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On the Number of Generators

of an Ideal

THOMAS JECH

A countably complete ideal / over a set S is K-saturated if the Boolean
algebra P(S)/I does not have a subset of size K of pairwise disjoint elements.*
/ is X-generated if it has a subset X of size X such that / is the smallest a-ideal
containing X. We denote by sat(I), gen{I) the least cardinal number K (the
least cardinal number X) such that / is K-saturated (X-generated).

In [2], Baumgartner and Taylor prove that if every a-ideal over coj is
N2-generated then every a-ideal over coj is N3-saturated, and ask the following
question: Can one prove that every ^-generated o-ideal over GIX is N3-
saturated?

We answer this question in the negative:

Theorem 1 It is consistent that the closed unbounded filter over cox is
^-generated but not ^-saturated.1

In fact, a a-ideal can have &2 generators and not be K-saturated for arbi-
trarily large K :

Theorem 2 Let M be a model of V = L and let K and Xbe (in M) cardinals
such that K < X and cf K > co2> cf X^ co2- Then there is a generic extension
M[G] in which

gen(F) = «2 , sat(F) = K+,2*1 = X

(where F is the closed unbounded filter over coi).2

Proof of Theorem 1: Let M be a model of ZFC in which 2*° = «2 and
2Kl > X3. We extend M genetically by adjoining N2 closed unbounded subsets
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of cox which will generate the closed unbounded filter in the extension. We
adjoin the ft2 closed unbounded subsets successively, using iterated forcing.
The extension will still satisfy 2*° = ttj and 2*1 > K3 and by a theorem of
Jech and Prikry this implies that no a-ideal over oox is N3-saturated (°f- [4]).

Let us consider the following notion of forcing (Q,<): A forcing condi-
tion g e Q is a pair

q = (s,C)

where

(1) s is a closed countable subset of cox

(2) C is a closed unbounded subset of coi
(3) max(s)<min(C).

The partial ordering on Q is defined as follows: q = (s,C) is stronger than
4 ; = 0',C")iff

(4) C C C '
(5) s extends s
(6) r/CC'

The notion of forcing (Q,<) is countably closed: if \(sn,Cn):n e co\ is
a descending sequence of condition, then the condition (s,C) where s =
U sn U \supnmax{sn)} and C = p | Cw is stronger than all of them. If s = s'
« n

then the conditions (5,C) and (s',C) are compatible. Hence every incom-
patible set of conditions has size at most 2^° and since 2*° = ftu (Q,<) satis-
fies the N2-chain condition.

Also, we have IGI = 2^1.
Let G be a generic set of conditions. Since Q is a-closed and has the

N2~chain condition, all cardinals and cofinalities are the same inM[G] as inM.
Moreover, M[G] has no new countable sets of ordinals, and (2H°) =
( 2 ^ f = « 1 a n d ( 2 " 1 ) M [ G 1 = ( 2 H l ) M L e t

(V) CG = | J \s: for some C, (s,C) e G\.

The set CQ is a closed unbounded subset of col5 and since G is Q-generic, we
can easily see that

(8) if C e M is a closed unbounded subset of col5 then there is a < coj
such that CG - a C c.

In other words, every closed unbounded subset of a?! in the ground model
contains an end segment of the set CQ.

The notion of forcing (P,<) is obtained by iterating the above construc-
tion N2 times. We assume that the reader is familiar with the basic facts on
iterated forcing; these can be found, among others, in [3] p. 457, or in [ 1 ].

