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lllative Combinatory Logic Without

Equality as a Primitive Predicate

M. W. BUNDER

Introduction Combinatory logic has the simplest formal framework of
any system of logic or mathematics. It has a finite set of primitive constants
(or obs) which include K and S, the basic combinators. There is only one very
simple formation rule:

If X and Y are obs so is (XY).

These obs include all the operators, expressions, terms, well-formed formulas,
etc., of the system.

Pure combinatory logic has one predicate (=). A predicate in this sense
is not an ob, it allows us to make statements about obs.

If X, Y, and Z are obs we assume the following axioms:

KXY =X
SXYZ=XZ(YZ)

as well as the rules:

(0) IfX=YthenY=X.

() IfX=YthenY=ZthenX=Z.
(™) IfX=YthenZX =2ZY.

) If X=Y then XZ=YZ.

Illative (i.e., applied) combinatory logic has additional constant obs
(which could also be part of any pure system) and it has, in its usual form,
an additional predicate I, as well as some axioms and rules involving the new
obs=and I

Having listed the primitive concepts of a formal theory many authors
would then attempt to provide a semantics, i.e., they would explain these
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concepts in terms of simpler or more basic ones. Because combinatory logic
deals with very basic concepts this is difficult,! and the semantics is likely to
be more complex than the original theory. Also, since the formation rules
allow complete generality in the formation of obs, many of these will have
at most a very contrived interpretation. Therefore, we will not attempt to give
a semantics here.?

The usefulness of illative combinatory logic is easier to explain. In this
logic it is possible to define propositional connectives, quantifiers, and various
set theoretic and arithmetical notions and to derive their properties in a simple
way. (See [5] for a summary of some of these developments.)

The formal framework of illative combinatory logic is clearly much
simpler than that of other logical systems since it does not need to distinguish
between various kinds of primitive objects and has only one formation rule.
It is, however, more complicated in that it usually has two predicates, I~ and =.

Curry and Feys have shown in §7C of [9] that it is possible, in a system
that has no illative rules, to replace the predicate = by a constant ob Q so that

(D X =Y if and only if = QXY.

Because it can be shown that K # S, we have that QKS is not provable
and so the illative system (called Z in [9]) is consistent.

In this paper we are interested in showing that the illative systems that
have been developed with I and = as basic predicates can be reformulated with
only . We do this in two ways: in the first we extend .2, and in the second
we extend an alternative version of 2 with illative axioms and rules.

In these new systems we cannot hope to prove (simply) both implications
of (1) since formulas of the form QXY could conceivably be proved using
illative rules that have no counterparts in the pure system. If we were able to
prove (1), the system would be said to be Q-consistent.3

In general, illative combinatory logic can be set up in one of two ways: as
a system mainly of rules including an introduction rule for restricted generality
=% (such systems we will call natural deduction systems), or as a system using
mainly axioms (called a “finite formulation” by Curry, Hindley, and Seldin
in [10]).

One of the strengths of combinatory logic is that it does not require the
use of variables and hence avoids complicated substitution rules which arise
when both bounded and free variables are involved. In natural deduction
systems, however, when the introduction rule for = is used, variables are
unavoidable even if none appear in any theorem that is proved. In finite formu-
lations no variables should be necessary, however in §15C of [10], F Ex is
still postulated for a variable x and it is clearly assumed, though not stated, that
the axiom schemes and rules for = and = may involve obs containing variables.
In [16] = Ex is also postulated and in [2], although the axiom (with £ = WQ)
is not specifically mentioned prior to the proof of the deduction theorem for
=, it is allowed for there. Clearly though, if variables are not needed axioms
and rules involving them should also not be needed.

In this paper we prove a deduction theorem for =, equivalent to the =
introduction rule above, in the two finite formulation systems that have only
- as a predicate. In doing so we show, for this as well as for other systems,
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that if Y can be proved using a hypothesis X involving a variable u, using all
the axiom schemes and rules of the system extended as though « were a primi-
tive ob, then given a restriction on X, Z(AuX)(AuY )5 can be proved using only
axiom schemes and rules not involving u.

The deduction theorem (for either system) we get here is exactly that of
[2] so the work (such as that listed in [5]) which has been developed on the
basis of the deduction theorem in [2], can also be developed from the work
in this paper.

