of symbols of (K, B); for convenience of exposition we admit the ‘array’
consisting of no symbols of #(K, B) as the empty expression. Empty and
non-empty formula-sequences of I(K,B) are certain expressions of
F(K, B) defined as follows:
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fs1. The empty expression is an empty formula-sequence.

fs2. A formula standing alone is a non-empty formula-sequence.

fs3. If I' is a non-empty formula-sequence and A is a formula, then T, A4 is
a non-empty formula-sequence.

We shall use A, I', T, T, ... as metalinguistic variables ranging over
formula-sequences. The value of ,I'" shall be ,A,, ..., A,if the value of T
is A, ..., A, and the empty expression if the value of I is the empty
formula-sequence; T, is defined similarly. If (the value of) T'is 4,, ..., 4,,
then |T'|={4, ... A} and INT|={NA,, ..., NA,}; if (the value of) T is
the empty formula-sequence, then |T'| = |[NT| = @. Sequents of 3(K, B) are
expressions of the form I' — A. We shall use S, S, S, ...as metalin-
guistic variables ranging over sequents. We write [T — A|= |T|uU INA|.

2 Defensibility Before describing the axioms and rules of inference of
F(K, B) we define and relate the notions of defensibility and satisfiability.

If u is a set of formulae, then v(u) will be the set of free individual
variables occurring in the members of . A set y of formulae is a model
set provided:

ml. If NAep, then A ¢ p.

m2. If NNAey, then Aep.

m3. If CA Az ey, then NA, ey or Ay ep.

m4. If NCA A, e, then A, ey and NA; e .

mb5. If ExA ey, then A(a/x) e u and Pa ey for some a.

m6. If NExA e u and Pa €y, then NA(a/x) € .

m7. If a e v(p), then laa € .

m8. If f is an nm-ary functional constant or variable, fa, ... a,€eu, la;aep,
and 1 <is<mn, then fa, ...a;,aa;, ... aep.

Let X be a set. X is countable iff there exists a one-to-one function f
defined on X with values in w, the set of non-negative integers. The union
of X is denoted by ZX, the power set of X by P(X), and the cardinality of X
by X. If Y is a set, the set of functions from X into Y is denoted by Y* and
the cartesian product of X with ¥ by X x ¥; we write X' = X and X" =
(X") x X. If f is a function defined on X, the image of X under f is denoted
by f(X), and if Ye £(X), the restriction of f to Y is denoted by f|Y.

If X is a countable set of sets of formulae, x¢ X, and R e (P(X?))
then A(¥, X, R) € (PX))EX) is defined by (i) if 1aa,¢x and (x, y) € R(ay),
then y e Alx, X, R)(a,, a,), and (ii) if y e A(x, X, R)(a,, a), (v, z) € R(a,), and
laa,ey, then zeAlx, X, R)(a, a,). We let A(x, X, R)(a) = A(x, X, R) (a,
v(ZX)).

Let Q be a countable set of model sets and let R; and R, be elements of
(/’(Qz))"(m). (Q, Ry)is a k-model system provided, for each a e v(ZQ):

v(ZX)
b

k1. Ry(a) is reflexive.

k2. If Kedepe Qand ve Ay, Q, R)(a), then Aev.

k3. If NKaAepue Q, then for each a, such that laa, ey there exists some
ve Q such that (u, v) € Ry(@,) and NA € v.
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(Q, Ry) is a b-model system provided, for each a e v(ZQ):

bl. If ue &, then there exists some ve © such that {u, v) € Ry(a).

b2. If BaAdepe Qand ve Ay, 9, R,)(a), then Aev.

b3. If NBadeye Q, then for each a, such that laa, ey there exists some
ve Q such that (u, v) € Ry(@,) and NA € v.

(R, Ry, Ry is a kb-model system provided:

kbl. {®, R,) is a k-model system.
kb2. (®, R,) is a b-model system.
kb3. If a e v(ZQ), then Ry(a) C Ry(a).

We shall say that Q is a k-model system provided there exists a function R,
such that (€, R,) is a k-model system; we shall say that © is a b-model
system provided there exists a function R, such that (2, R,) is a b-model
system; we shall say that Q@ is a kb-model system provided there exist
functions R, and R, such that (Q, R, R,) is a kb-model system. A set A of
formulae is k/b/kb-defensible iff there exists some k/k/kb-model system
€ such that X C y for some ue Q.

3 Satisfiability If X is a set of formulae, F,()) is the set of n-ary functional
constants and variables occurring in the numbers of A, and A()) is the set
of propositional variables occurring in the members of .

An intevpretationI(\) of a set A of formulae is a 10-tuple (X, x,, ¥, ¥,
Z, Ry, Ry, X, 6, ¢) such that:

il. X is a non-empty countable set with x,€ X.

i2. Y is a non-empty countable set with ¥ € (P(1))*.

i3. Z is a non-empty countable subset of ¥*.

i4. R, and R, are elements of (£(X?))% such that if f € Z, then

a. Ry(f) is reflexive.

b. Ry(f) © Ri(f).
c. If xe X, then there is some y € X such that (x, y) € R,(f).

i5. xe 2™, .,
i6. If fe F,(A), then 6(f) € 2¥ is such that

a. 6(l)(a, B) =1iff a = B.
b. If ge Z, then 6(P)(g(x)) = 1 iff g(x) e Y(x).

i7. g€ AN,

We are to think of X as a set of possible worlds and of x, as the real
world. Y is a set of possible individuals; y(x) is the subset of these
actually existing in x. Z is a set of trans-world personalities; each free
individual variable is assigned such a personality by X. 6 assigns to each
function symbol (the characteristic function of) an extension in Y; | is
assigned identity and P is made to correspond to real individuals. ¢
assigns truth or falsity to primitive statements made in each possible
world.
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If xeX and Re (P(X))Z, then A(x, X, R) e (P(X)Z is defined by (i) if
filx) = folx) and (x, ) e R(f;), then yeA(x, X, R)(fi, fz), and (ii) if ye
A(x, X, R)(f1, f), (¥, 2) € R(f2), and f(y) = fo(y), then z € A(x, X, R)(fi, f5). We
write A(x, X, R)(f) = A(x, X, R)(f, Z). If ¢ is not in the domain of a function
g, then a function f is said to be an extension of g to £ provided the domain
of f consists of the domain of g and the element ¢ and the restriction of fto
the domain of g is g. If we consider a function fe B4 as a triple (4, B,
{(a, fla))la € A}), then there is nothing odd about functions defined on @);
accordingly we let n, = (P, Z, §). We define W, as follows:

wl. If A€, then (4, &, No, Xo) € Wy(p).
w2. If (A, &, 1, x) € Wy, then

a. If (A)z.0 = N, then (4, £x1, n, x) € Wy().

b. If (A)o = C, then (A4, £x1, n, x) € W) and (A, £x2, n, x) € Wy,

c. If (A)so = E, then (4, £x2, v, x) € W), for each extension v of 7 to £ such
that v(£) € Z and v(£)(x) e Y(x).

d. If (A, = K/B, then (A, £x2,n, y)e Wy, for each y such that ye
A(x, X, Ryp)(f) for some feZ such'that f(x) = X((A).,) (%) if (A).,, e F and
Ax) = n(q(gx1, A))(x) if (A),., € B.