We consider an iterated forcing of length co2, where at successor stages
we use the notion (0,<) described above, and at limit stages take either direct
or inverse limits; namely, we take inverse limits at limit ordinals of cofinality
co and direct limits at limit ordinals of cofinality > co.
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More precisely, we define, by induction, for each a < co2 an a-stage
iteration (Pa,<a), the corresponding Boolean-valued model MP(X and the notion
of forcing Ife, and a notion of forcing Qa e MPa:

(9) P o =i l} ,M p o = M , G o = e
(10) Pa is the set of all a-sequences p = (pf% < ce) such that

( i ) f o r e v e r y y < a , p t y e Py a n d p l y \\y~py e Q y

(ii) {£ < a: p(£) =£ 1) is at most countable
(11) if p, q e Pa then p<aq iff for every y<a,p [ y \\y~py<yqy

(12) Qa e MPa is the notion of forcing defined in MPQL by (l)-(6).

Finally, we let (P,<) = (Pu>r <co2) be the co2-stage iteration.
Since for each a, kQa is countably closed and has the ft2-

chain condition,
and because we iterate with countable support, it follows from basic facts on
iterated forcing that (P,<) is countably closed and has the tt2"

chain condition.
And also, |P | = 2H l .

Let G be an M-generic filter on (P,<). Since P is a-closed and has the
^2-chain condition, all cardinals and cofinalities are preserved. Also, M[G]
has no new countable sets of ordinals, satisfies 2*° = N1? and 2*1 is the same
inM[G] asinM.

We shall show that in M[G], the closed unbounded filter is K2-generated.
For each a < co2 let G t a = \p t a: p e G\, and let Ga = \pa: p e G\.

Clearly, Ga is (isomorphic to) an M[G \ a]-generic filter on (Q,<) (where Q is
defined by (l)-(6) in M[G \ a]). Thus for each a < co2, we can define a closed
unbounded set Ca = Cca as in (7) and we have

(13) every closed unbounded subset of o)1 in M[G ^ a] contains an end
segment of the set Ca.

The proof will be completed when we show that every closed unbounded
subset of GJi in M[G] belongs to some M[G \ a], a< GJ2. This however is a
well-known consequence of the fact that CP,<) has the N2-chain condition and
that P is the direct limit of Pa, a < co2.

Proof of Theorem 2: We start with a model M of V = L? Let K < X be
cardinals of cofinality >co2. First we extend M genetically to a model Mx in
which 2*1 = K by adjoining (using countable conditions) K subsets of cov Next
we extend Mx to a model M2 by the notion of forcing P described in the proof
of Theorem 1. And finally, we extend M2 to M3 by adjoining (via finite condi-
tion) X subsets of co.

The passage from M to M2 is via a countably closed notion of forcing. As
M is a model of V = L, M satisfies the 0 principle. It is easy to see that an exten-
sion via a countably closed notion of forcing preserves the 0 principle (every
O-sequence in the ground model is a O-sequence in the extension). It follows
from 0 that there are 2 l almost disjoint stationary sets; henceM2 satisfies that
the closed unbounded filter is not ^-saturated. As M2 is an extension of M x via
(P,<), M2 also satisfies that the closed unbounded filter is K2-generated.

The passage from M2 to M3 uses a ccc notion of forcing. It is well-known
that when forcing with a ccc set of conditions, every closed unbounded set in
the extension contains a closed unbounded set in the ground model and every
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stationary set in the ground model remains stationary in the extension. Thus
in M3, the closed unbounded filter is still N2-generated, and still not /c-saturated.
Also, it is generated by the closed unbounded filter in M2. The closed un-
bounded filter in M2 is K+-saturated (because (2Kl) 2 = K) and by a theorem of
Baumgartner and Taylor [2] it generates a K+-saturated filter in any ccc exten-
sion. Thus the closed unbounded filter in M3 is K+-saturated.

NOTES

1. Added in proof: A similar result was obtained independently by A. Kanamori (see [5]).
His construction required a large cardinal in the ground model.

2. In a letter to the author, J. Baumgartner states: " . . . you can raise the generation number
of the club filter by iterating as far as you like. Thus you could get, for example gen(F) =
K3,sat(F)=tt4,2*= H5."

3. As the referee points out, it is not necessary to start with a model of V = L, since 0 is
automatically obtained when forcing with a countably closed partial ordering that adds a
subset of coi.
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