The axioms and rules for = in [2] are of course replaced here by axioms
and rules for Q. Some of the remaining axioms in [2] are altered slightly to
make the proof of the deduction theorem completely independent of the
choice of L, the class of obs over which the theorem can be carried out. This
has major advantages when we wish to consider higher-order logics (as in [7]).

Finally in this paper we compare several versions of the system in which
the deduction theorem holds and also compare these with some other systems,
particularly those of Church [8] and Goodman [12].

The altered system 2_ We assume that we have at least Q, K, and S as
primitive constants and that we have the following axiom schemes and rules:

Axiom Schemes

(K)) FQOX(KXY)

(K,) FOKXY)X

(S)) FOXZ(YZ)(SXYZ)
(Sy) FOSXYZ)(XZ(YZ))
Rules

Eq QXY, X Y

(u) QXY = Q(UX)(UY)

where X, Y, Z, and U are obs formed from the primitive constants by applica-
tion. (The names of the axioms and rules are similar to those of rules in [9].)
We now prove:

Theorem 1

60 OXY, QZX - QZY

(ii) 210).0.¢

(iii) 0XY FQYX.

Proof: (i) By (), QXY = Q(QZX)(QZY)

so by Eq OXY,QZX - QZY.

(ii) By (K ), (K3 and (i).

(iii) By (Sy) FOIQX(KXX)][SQ(KX)X],
by (Ky) F QX(KXX)

so by Eq FSO(KX)X,

and then by (1) and Eq O0XY FSQ(KX)Y.

Now by (S5) F Q(SQ(KX)Y)(QY(KXY)),
so by Eq QXY = QY(KXY).

By (Ky) F Q(KXY)X,

so by (i) QXY FQYX.
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All substitution properties for equality follow for Q from Eq and (u).

We have simplified the system of [9] in that we now only have two rules
instead of seven, but we have complicated it as we now have four axiom
schemes instead of only one (- QXX in [9]). This is unavoidable even if we
have restricted generality (=) and attempt to write, say, (K,) as an axiom, i.e.,

FWwox 2>, WQy >, Ox(Kxy)S.
Written formally this is:
FEWOUS[KEWONILS(S(KBYDK |

where W and B should also be replaced by their definitions in terms of K and S.
To obtain Rule (K,) from this, all of (K,), (K,), (S,), and (S,) are needed.

The deduction theorem In addition to the primitives K, S, and Q, we will
take = with the elimination rule:

Rule = EXY, XU YU,
and the extra axioms:

Axiom 1 = Lx Dy xu D, xu

Axiom 2 b Lx Dy y Dy (xu D, »)

Axiom 3 b Lx Dy WOt Dy (xu Dy yultu)) Oy, (xu Dy (yuv Dy zuv))
D, (xu Dy, zu(tu))

Axiom 4 = Lx Dy: (xu Dy, zu) D;. (xu Oy Q(zu) (yu)) Dy (xu D, yu)

Axiom 5 = Lx D, WQu D,: WOw D,,. (xu D,, Q(vu) (wu))
D, (xu Oy Q((zu) (vu)) ((zu) (wWu)))

Axiom 6 F Lx Dy WQy Dyt WQz D;,. xu D, Q(yu)(K(yu)(zu))

Axiom 7 F=WQy D,.. WQz D,: Lx Dy xu D, Q(K(yu)(zu))(yu)

Axiom 8 FWQy D, WQz D,.. WOw Dy Lx Dy. xu Dy Q[(yu)(wu)
(W) (wu) ] [S(yuw) (zu) (wu)]

Axiom 9 FWQy Dyt WQz D, WOw Dy, Lx Dy. xu Dy QIS(yu) (zu)(wu)]
[(yu) (wu) ((zu) (wu))].

Of these, Axioms 1 and 3 are identical to those in [2], however the alter-
native form of Axiom 2 means that Axioms 6 and 7 of [2]: I x D, Hx and
= LH, where ‘HX’ stands for ‘X is a proposition’, do not need to be assumed.
Also there is no need to make any assumptions regarding the definition of L.
(In [2] L was FAH, but it was shown later that the deduction theorem could
be extended to hold if L = FUH for various values of U. In later publications
it was also shown that the use of = LH could be avoided in various ways.)