Vy(n is defined on a portion of W, as follows:

vl. If (A)s, is a propositional variable, then Vy(4, &, 1, %) = ¢((4) s, %).
v2. If (A)a, is an n-ary functional constant or variable, then Vy(4,&,n,x) =
6((A) zo)(ay, . . ., @), where @; = X((A)z.;)(x) if (A).; € F, and a; = n(q(&*z, A))(x)
if (A)gn‘ € B.

v3. If (A)z.0 = N, then Vyn(4, £, n, ¥) = 0/1if Vy(4, £x1, n, x) = 1/0.

v4. If (A)so = C, then Vy)(4, &, n,x) = 0 if V) (A4, £x1,7,x) = 1 and
Vyn(A, £x2, 1, %) =0, and Vy, &, n,%) =1 if Vy4, £x1,n,%) =0 or
Vi@, £x2, 1, x) = 1.

v5. If (A)zo = E, then Vy)(4, &, 1, x) = 0 if Vy)(A4, £x2, v, x) = 0 for each v
such that <A, Ex2, v, x)e Wﬂ()\) and VJ(A)(A, £, n, x) = 1if V}(M(A, Ex2, v, x)=1
for some v such that (4, £x2, v, x)e Wy.

v6. If (A)s.o = K/B, then Vy(4, &, n, x) = 0 if for each feZ such that f(x) =
X((A).)(%) if (A)e € F and flx) = nla(tx1, A))(x) if (A);. € B there exists
some ¥ such that {x,y)e Ry/,(f) and Vy\(A4, £x2,1,9) = 0, and Vj\(4,&,n,%) =
1if Vy) (4, £42, 1, 9) = 1 for each y such that (A, £x2, n, y) e Wy.

We say that J()) gives A e\ the value 0/1 as Vy(4, &o, Nes %o) = 0/1.
An intevpretation of a formula A is an interpretation of {A}. An interpreta-
tion #(\) of a set A of formulae (simultaneously) satisfies 1 provided (1)
gives each Ae) the value 1. A set ) of formulae is (simultaneously)
satisfiable if there is an interpretation of A which (simultaneously) satisfies
.

4 Equivalence of Defensibility and Satisfiability We consider now the rela-
tionship between defensibility and satisfiability.

Theorem 1 If ) is a kb-defensible set of formulae, then )\ is satisfiable.
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Proof: We suppose that X C ye Q, where (R, R,, R,) is a kb~model system.
If xe 2 and a e v(ZQ), we correlate with (¥, @) an object ¢(x, a) subject to the
condition that ¢(x, @) = ¢(v, g5) iff ¥ =y and laa,ex. Let Y= ¢(Q, v(ZQ))
and define ¥ e (P(Y)® by w(x) = {t(x, @)|Paex}. Z shall be the set of
functions fe Y9 such that for some aev(ZQ), f(x) = ¢(x, a) for all xe Q. If
feZ and a is the least @, such that f(x) = ¢(x, a,) for each xe &, then
Sen(f) = Rypla). If aev(n), x(a)(x) = €(x, a) for each x e Q. Define ¢ ¢ 2AMNXQ
by ¢(p, x) = 1 iff pex. If fe F,(), define 6(f) ¢ 2™ by 6(f)ay, . .., &) =1
iff there is some x€ © and for each 7 such that 1 <i<#n some a; e Vv(ZQ)
such that ¢(x, a;) = @; and fa, . . . aex.

It is easily verified that J(\) =(Q, u, Y, ¢, Z, S, S, X, 6, ¢) is an
interpretation of A. To simplify the notation we drop the subscript ¢(1)’,
replacing W/ Vaoy by W/V. If (A, £, n, x)e W, let S(4,, A, £, n, %) iff for
each £,, (A))¢, is a free individual variable such that {((4,), x) = n(@(Ex&,,
A))(%) if (A)see, is a bound individual variable such that for all &,
a(gxt,, A) # £x£s, and (A, is (A)..z, otherwise. Note that if Ae), then
S(4, A, ko, 1o, ). To show that #(1) satisfies 1 it therefore suffices to
prove the following:

Lemma If <A, g’ 1, X)E W, S(Al, A’ 5, s X), and Al/NAlex, then V(A, g;
n, x) = 1/0.

Proof: The proof is by induction on the complexity of (A)e. The complexity
c(A) of a quasi-formula A is defined as follows: (i) if A is defined by (qf1)
or (af2), c(4) = 1; (ii) c¢(NA4) = c(4) + 1, c(CA,4,) = c(4)) +¢c(4,) + 1, and if a
is a free or bound individual variable, c(ExA) = c¢(KaA) = c¢(Bad) = c(4) + 1.
We suppose that (A, £, n, ¥)e Wand S(4,, A4, &, n, x).

L c((4)) = 1.

A. (A =p. Then A, =p. If pex, then ¢(p, x) = 1, so V(4, £,7n,x) =1. If
Np € x, then by (m1), p£ x, so ¢(p, x) = 0, and therefore V(4, £, n, x) = 0.

B. (A); = fa; . .. a,, where f is an n-ary functional constant.or variable and
each a; is a free or bound individual variable. Then A, = fa, . . . a,, where
a; = a; if a;e F and ¢(x, a;) = nlq(t*i, A))(x) if a;eB. V(A4, &, n, ¥) =
0(f)By, . . ., Bx), where B; = X(a;)(x) if a; € F and Bi = n(q(£ i, A))(x) if a; € B.
Therefore V(A4, &, n, x) = 6(f) (¢(x, ay), . . ., €(x, as)). I A,ex, then
() (¢t(x, ay), . . ., t(x, ay))) = 1. Now suppose NA,ex and V(4, £, 71, x) = 1.
Then for some aj, . . ., aj and some y €  we have fal . . . ane v and for each
i, t(v, a}) = t(x, a;). But then y = x and la/a; e x for each i, so by (m8),
fa, . . .a,ex, contradicting (m1).

II. c((4);) > 1. We assume that if c((4"),) <c((A)), (A", &', n', xNe W,
S(Al, A", £',n', x'), and A{/NAJe x', then V(A', £', 1", x') = 1/0.

A. (A);o=C. Then (4, &xl,n,%)eW and (A4, £x2,n, x)e W. We verify
easily that (Al)o = C, S((AI)I) A7 5*1’ up x); and S((Al)Z: A7 5*2, up x)'

1. Suppose A;ex. Then by (m3), N(4,), e x or (4,);ex. If N(A)),€x, then
V(A, £x1,n, ) =0 by the induction hypothesis, so V(A, &,n,x) =1. If
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(A)); € x, then V(A, £x2,7,%) = 1 by the induction hypothesis, so V(4,&,n,x) =
1.

2. Suppose NA,ex. Then by (m4), (4,),;ex and N(4,),ex. Thus by the
induction hypothesis, V(4, £x1,7n, %) = 1 and V(4, £x2, 71, x) = 0, so V(4, &,
s x)=0

B. (A);.o = N. Then (A, £x1,n, x)e W. We verify easily that (4,)o = N and
S((A,),, A, £x1, 1, x). If A ex, then by the induction hypothesis, V(4, £x1,
n,x) =0, so V(A, &,n,%) = 1. If NA,ex, then by (m2), (4}), € x; thus by the
induction hypothesis, V(4, £x1,n, x) = 1, so V(4, £, n, x) = 0.

C. (A);o=E. Then (A),=E. If Pacex, f(y) = £(y, @) for all ye 2, and v is
the extension of 1 to # defined by v(£) =f, then (A4, £*2, v, x)e W and
S((A).(a/x), A, £x2, v, x).

1. Suppose A,ex. Then by (mb), (A,).(@/x) e ¥ and Pa € x for some ¢. Thus
if v is as above, V(A4, £x2,v,%) =1 by the induction hypothesis, so
VA, &,n,x) = 1.

2. Suppose NA,ex. If Y(x) = D, then V(4, £, n, x) = 0. Otherwise, by (m6),
N(A)).(a/x) ex for each a such that Paex. Thus if v is as above,
V(A, £x2, v, x¥) = 0 by the induction hypothesis, so V(4, &, n, x) = 0.

D. (A):.o = K/B. Then (4,), = K/B. Let feZ be such that f(x) = X((4),.,)(x)
if (A)seF and flx) = n(q(g*l, A))(x) if (A)s.€B, and suppose Sp;(f) =
Rpp(@). Then f(z) = €(z, a) for all zeQ. If (A).. € F, then (4,); = (4)..,, SO
¢lx, (4)1) = X((4),)(x) = x((A)gn)(x) = flx) = ¢(x, a); if (A)galeB, then ¢(x,
(A1) = nla(e*1, A))(x) = flx) = €(x, a). Therefore I(4,),a € x.

1. Suppose A,ex. If (A, £%2, 1, ¥)e W, then S((4)),, A, £x2, 1, ) and
ye A(x, 2, Sp)(f) for some fas above. Then by (m8), ye A(x, Q, Rys)((4,)),
so by (k2)/(b2), (4,); € v. Thus by the induction hypothesis, V(A4, £x2, 1, y) =
1, so V(4, &, 71, x) = 1.

2. Suppose NA, ¢ x. By (k3)/(b3), there exists some ye Q such that (x, y) e
Ryp(a) and N(A),ey for each a such that 1(4,),aex. If f is as above,
yeAlx, Q, Spp)(f), so (4, £x2, n, yye W. But S((4)),, A4, £x2, n, ¥), so
V(A, £%2, 1, ¥) = 0 by the induction hypothesis. Thus V(4, &, n, ) = 0.Q.E.D.

Theorem 2 If J(\) = (X, %, Y, ¥, Z, Ry, Ry, X, 0, ¢) satisfies x and
Z - X(v(x)) < F - v()\), then X is kb-defensible.

Proof: If feX(v(y), let w(f) ={aev(\)I|f = x(a)}. If feZzZ - X(v(3)), define
w(f) = {a}, where a is the first member of F - v()) not already assigned.
Note that if @ e w(f) and a e w(g), then f = g.

As before, we omit the subscript ‘9(1)’. If (A4, & 7n, x)e W, let
F. (A, A, £, n, x) if for each £,, (1) if (4), is atomic (and &, # 0), then
(A):, ew(f) for some feZ such that flx) = X((A)s.s )(x) if (A)s.e € F and
f(x) = nla(g*g,, A))(x) if (A)ge € B, and (2) otherwise, (a) if (4)¢.¢, is a bound
individual variable such that for all £, q(£x£,, A) # £x&,, then (i) (4)e €
w(n(q(ext,, A))) and (ii) for each &,, if (A)g*g is a bound individual variable
such that q(&x£,, A) = q(£x£,, A), then (Al)f =(A)e,, and (b) otherwise,
(A)g, = (A)gug,-
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If x € X, define p(x) = {4,134 3¢ 3n[Fu(4, 4, &, 1, %) & (V(4, &, 7, x) =
DIYu{NA,13A3E3n[FuA,, 4, &, 0, D& VA, £, 1, %) = 0] u{Pal3f[(fe
Z) & (@ew(f) & (f(x) ¢ W(x))]} U {Iala2|3f13f2[(fl €Z) & (fueZ) & (ae
w( f)) & (@, e w(fs) & (filx) = fo(x))]}. Let Q= u(X); if aev(ZQ), define
Si(@) and Sy(a) on Q by (u(x), u(¥))eSypl@) iff (x, y) € Ry/(f), where a e w(f).
We claim that (@, S,, S;,) is a kb-model system.

(k1), (b1), and (kb3) follow easily from the corresponding properties of R,
and R,.

(k2)/(b2). Suppose KaA,/BaA,e u(x) and pu(y) e A(u(x), ®, Sp,)(@). There
exist A, £, and n such that (4, &, n, x)e W, V(4, £, 1, x) = 1, and F,,(Ka4,,
A, E,n, %)/Fw(BaA,, A, &, 1, x). If aew(f), then ye Alx, X, Ry,)(f). Since
(A).o = K/B, we therefore have (A, £x2,7n, y)e W, V(4, £x2,n,y) = 1, and
Fw(AU A, 5*2’ s y); S0 A€ /-i(y)'

Remark: If NA, € u(x), then there exist A, £, and n such that {4, &, n, x)e W,
VA, &, n, x) = 0, and F,(A4,, A, £, n, x). For suppose {4, &, n, X)e W,
V(A’ g’ ub x) = 1: and Fw(NAI, A; E’ s x)‘ Then (A)f*o = N, S0 (A: 5*1, s x) €
w, V(A, 5*17 n, x) =0, and Fw(Al’ A, 5*1: un x)-

(k3)/(b3). Suppose NKa,A,/NBa,A, € u(x) and la,a, € u(x). Then either (i) a, €
w(f,) and a,ew(f,) for some f,e Z and f,e€ Z such that f,(x) = £,(x), or (ii)
there exist A, £, and n such that (4, &,n,%x)e W, V(4, £,n,x) =1, and
F(la,a;, A, £, m, x). In case (ii), (A).o=1, so V(4, &, n, %) = 6(1)(a, @),
where a; = X((A).;)(%) if (A)s;eF and a; = n(q(Ed, A))(x) if (A).; € B;
V(A, £,n, x) =1 implies a, = ay; Fy(laa,, A, £,7n, x) implies there exist
functions f; € Z such that a; ew(f;) and f;(x) = @;, Thus case (ii) collapses
into case (i). By the Remark, there exist A, £, and i such that (4, £, n, )¢
w, V(4,&,n,%) =0, and F,(Ka,A},A,¢,1,%)/FuBaAy, A, &, 1, %). Fu(Ka,A,,
A, &1, x)/Fw(BalAly A, tE,n, x) implies (A)g*o = K/B, fl(x) = X((A)fu)(x) if
(A)su1 € F, and fi(x) = n(q(£x1, A))(%) if (A);.. € B. Therefore V(A, £,7,%) =0
implies V(A, £x2, n, ) =0 for some ye X such that (%, ¥) € Ry;(f.). Then
<I~l(x), ﬂ(y» € Sk/b(az) and F(4,, A, £x2, 7, y), S0 NA; e Il(y)-

(m2). Suppose NNA, ¢ u(x). By the Remark, there exist A, £, and n such
that (A, &,n, X)e W, V(4, &, n, x) =0, and Fw(NA,, A, £, 71, %). But since
(A)s.0 = N, we have (A, £x1, 1, X)e W, V(A, £x1, 7, ¥) = 1, and Fy(Ay, A, £x1,
n, %¥). Therefore A, e u(x).