Before proving the deduction theorem using these axioms, we need to
introduce some extra notation. We will assume that the free variables intro-

duced in a proof using m hypotheses are uy, u,, . . ., u,, and that the hypothesis
involving u,, is the first to be eliminated.
If the set of obs is extended to include uy, u,, .. ., u, and others formed

using the primitive constants and these by application, we will denote the
corresponding extended axiom schemes and rules by (K )m, (K)m, (S)m,
(S2)m, and (EQ)y and (u) .

If A is the set of all the hypotheses in a deduction of an ob Y using these
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extended axioms and rules as well as Rule = and Axioms 1-9, we will write:
A bRY.
We can now state and prove the deduction theorem in the following form:

The Deduction Theorem for = If A, X 57 Y, where u,, is not in A, then A,
LOw,X) =X Ot Y.

Proof: Let there be n steps Yy, Y,, ..., Y, =Y in the proof of Y from A and
X. We show by induction on & that:

A ‘mXDum Yk.

We consider six cases, the first three of which constitute the £k = 1 case.
All six cases apply when we have assumed A =3 X Oy, Yifor 1 <i<k-1
and attempt to prove this fori= k.

Case 1. YiisX.
By Axiom 1, Ly X) XD, X,
so obviously L\tp, X) =1 X Oy, X.

Case 2. Yy is an axiom or is in A and has no free u,, in it.
By Axiom 2, L\, X), Yy X Oum Y

so as in this case A = Yy
we have A, L\up, X) =1 X Dy, Yy

Case 3. Yy is an instance of (K{)m, (K2)m, (S1)m, or (S;)m that involves u,. In
the first case let Y = QV(KVZ), then A,V and \u,, Z have at most uy, u,, . . .,
U,y as free variables so b= WQ(\u,,V) and b=t WQ(Au,,Z) and hence by
Axiom 6 we have:

Ly X) b=t X 3, QV(KVZ),

Similarly the results for (K,)m,, (Si)m, and (S,), follow from Axioms 7, 8,
and 9.

Case 4. Yy is obtained from Y; and Y; by Rule (Eq)y,. By the inductive
hypothesis we have: A, LQ\up,X) =1 X D,, QZY) and A, Ly X) it X
Dy, £, for some Z, so by Axiom 4 we have:

A, Ly X) =1 X Dy, Yy

Case 5. Y} is obtained from Y; by Rule (u),. By the inductive hypothesis if
Y, =0 ZV)(ZW) and Y; = QVW, we have

A, LQ\up X) =1 X D, QVW
so by Axiom 5 as k=1 TQ(A\u,,, V) and b=t TQ(\u,,W) we have
A, Ly X) tm=1 X Dy, QZV)(ZW).

Case 6. Yy is obtained from Y; and Y; by Rule Z. By the inductive hypoth-
esis, if Y; is Zv Dy, W, Y; is ZV and Yy is WV,

A, LAy X) =1 X Dy, (Zv Oy Wo)
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and A, LQ\upX) b=t X Dy, ZV. Thus by Axiom 3 and =1 TQ(\uy, V) we
have:

A, L\up X) =1 X Dy, WV.

Thus the theorem holds in all cases.
It follows easily from this that:

Corollary 1 If Xquy, Xoug, . . ., Xpptty b Y where each u; is not in X; for
j <1, then

I_Xlul Du1: X2u2 Du2' A Xmum Dum Y

Thus all uses of hypotheses and all uses of the versions of (K,), (K,), (S)),
(S,), Eq, and (u) involving variables can be eliminated from a proof.

This theorem (and its corollary) could equally well be proved if we had
the rules of [9] replacing (K,), (K,), (S,), and (S,) (and also if we had extra
(constant) axioms). To allow for these rules, we would need instead of
Axioms 6, 7, 8, and 9:

Axiom 6’ FWQy 2, WQz D,: Lx Dy (xu D, wu(K(yu)(zu)))

D, (xu O, wu(yu))
Axiom 7’ = WQy D, WQz D,: Lx Dy (xu D, wu(yu))

Dy (xu 2, wu(K(yu)(zu)))
Axiom 8’ FWQy D, WQz D,.. WQu Dy: Lx Dy.