(m3). Suppose CA,A4;eu(x). There exist A, &, and n such that (4, &, 7, %)e
W, V(4, £,n, %) =1, and FW(CA,A,, 4, £, 7, ). Since (A),=C, (4, 1,
M, x>e w, <Aa £x2, m, x)‘EW, V(A7 £x1, n, x) =0 or V(A9 £x2, n, x) =1,
FuwlA;, A, £x1, 0, %), and F.(A,, A, £x2, 1, x). Therefore NA,eu(x) or
A,y eulx).

(m4). Suppose NCA,A;eu(x). By the Remark, there exist A, £, and 1 such
that {4, &, n, x)e W, V(4, &, n, x) =0, and F,(CAA,, A, £, 1, x). Since
(Ao = C, (A, Ex1, 1, XY e W, (A, £x2,n, ) e W, V(A, £+1, 7, %) = 1, V(4, £%2,
n, %) =0, Fu(4,, A, £x1, 1, x), and F,(4,, A, £x2, 71, x). Therefore A, e u(x)
and N4, € u(x).
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(m5). Suppose ExA,eu(x). There exist A, £, and n such that (A4, £, n, x)e
W, V(A, &,n, %) =1, and Fy(ExA,, A, £, 1, ¥). Since (A);.o = E and V(4, &,
n, x) = 1, we have V(4, £x2, v, x) = 1 for some extension v of n to ¢ such
that v(£) e Z and v(£)(x) ey (x). If aew(v(£)), then Paepu(x) and F, (A (a/%),
A, £x2, v, %), so Ay(a/x) € u(x).

(m6). Suppose NExA, eu(x) and Paeu(x). By the Remark, there exist 4, £,
and n such that (A, £, n, x)e W, V(4, £, 71, x) =0, and F(ExA,, A, £, 1, X).
Suppose there exist A', £', and n' such that (A',£",n', x)e W, V(A',£',n',x) =
1, and Fw(Pa, A', £',n', x). Since (A’)g'*o = P, VA", &', ', x) = 6(P)(a),
where a = X((A"),.))(x) if (A", e F and a = n'(q(¢'*1, A"))(x) if (A")zn, € B.
V(A', &', n', x) = 1 implies aey(x). Since F,(Pa, A', £',n', x), aew(f) for
some fe Z such that f(x) = @. Thus if v is the extension of 1 to £ defined by
v(E) = f, v(£)(x) e(x). Therefore (4, £x2, v, x)e W, V(4, £x2, v, x) = 0, and
Fu(A(a/x), A, £x2, v, x). Consequently, NA (a/x) € u(x).

(m7). Suppose a e v(u(x)). Then if a e w(f), flx) = f(x), so laa e u(x).

(m8). Suppose la,a, e u(x). As in the proof of (k3)/(b3), there exist functions
f: € Z such that a; e w( f;) and f,(x) = fa(x).

1. Suppose Pa,eu(x). As in the proof of (m6), there is an fe Z such that
a,ew(f) and f(x) e (x). Thus f = fi, so folx) e Y(x) and Pa, e u(x).

2. Suppose laja}eu(x), where a! =a,. As in the proof of (k3)/(b3), there
exist f; € Z such that a e w(f]) and fi(x) = f)(x). Thus f! = f,, so f3(x) = fi(x) =
fix) = fo(x), and so la,a; e u(x). The case where aj = a, is similar.

3. Suppose fa; . ..aseu(x), where f# P, f#1, and af = a, for some % such
that 1 < 2<n. There exist A, £, and n such that (4, &, 7, x)e W, V(4, &,
5 x) = 1, and Fw(fa; .. -ar;, A, &, 1, x). (A)g*o = f, so V4, £, x) =
6(f)ay, . . ., an), where a; = X((A)z.;)(x) if (A)zi € F and a; = n(q(g*i, A))(x) if
(A)ewi€ B. Fy(fal...an A, &, n,x) implies there exist f/ ¢ Z such that a}e
w(fi) and f{(x) = @;. Thus f, = fi, so fa(x) = f1(x) = f{(x) = &. Therefore
Fw(fa{ e a/;-la2a/;+l e a,;, A, &, 1, %), s0 fai . .. ak'-1a2a13'+1 cee aéeu(x)-

(m1). Suppose A;epu(x) and NA, € u(x). The reductio is by induction on the
complexity of A,.

1. c(4,) = 1.

a. A, = p. There exist A, A", &, &', n, and n' such that (A, &, n, x)e W,
<A" E" TI" x>e W’ V(A’ £9 777 x):l, V(A"E', 77" x)zo’ Fw(p’A, 5’ n’ X)’
and F,(p, A', ¢, n', x). But since (A)g = (A')g! =p, V(4, &,n, x) = VA", £,
77” x) = ¢(P, x); RAA,

b. A, = Pa. As in the proof of (m6), there is an fe Z such that aew(f) and
f(x) ey (x). By the Remark, there exist A, £, and n such that {4, &, n, x)e W,
V(4, &,m,%) =0, and Fu(Pa, A, £,n,x). Since (Ao = P, V(4, &, 7m,%) =
6(P)(a), where a = X((A);..)(x) if (A)z., € F and a = n(q(£x1, A))(x) if (A).., € B.
Fu(Pa, A, £, 7, x) implies there exists some ge Z such that aew(g) and
g(x) =a. Thus g =f. But flx) e y(x) implies 6(P)(a) = 1, RAA.

c. A, =laa,. As in the proof of (k3)/(b3), there exists f; € Z such that
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a; ew(f;) and fi(x) = f(x). By the Remark, there exist A4, £, and 5 such that
<A’ 5’ n, x)e W’ V(A’ g, 77) x) = 0, and Fw(lalaZ, A, g’ TI? X). (A)ggo = l, So
V(A’ g’ s x) = e(l)(ala (12), where a; = X((A)gn)(x) if (A)§~i€F and a; =
n(q(&xi, A)) (%) if (A)e;e B. Fy(laya,, A, £, 0, x) implies f;(x) = @;. But then
6(1)(ay, a,) = 1, RAA.

d. A, =fa,...a, where f+ P and f# 1. There exist A, A'", £, £',n,andn’'
such that <A,£,77’x>€ w, <A'a 5" 77'9 x>€ W, V(A) &, x)= 1, V(A'9 gl, 77', x) =
0, Fu(fa, ... an A, &,n, %), and Fy(fa, .. .a, A', £',n', ). Since (A)s.o =
1 V4, &1, %) = 6(f)ay, . . ., a,), where a; = X((A),.;)(x) if (A)..;e F and
a; = n(q(& «2, A))(x) if (A).; € B. Since Fy(fa, . .. a, A, &, n, x), there exist
fi€ Z such that a; ew(f;) and fi(x) = a;. Since (A");n,=f, V(A', ¢', 0', %) =
6(f) By, . . ., By, where B; = X((A");1.;)(x) if (A")zn,eF and B; = n'(q(£'s,
AN(x) if (A"gn; € B. Fy(fa, .. .as, A', £',n', x) implies there exist fje Z
such that a; e w(f]) and f!(x) = B;. Therefore f; = fi, so @; = B;. But then
V(A, &, 1, %) = wa’', g, n', x), RAA.

2. c(4,) > 1. We assume that if c(4,) <c(4,), then NA,epu(y) implies
A, £u(y) for each ye X.

a. A; =NA,. By (m2), NA,eu(x) implies A,eu(x). Thus A,f£u(x) by the
induction hypothesis, RAA.

b. A, = CA,A;. By (m4), NA, e u(x) implies A; € u(%) and NA; € u(x). By (m3),
A eu(x) implies NA,epu(x) or A;epu(x), neither of which is possible by the
induction hypothesis, RAA.

c. A, = ExA,. By (m5), A, eu(x) implies A,(a/x) e u(x) and Pae u(x) for some
a. By (m6), NA,eu(x) implies NA,(a/x) e u(x), contradicting the induction
hypothesis, RAA.

d. A, = Ka4,/BaA,. By (k3)/(b3) and (m7), there is some u(y) € Q such that
(u(x), u) e Syula) and NA,epu(y). Since ply) e A(u(x), 2, Sy4)a), Az epu(y)
by (k2)/(b2), contradicting the induction hypothesis, RAA. Q.E.D.

5 Alternative Notion of Defensibility To facilitate the proofs of the Validity
and Completeness Theorems, we introduce here an equivalent notion of
defensibility. This concept is also closer formally to that given by Hintikka
[1], and we shall conclude this section with a brief comparison.

Let Q be a countable set of model sets and let R, and Rj, be elements of
(PO))ED, (Q, Ry is a k'-model system provided:

k'l. f KaAepeQ, then Aep.

k'2. If Ka,AepeQ and la,a, ey, then KaA € .

k'3. If NKa,Aep e Q and la,a; e u, then NKa,A € 1.

k'4. If KaA ep e Q and (u, v) € Ry(a), then KaAd e v.

k'5. If NKaA ep e Q, then there exist some ve Q such that (u, v) € Ri(a) and
NA e v.

(Q, Ry) is a b'-model system provided:

b'l. If Bad € € Q, then thére is some v e Q such that (u, v) € Ry(a).
b'2. If Ba;Aeu € Q and la,a, € i, then BaA € .
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b'3. If NBa,AecueQ and la,a, e u, then NBa,A € .

b'4. If BaAdepeQ and {y, V) € Ry(a), then BaAd e v.

b'5. If Badepe Q and (u, V) € Ry(a), then Aev.

b'6. If NBaAdepue Q, then there exists some ve Q such that (u, v) € Ry(a) and
NAev.

(8, Ry, Ry, is a kb'-model system provided:

kb'l. (Q, Ry is a k'-model system.
kb'2. (Q, R,) is a b'-model system.
kb'3. If KaAep e Q and {u, v) € Ry(a), then KaA e v.

As before we shall sometimes omit reference to the relation functions R,
and R, and refer to Q as a k'-, b'-, or kb'-model system. A set ) of
formulae is 2'/b'/kb'-defensible iff there exists a k'/b'/kb’-model system
Q such that A C y for some pe Q.

Theorem 3 If A is kb'-defensible, then )\ is kb-defensible.

Proof: Suppose (R, R,, R,) is a kb’-model system such that A C pu for some
pef. If aev(ZQ), define Sy(a) = Ry(a) U{(u, w| - 3A(Bad ep)} and Sy(a) =
Ri(a) U Sp(@) U {(p, u)lue Q). We claim that (2, S,, S,) is a kb-model sys-
tem.

(k1), (b1), and (kb3) are satisfied by construction (plus (b’l) in the case of
(b1)).

(k3)/(b3). Suppose NKa,A/NBa,Aep and laa,eu. By (k'3)/(b'3), NKa,A/
NBa,A ey, and by (k'5)/(b'6), there exists some ve © such that {(u, v)e
Ry/plas) and NAe v, But Ry (@,) C Ski(az) by construction.

(b2). Suppose BaAep and veA(u, 2, Sp)@). Then there are sequences
Moy « « +» Nnsry and {@g, . . ., @,,1) such that y =ne, ¥ = 9,,,, @ = dy, and for 0 <
i<n, la;a;,€en; and (n;, ;1) € Spla;,;). We show by induction on ¢ that
Ba;,.A €n;; we may assume that (n;, n:.1 € Rp(a@ii1). BayA en, and laga, ey,
so by (b'2), BajA€n, Assume that Ba; . A€en;. i, nisy € Rplaiy), so by
(0'4), BainiA €. 1@in@i2 €0, S0 by (b'2), Bai.A€n;,. Therefore
BannA €Mp. Bt (N, Mnss) € Ry(@ni1), 50 by (0'5), A €1y = v

(k2). Suppose Kadepy and veA(u, 2, Sp)(@). Then there are sequences
(Moy - « =» My and (@, . . ., @pyy) such that u =mny, v =1n,1, @ = ay, and for
0<is<mn, lag;a;,,en; and {n;, ni1) € Sa;.1). We show by induction on i that
KaiA €7;; We may assume that <ni, ni+1> € Rk(ai+1) or <ni’ Th'+1> € Rb(ai+1)-
KaoA €no. Assume that Ka;Aen;. la;a;.,€n;, so by (k'2), Ka;.Aen;. If
(Mi» Nivy € Ri(a;y), then Ka;Aen;, by (k'4); if (n;, niy € Ry(ai,), then
Ka;,1A € N,y by (kb'3). Therefore Ka;,,A € n,.1, S0 A €1,., = v, by (k'1).Q.E.D.

Theorem 4 If x is kb-defensible, then X is kb'-defensible.

Proof: Suppose (2, Rk, Rp) is a kb-model system such that A C y for some
e . We may assume that if aev(ZQ) and ve Q, thenlaae v.

If X is a set of sets of formulae, x¢ X, and Re (P(x?))"®?, define
ko(x, X, R) = {Ka,Al3y3a,[(xe A(y, X, R) (ay, a)) & (Ka,Aey)]} and bylx, X,
R) = {Ba.A|3y3a,[(xe Aly, X, R) (a1, a;)) & (Ba,Aey)]}. If x is a set of
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formulae, define (%) = {NKa,A|3a,[(NKa,4 €x) & (laa.ex)]} and b,(x) =
{NBa,A |3a,[(NBa,A ex) & (laa,ex)]} U{Ba,A|3a,[(Ba,Acx) & (laa,ex)]).

If peQ, let pu°=p Uk, @ Ry) Ubo(u, @, Ry) and p' = p°uUky(p®) U
by(u°). Define Ri(a) and Ry(a) for aev(ZQ) on Q' = {u'|ue Q} by (i*, ve
Rypla) iff (u, V) € Ryjla). We claim that (Q', R;, R;) is a kb'-model system.

Remark: (Q', R;, R;) satisfies (k2) and (b2).

(k2). Suppose KaAey' and v'eA(u', Q', R)(@). Then KaAep® and ve
A(p, @, Ry)(a). Since laa ey and (u, p) e Ri(a), there exist n and @, such that
weAlm, @ R(a, a) and Ka,Aen. But then ve A(n, 2, Ry)(a,), so Aev C '
by (k2).

(b2). Suppose Badep' and v'e A(n', @', Rj)(@). Then veA(u, 9, Rp)(a) and
since laa e, Ba,Aey® for some @, such that la,@aep. If Ba,A ey, then Ae
v C V' by (b2); otherwise there exist n and a, such that e A(n, Q, R,)(az, a,)
and Ba,A €1, in which case ve A(n, R, Ry)(as), so Aev C v' by (b2).

(k'1). Suppose KaA ep'. Since laa ey and (u', p") € Ry(@), u'e A(u', Q', R)(a),
so A eu' by the Remark.

(b'1) follows trivially from (b1).

(k'2). Suppose Ka,A eu' and lag,ep'. Then laa,epu and Ka,Aep®. Since
la,a, € u and (u, u) € Ri(a,), there exist n and a, such that pe A(n, Q, Ry)(as,a))
and Ka,A en. But then e A(n, Q, Ry)(as, as), so KasAd eu’ C p'.