[xu O, wu(yu(vu) (zu(vu)))] D, [xu O, wu(S(yu)(zu)(vu))]
Axiom 9’ FWQy Dyt WQz D,.. WQu Dy: Lx Dy

[xu D, wu(S(yu)(zu)(vu))] Oy [xu O, wu(yu(vu) (zu(vu)))]
Axiom 10’ FLx D, (xu D, yu) D (xu D, I(yu))
Axiom 11’ B Lx D, (xu D, I(yu)) D (xu D, yu).

(Here we are assuming that 7 is defined by SKK. In [9] it is a primitive, but
these two axioms are required in either case.)

A comparison between various systems The work above gives rise to four
systems in addition to that of [2]. First we could consider Z extended by
Rule = and the deduction theorem (DTZ), we will call this 2,; then we can
have another natural deduction system .2 ,, which is the altered version of Z
also with Rules = and DTZ. Finally we have the two axiomatic systems that
correspond to these, we will call them 2.} and 2}. Clearly these are at least as
strong as 2, and Z ,, respectively.

The rules of .2, (and 2.) can be proved in.2, (and 2.}) and vice versa, but
the axioms in each of [2], 27 and 2} cannot be proved in any of the other
systems unless we have extra axioms such as:

(2) = L(WQ)
3 FLL
(4)  FLx D L(Ex),

etc.
If L = FAH, as it is in [2], that system becomes inconsistent and so will
those based on 2 with appropriate axioms or rules for H, so it is best not to
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assume (3). If however, as in [7], we allow (the axioms and hence) DT= to
hold for several values of L a version of (3) and (4) with different L’s could
be sufficient for what is required and it is possible that the four 2-based
systems could be equivalent.

Some other systems of combinatory logic, or systems that use it such as
those of Fitch [11] and Aczel [1], simply postulate a deduction rule and so
have to have variables in their proofs, as our natural deduction systems have.

The system [8] of Church’ must contain free variables in its formation
rules and bound variables in the system because it is based on A-calculus rather
than combinatory logic. A careful reading of the proof of his deduction
theorem shows that it proves, as ours does, that free variables are not necessary
in a proof.

The system [12] of Goodman is especially interesting since it also has
[- as the only predicate; moreover an equality = somewhat similar to our Q is
present in the same system. The differences lie in the facts that Goodman only
allows terms of the form X = Y, where X and Y are our obs (= is not an ob)
and that = does not have all the rules that Q has. For example, - X = X is not
provable for all X and a term ¢ can only be substituted for a variable in an
equation if Fe=c.

This substitution rule is one of Goodman’s 13 basic postulates; 5 others
involve variables. These postulates can however be rewritten to involve no
variables. Instead of postulates X—XIII, we write down all the possible instances
obtainable by means of the substitution rule (III), i.e.:

a=a,b=b tKab =a

a=a,b=b I Sab = Sab
ac(bc) =ac(be) = Sabe =ac(bc)

Sabc = Sabc |- Sabc = ac(bc).

The other postulate (IV) involving a variable, = X = X, can now be left
out as can (III), the substitution rule.

Despite the fact that this system does not contain = and hence does not
have a P (for implication) defined in terms of it, the following deduction
theorem for implication (defined in terms of K and S) can be derived:®

If @ is a propositionand A, a =T =b=TthenA,b=b FaDb=T.

‘ 3

Here ‘. = T’ can be interpreted as is true’ so the theorem is very
similar to the one derivable from our deduction theorem for =:

If A,al-b then A, Ha Fa D b.

The differences are the extra condition on b and the fact that in Good-
man’s system ‘a is a proposition’ is defined in the metatheory and so is not an
ob as is Ha.

NOTES

1. There are semantics for pure combinatory logic, for example those of Scott ([14] and

[15]).
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2. For more details on the difficulties in providing semantics for combinatory logic see
Kearns [13].

3. This property is not essential for the system to be interesting or useful, the system QD of
Fitch in [11] for example is not Q-consistent. For more details on this see [4].

4. All the propositional connectives can be defined using Z, as can quantification over
individuals, propositions, predicates, etc. (see [3]).

5. \-abstraction can be defined in terms of combinators by:

Nuu=1=SKK
Au. X = KX if X is a single'symbol other than u
NL(XY) =S X) (. Y).

6. ZXY is also written as Xu D, Yu if uis notin X or Y.
7. This system has been proved to be inconsistent by Kleene and Rosser.

8. For details see [6].
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