(b'2). Suppose Ba,Aep' and laa,ep'. Then laa,ep and since laa, ey,
Ba,A e for some a; such that la,a, epu. But then by (m8), lasa,epu, so
Ba,Aep'.

(k'3)/(b'3). Suppose NKa,A/NBa,A €p' and laa,epu’. Then laa,ep. Since
la,a, € u, NKa;A/NBasA € u° for some a; such that lasa, € u; but then by (m8),
lasa, € u, so NKa,A/NBa,A e ',

(k'4). Suppose KaAd ep' and (u', v') e Ri(a). Then KaA e p® and (u, v) € Rila).
Since laa ey and (u, p) € Rpla), there exist n and a; such that ueA(n, Q,
Ry)(a,, @) and Ka,A en. But then ve Aln, Q, R,)(a,, @), so Kad e ° C v'.
(b'4). Suppose BaA epu' and (u', v') e Ry(a). Then (u, v)e Ry(a), and since
laa e u, Ba,A ep® for some a, such that la,aepu. If Ba,A ey, then ve A(y, Q,
R,)(a,, a), so BaAe°. Otherwise there exist n and a, such that e A(n, 9,
Ry)(a,, @,) and Ba,A €1, in which case ve A(n, Q, R,)(a,, @), so BaA € 1°.
(b'5). Suppose Bad e u' and (u',v") € Ry(a). Since laa ey, v'e A(u', @', Ry a),
so A € v' by the Remark.

(k'5)/(b'6). Suppose NKaA/NBaAep'. Since laaey, NKa,A/NBa,Aeu for
some @, such that lagaey. By (k3)/(b3), there exists some ve Q such that
{u, v) € Rys(@) and NA € v; thus there exists some v'e Q' such that (u', V') e
Ri/(a) and NA € V',

(kb'3). Suppose KaA ep' and (u', v") € Ry(@). Then KaA e p® and (u, v) € Ry(a).
By (kb3), (u, V) € Ri(a), so {u’, v") € Ri(@) and the result follows by (k'4).

We easily verify that (m2)-(m8) continue to hold for elements of Q'.
(m1). The supposition that A,eu' and NA, ey’ leads immediately to a
contradiction except where A, = KaA/BaA. Accordingly, suppose that KaA/
Bad ep' and NKaA/NBaA € ', and assume (m1) holds for formulae A, with
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c(4,)) <c(Kad)/c(Bad). By (k'5)/(b'6), there exists some v' such that
(u', vy € Ry (@) and NA e v'. But by (k'4), (k’1)/(b'5), A€ V', RAA. Q.E.D.

Let us now compare our notion of kb'-defensibility with that in [1].
Evidently, our notation differs somewhat from Hintikka’s. We have written
la,a, for his a;, = a;, NA for his ~A, CA,A; for his A, D A,, KaA for his
KA, and BaA for his B,A. The l-ary functional constant P does not appear
in [1], but its role is assumed there by formulae of the form Exlax, to
which Pa is ‘‘virtually equivalent’’. Hintikka’s operators C, P, &, and U
may be regarded as defined symbols and have accordingly been omitted in
K, B).

More significant are the differences in the notions of model set and
model system. We have retained (C.KK*) in (k'4) rather than bothering
with its qualified form. The more important departure is that (m5) and
(m6) replace less general but more complicated conditions dealing with
quantifiers. None of Hintikka’s rules apply to quantifications over believers
or knowers (over ‘subscripts’, as he puts it), whereas (m5) and (m6)
contain no such restriction. Hintikka explicitly rejects (C.E,) and (C.Uy)—
the partial corresponds of (m5) and (m6)—in favor of (108) and (109), then
(C.Eep) and (C.Uep), et al. He wishes, he says, to block inferences like
ExKalxa, from Kala,a,. However, (C.E,) and (C.U,) are entirely adequate
for this purpose. It seems rather his desire to read ExKalxa, as "a knows
who a,; is” that leads him to reject (C.E,) and (C.U,). Of course, it is of
interest to know whether the system can handle such locations. However, it
seems a tactical error to forego an investigation of how well it supports the
conventional reading "there is something—call it x—such that x actually
exists and @ knows that x is a," in favor of attacking a more specialized and
probably more difficult problem.

It is easy to verify that the differences are significant. For example,
(1) Exlxa, ‘virtually implies’’ ExKalxa, in F(K, B) but not in [1], while
(2) ExKaA ‘*virtually implies’” KaExA in [1] but not in (K, B). It can be
argued that the conventional reading of the quantifier supports F(K, B)
rather than Hintikka here. For (1), consider that one knows of each thing
that it is self-identical, whatever else one knows or fails to know of it; if a,
exists, then there does exist something (namely a,) known by a to be a,,
since a knows a, is a@,. As for (2), imagine that one knows of something
through a work of literature one considers fictional, while in fact that thing
actually exists (something answers to the concept one has through reading
the work); of course, we must assume that fictionality is not part of one’s
concept of the thing, but this does not seem unreasonable.

Theorems 1-4 show that the semantics of section 3 are implicit in the
notion of kb’-defensibility. The universe of discourse is a domain of
possible individuals; it is intended that membership be restricted to
entities capable of knowing and believing, although this condition could quite
easily be liberalized. As usual, the predicates are true or false of these
individuals. Essentially, with each possible world x are associated two
sets of possible individuals: those of which there is a concept in x (afforded
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by the use in ¥ of some referring expression) and a subset thereof
comprising those actually existing in x¥. In general, if x and y are distinct
possible worlds and 7 is a referring expression used in both x and y, then
the possible individual to which # refers in x will be distinct from the
possible individual to which it refers in y. Accordingly, to make the
situation in x bear upon the situation in y, each possible individual of which
there is a concept in ¥ must be connected to some possible individual of
which there exists a concept in x; this is accomplished by making each a
‘part’ (an ‘aspect’) of some transworld personality.

The supposed difficulty about ‘identifying’ individuals across possible
worlds which some have found in Hintikka [2] does not appear to arise here.
It can be posed as follows: how are the transworld personalities to be
constructed, i.e., how are we to decide which possible individual in world
x corresponds to a given possible individual in world y? But here it is
merely a matter of defining the appropriate function. There may be
practical difficulties in making the connections that show a given set of
formulae to be satisfiable, but they seem entirely comparable to those
encountered in ordinary first-order logic and not to require any excursions
into essentialism. While kb'-defensibility is not, as we have seen, quite
faithful to Hintikka, it seems unlikely that the semantic basis of a com-
pletely faithful formalization would introduce any additional difficulties of
this sort.

We turn now to some peripheral matters. We have taken account of the
shifting of reference involved in moving from one possible world to another
by altering the reference of names while keeping that of predicates fixed.
That is, a predicate f is assigned an extension in the domain of possible
individuals, and the case in which f is true of @ in world x and false of a in
world vy is handled by letting a refer to different possible individuals. An
apparently equivalent approach would seem to be to keep fixed the
reference of names while changing that of predicates, that is, to define 6 on
pairs (f, x). However, this does not work. A set which ought to be
satisfiable (and which is defensible) is X = {la ., Kafa,, NKafa.}; under the
proposed change we would presumably require 6(l, x)(a,, @) = 1 iff a; = a,,
but in this case there is no interpretation of f which satisfies x.

The substantive starting point of this investigation has, of course, been
kb'-defensibility. We have introduced kb-defensibility only because the
nonrecursive character of the conditions defining kb’-defensibility makes a
truth definition difficult. In view of Theorems 3 and 4, kb-defensibility has
the same force as kb'-defensibility, the rather strange rules (k2), (b2),
(k3), and (b3) notwithstanding. However, since the consequent of (k3)/(b3)
is not the negation of the consequent of (k2)/(b2), the evaluation function V'
may be undefined at certain elements of W. I do not know whether kb-
defensibility can be formulated in a tidier manner, but it may be of interest
to record some formulations which do not work.

1. kb,-defensibility is defined like kb-defensibility, except that (k3)/(b3) is
weakened to: if NKaA/NBaA ey, then there is some veA(u, , Rp,)(a)
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such that NA e v. The interpretation rules can now be stated more cleanly,
and the analogs of Theorems 1, 2, and 3 can be proved. However, if X is
kb,-defensible, then X need not be kb'-defensible. For example, it is easy
to verify that A = {NKalKazlalaz, Kallalaz} is not kb'-defensible. But if
M1 = {NKalKazmﬂz, Kaila,as, 1a,az, 1aza,, 10,10y, 1,05}, M2 = {IalaI, laza,, lasas,
1a,ay, 1a,as, 1,0, 10205, \aya,, 1a,a5}, us={NKasla,a,, 1a,a,, 1a,a,, 1a,a,, 1a,a,},
e = {Nla,az,1a,a,, layas}, Q = {#1, M2s M35 ll4}’ Ry(@)) = Ry(@;) = Ry(as) = Rla,) =
{<U-1’ Uy (Has H2)s (Mas Ha)y (Mas IJ~4>}, Ryla,) = Rb(az)U{<li17 Ha)s (Mss IJ~4>}’ and
Ri(as) = Ry(as) U{ 2, uap}, then (Q, Ry, R;) is a kb,-model system. Con-
sequently kb,-defensibility is too weak.

2. kb,-defensibility is defined by (k1), (bl), (k'2), (b'2), (k'3), (b'3), (k'5),
(b'5), (kb3), plus the following conditions: (a) R.(@) is transitive, and (b) if
KaA/BaAey and {u, v) € Ry,(a), then Aev. Then the analogs of Theorems
1, 2, and 3 can be proved. However, the presence of (k'2), (b'2), (k'3), and
(b'3) gives rise to the same aesthetic difficulties in defining interpretations
as does kb-defensibility. Furthermore, if A is kb,-defensible, then ) need
not be kb'-defensible. For example, it is easy to verify that X = {Ka1 b,
NKa,Cla,a.Ka,Ka, p} is not kb'-defensible. But if u, = {Ka, p, p, la,a,, la,a,,
NKaICIalazKalKazp}, Uz = {NCla,a.Ka:Ka, p, p, laas, laxa,, \a,a,, la.a,,
NKa,Ka, p, NKa:Ka, P}) M3 = {NKaz b, b, |a2a2}, Me = {NKaz b, lazaz}; Ms = {NP};
Q ={/11’ Mas M3y M4, #s}, Rb(al) = Rb(az) = {</~113 Ill>’ <I~12’ llz>, (/.13, Il3>, <ﬂ4’ /~14>’
(is» Me}s Ri(@) = Rylar) Uy, 1o), (M2, ts)s (M1, Mo}, and Ry(as) = Ry(as) U
Ly 1oy (as ps)s (H2s Us)s i3y ps)}, then (R, R, Rp) is akby-model system.
Consequently kb,-defensibility is too weak.

3. kbs-defensibility is defined like kb,-defensibility, except that (k'2)/(b'2)
and (k'3)/(b’'3) are replaced by the following condition: if la,a,eu and
(i, vy € Rypplay), then (u, v) € Ryplas). Then the interpretation rules can be
stated more cleanly, and the analogs of Theorems 1, 2, and 4 can be
proved. However, if X is kb'-defensible, A need not be kbs-defensible. For
example, it is easy to verify that A = {Ka, p, la,a,, NKa,;Ka,Ka, p} is not
kb;-defensible. But if u, = {Ka, p, la,a,, NKa,Ka,Ka, p, Ka, p, p, la.a,, la,a,,
lazas, NKazKazKalp}, M2 = {NKaZKalp’ Ka,p, Kay p, p, layay, mz“z}, M3 =
{NKa, p, Kas p, p}, 1a={Np}, Q={11, tas ks, tals Ry(@) = Rolas) = {1, 1),
b2y 125 (s> Ued» (Mas Mo}, Re(@) = Rylar) U{(us, p2), (is, o}, and Ri(as) =
Ry(a@s) U{(it1, us), {uss M)}, then (R, Ry, R,) is a kb'-model system. Con-
sequently, kb;-defensibility is too strong.

6 Provability The logical axioms of F(K, B) are sequents of the form T,
A — A, A. The identity axioms of I(K,B) are sequents of the form
T — laa, A. A sequent is an axiom of F{K, B) iff it is a logical axiom or an
identity axiom. The rules of inference of 3(K, B) are the following:

Propositional rules:

C— A, A

No T NA-a
T, A—

Nl‘ _’______é_

I' - NA, A
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T'—-A,A T, A,—-A
r, CAlAg — A

T,A — A, A

I — CA4,, A

Coo

C..

Quantifier rules:

T, Ala/x), Pa— A

Eo. T, ExA — A

if a does not appear in I', ExA — A

T — A(a/x),A T — Pa,A
I'—- ExA4, A

El'

Identity rules:

T, la,a,, laa, — A

I,.
0 T, laa, — A
F T, laal, fay . . . Gn, fay . . . Geey@Ghyy . . . Gn— A where f i "
. re f is an n-ar
° T, laal, fa, . . . a,— A ’ y
functional constant or variableand 1< k<n
T, lgal— fa, . . . ap, far . . . Geer@@pyy . . . Gn, A )
IF,. T , where fis an n-ary
T,lqap — fa, . .. an A
functional constant or variableand 1 <k <n
IKO I", Ialaz, KalA, KazA — A
: T, la,a,, Ka,A — A
K T, la,a, — Ka, A, Ka,A, A
1 T, laa, — Ka,A, A
B T, la,a,, Ba,A, Ba,A — A
0 T, la,a,, Ba,A — A
T, la,a, — Ba,A, Ba,A, A
IB,.

I, laa, — BaA, A

Operator rules:

F, KaA, A — A
Ko Fkai—a
K KaA:, .. .,Ka4,— A . ]
. KaAl? o o ey KaAn hd KaA’ Where 7 may be zero
B KaA,, . . ., KaA,, BaAl, . . ., BaA,, Al, . . ., Ap— e
0. KaA,, . .., Kad,, Bad], . . ., Ba4,, — , where y
zero
B KaA., . . ., KaA,, BaAl, . . .,BaA,, Al, ..., A, — A .
1 KaA,, . . ., KaA,, BaA{"'-,BaAr'n—’BaA , where n or m

may be zero
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Enabling rules:

T,. ﬁ
R,. Ay, .. .,Ak-lekﬂ, AZAEZ’A' o A A, wheren > 1 and 1<k<n
1y o oy Ay
R,. T4 "I_,A_i—i;:lkflj ill:l:lkw’ — An, wheren>1land1<sk<n
A finite sequence (S,, ..., S,) of sequents S; is a proof (of S,) iff for

each 7 such that 1 <i<un, either (1) S; is an axiom, or (2) there exist
integers j, k< i such that S; is inferred by (Co) or (E,) from S; and S, or
(3) there exists an integer j < ¢ such that S; is inferred from S; by a rule
other than (C,) or (E,). A sequent is provable iff there exists a proof of it.

7 Validity Theovem An intevpretation d of a sequent S is an interpretation
of |S|; #gives S the value 0/1 as 3 does/does not simultaneously satisfy |S|.
S is valid iff |S| is not simultaneously satisfiable, i.e., iff each interpreta-
tion of S gives S the value 1.

The main result of this paper is that S is provable iff S is valid. The
easier half is proved here.

Theorem 5 If S is provable, then S is valid.

Proof: In view of Theorem 2 it suffices to show that if S is provable, then
|S| is not kb-defensible (since v(|S|) is finite, the variable condition is
satisfied).

We first verify that if S is an axiom, then |S| is not kb-defensible. If
S=T, A— A, A, then by (m1), |S| cannot be a subset of any model set. If
S=T — laa, A, then by (m7), |S| cannot be a subset of any model set.

We now show that if S is inferred from S,, . . . by a rule of inference of
F(K, B) and |S,|, . ..are not kb-defensible, then |S| is not kb-defensible.

(No). f S=T,NA— Aand S, = I'— A, A, then |S]| = |S,].

(N;). Suppose S=T —NA, A and S,=T, A — A. If |S|C i, where y is a
model set, then by (m2), Aey, so |S,|C p.

(Co). Let S=T,CA A, — A, S, =T— A, A and S, =T, A4, > A. If |S|C y,
where pu is a model set, then by (m3), either NA,eu or A,epu, so either
[S,] € por |S,]cp.

(Cy). Let S=T —CAA,, A and S, =T, A, — A,, A. If |S|C 1, where p is
a model set, then by (m4), A, €u and NA, €y, so |S,| C p.
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(E;). Let S=T, ExXA — A and S,=T, A(a/x), Pa — A, where a does not
appear in S, and suppose |S| is kb-defensible. By Theorem 1, |S]| is
satisfiable; let 3= (X, x,, ¥, ¥, Z, Ry, Ry, X, 6, ¢) be a satisfying interpre-
tation. Let f be the first ge Z such that if v is defined on {¢,} by v(¢,) = g,
then V,(ExA, 2, v, x,) = 1. Since v(|S]|) is finite, the conditions of Theorem
2 are satisfied. If ge (X(v(IS|)) - {f)), let w'(g) = w(g); if g€ (Z - (X(v(|S]))U
{fM), let w'(g) = {a,}, where a, is the first variable of F - (v(|S]) U{a}) not
already so assigned; if fe X(v(IS])), let w'(f) = w(f) U{a}; and if fe(Z -
X(v(1S1))), let w'(f) = {a}. If the proof of Theorem 2 is now carried out with
w' in place of w, we obtain a kb-model system § such that |S,| € u(x,) € 9.
(E\). Let S= T — ExA, A, S;,=T — A(a/x), A, and S, =T — Pa, A, and
suppose that [S| C e, where © is a kb-model system. If Pa ey, then by
(m6), NA(a/x) e, so |S,| C u. If Pagdy, then u' = u U{NPa, laa} is a model
set, @' ={p'tu (@ - {1} is a kb-model system, and [S,| C p’.

(I). Let S=T,laa, — A and S, = T, laya,, Ia,a, — A. If |S| C u, where p
is a model set, then by (m7), la,a, € u, so by (m8), la.a, ey, so |S;| C p.
(IFy). Let S=T, lga, fa, . . . an— A and S, = T, lqal, fa, . . . a,
fa, ... @@, . ..a,— A. If |S| C u, where u is a model set, then by
(m8), fa, ... ak-laéak+l .o Qn€l, SO Isll < u.

(IF). Let S=T, lgaf — fa,...an,, A and S, = I, \ga; — fa, .. .a,,
fa,...q8lap., .. .0y A, If |S|Cp, where p is a model set, then
fa, ... alap,, ... a.fp, since then by (m7) and (m8), fa,...a.ep,
contradicting (m1). Thus p'= pU{Nfa, ... a,aa, . .. a, is a model
set, and [S,[C p'.

(IKy). Let S=T, laa, Ka,A— A and S, =T, laa,, Ka A, Ka,A— A. If
S| C eQ, where Q is a kb'-model system, then by (k'2), Ka,A ey, so
1S,/ < p.

(IK,). Let S = T, laa, — Ka,A, A and S, = T, la,a, — Ka,A, Ka,A, A. If |S|C
u € Q, where Q is a kb’-model system, then by (k'3), NKa,A ey, so [S,| C pu.
(IBo). Let S=T, laa,, Ba,A — A and S, = T, la,a,, Ba,A, Ba,A — A, If | S| C
p €, where  is a kb'-model system, then by (b'2), Ba,Aep, so |S,| C pu.
(IB)). Let S=T, la,a, — Ba,A, A and S, = T, la,a, — Ba,A, BaxA, A. If [S]C
u €, where © is a kb'-model system, then by (b'3), NBa,Aep, so |S;| C pu.
(Ko). Let S=T,KaA — A and S, =T, Kad, A— A. If |S|C peQ, where Q
is a kb’-model system, then by (k’1), Aepy, so [S,]| C p.

(K)). Let S=Kad,, ... KaAd,— KaA and S, =Ka4,, ..., Kad,— A, and
suppose |S|C peQ, where (Q, Ry, R,) is a kb’-model system. By (k'5),
there is some ve © such that (u, v) € Ry(a) and NA € v; by (k'4), KaA; e v for
each i, so |S,| C v.

(Bo). Let S = KaA,, . .., KaA, BaA, ... BaA, — and S, = Ka4,, . . .,
KaA,, BaAl, ... BaAl,, Al ... A,—, and suppose |S| Cpue
where (Q, R,, R,) is a kb'-model system. By (b'l), there is some ve Q such
that {u, v) € Ry(a); by (kb'3), KaA, e v for each ¢; by (b'4), BaA;ev for each
i; and by (b'5), Aje v for each 7. Therefore |S;| C v.

(B)). Let S =KaA, ... Ka4, BaAj, ... Bad, — Bad and S, = Ka4,,
..., Kad,, Bad}, ..., BaA), Al, ..., A, — A. Suppose |S|C ueQ, where
(R, R, R,) is a kb'-model system. By (b'6), there is some ve Q such that
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(u, V) € Ry(@) and NA € v; by (kb'3), KaA; e v for each i; by (b'4), BaA/ ¢ v for
each i; by (b'5), A} e v for each i. Therefore |S,| C v.

(To). fS=T,A— Aand S, = ' — A, then |S,| C [S].

(T). S=T—A,Aand S, = I" — A, then [S,| < [S].

(D). ES=T,A—Aand S, =T, A, A — A, then |5, = |S|.

(D). fS=T— A, Aand S, = T — A4, A, A, then |S,| = |S].

(Ro). If S=A, ..., A, —AandS; =4, ... A4 , A, A, Ao, . .
A, then |S,| = |S].

R). ¥ S=T—A,...,4,and S, =T — Ay, ... Apy, Apir, Apy Apeay « v oy
A,, then [S,] = |S]. Q.E.D.

A, —

*
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