On the Number of Nonisomorphic Models of Cardinality λ $L_{\infty \lambda}$-Equivalent to a Fixed Model

SAHARON SHELAH

A well-known result of Scott [6] is that if \mathfrak{M} and \Re are countable and $\mathfrak{M} \equiv \infty_{\infty} \Re$, then $\mathfrak{M} \cong \Re$. Later, Chang [2] extended this to show that if $c f(\lambda)=\aleph_{0}$, \mathfrak{M} and \Re have cardinality λ and $\mathfrak{M} \equiv_{\infty \lambda} \Re$, then $\mathfrak{M} \cong \Re$. More recently, Palyutin [5] has shown that if $V=L$, \Re has cardinality \aleph_{1}, and $K=\left\{\Re: \Re \equiv{ }_{\infty} \omega_{1} \mathfrak{M}\right.$ and $\left.\Re=\aleph_{1}\right\}$, then, up to isomorphism, K contains either one member or $2^{\aleph_{1}}$ members. It has long been known that the first case was not exclusive (cf. [4]).

For $\lambda=\aleph_{1}$ Palyutin needed the fact that $V=L$ implies \diamond_{S} for every stationary $S \subseteq \omega_{1}$. In the Theorem below, we extend Palyutin's result to most other uncountable regular cardinals. Our proof, however, requires a stronger combinatorial principle of Beller and Litman [1] which does not hold in the case of λ weakly compact, and so the restriction in the Theorem.

By Shelah [6] the $G C H$ is not enough to guarantee the conclusion even for $\lambda=\aleph_{1}$, because the "theorem" would imply the following. For λ regular and G a λ-free group of cardinality λ, up to isomorphism $\operatorname{Ext}(G, Z)$ has either 1 or 2^{λ} members. However, by [6], " $Z F C+G C H+\operatorname{Ext}(G, Z)=Q$ for some $G, \overline{\bar{G}}=\aleph_{1} "$ is consistent.

We now proceed to the theorem and its proof. The result was announced in [8].

[^0]Theorem $(V=L) \quad$ Let λ be regular and not weakly compact. ${ }^{1}$ Let \mathfrak{M} be a model of cardinality λ and $K=\{\Re: \Re \equiv \infty \lambda$ and $\overline{\bar{N}}=\lambda\}$. Then, up to isomorphism, K contains either 1 or 2^{λ} members.
Proof: We may assume without loss of generality that \mathfrak{M} has universe λ itself. For $\alpha<\lambda$ we use α^{*} to denote the sequence of length α whose $\beta^{\text {th }}$ entry is β. We use \bar{x}_{α} to denote the sequence of variables of length α whose $\beta^{\text {th }}$ entry is x_{β}. It is well-known (cf. [2]) that for any sequence m^{*} of length less than λ there is a formula $\varphi_{m^{*}}$ of $L_{\left(2^{\lambda}\right)^{+\lambda}}$ such that for any model \Re and sequence n^{*} of the same length as $m^{*}, \Re \vDash \varphi_{m^{*}}\left(n^{*}\right)$ iff $\left(\Re, m^{*}\right) \equiv \infty_{\infty}\left(\Re, n^{*}\right)$. In other words, $\varphi_{m^{*}} \cdot$ describes the $\infty \lambda$-type of m^{*} in $\mathfrak{l l}, t p_{\infty \lambda}\left(m^{*}, \Re^{\prime}\right)$.

We now define a set S of ordinals less than λ that will be used for the rest of the proof. Let

$$
S=\left\{\alpha<\lambda: \mathfrak{M} \vDash \forall \bar{x}_{\alpha}\left(\bigwedge_{\beta<\alpha} \varphi_{\beta^{*}}\left(\bar{x}_{\beta}\right) \rightarrow \varphi_{\alpha^{*}}\left(\bar{x}_{\alpha}\right)\right)\right\} .
$$

The proof divides into two cases, depending on whether or not S is stationary. At first, the definition of S may look a bit puzzling since the situations for limit and successor ordinals seem different. However, because we only care whether S is stationary, we are essentially only interested in the limit ordinals anyway. We consider first the case in which S is not stationary. The proof does not differ from that in [5] in any material way, but we include it here to make our paper self-contained.
Claim If S is not stationary, then all members of K are isomorphic.
In this case there is, by definition, a closed set C unbounded in λ and disjoint from S. Since λ is regular we may write $C=\left\{\delta_{\alpha}: \alpha<\lambda\right\}$ where δ_{α} is increasing and continuous in α.

Let $\Re \in K$. Again we may assume \Re has universe λ. For each $\alpha<\lambda$ we will define a partial isomorphism f_{α} from \mathfrak{l} to \Re. The domain and range of f_{α} will each include α. In addition, if $\beta<\alpha, f_{\alpha}$ will be an extension of f_{β}. Thus $f=\bigcup\left\{f_{\alpha}: \alpha<\lambda\right\}$ will be an isomorphism from \Re onto \Re. It will also be arranged so that for $\alpha>0, f_{\alpha}$ has domain δ_{β} for some $\beta \geqslant \alpha$, and so that $\left(\Re, \delta_{\beta}^{*}\right) \equiv \infty_{\infty}\left(\Re, f_{\alpha}\left(\delta_{\beta}^{*}\right)\right)$, where $f_{\alpha}\left(\delta_{\beta}^{*}\right)$ is the sequence of length δ_{β} whose $\xi^{\text {th }}$ element is $f_{\alpha}(\xi)$.

First, for $\alpha=0$, we let f_{0} be the empty function.
Next, suppose $\alpha=\beta+1$ and f_{β} has been defined with domain δ_{γ} so that $\left(\mathfrak{M}, \delta_{\gamma}^{*}\right) \equiv \infty_{\infty}\left(\Re, f_{\beta}\left(\delta_{\gamma}^{*}\right)\right)$. First, by the back-and-forth property, there is some $\xi<\lambda$ such that $\left(\mathfrak{M}, \delta_{\gamma}^{*}, \xi\right) \equiv \infty_{\infty}\left(\Re, f_{\beta}\left(\delta_{\gamma}^{*}\right), \beta\right)$. Now, choose $\rho>\gamma$ such that $\xi<\delta_{\rho}$. Next, choose a sequence $\left\langle a_{\nu}\right\rangle_{\nu<\delta_{\rho}}$ such that ($\mathfrak{M}, \delta_{\gamma}^{*}, \xi, \delta_{\rho}^{*}$) $\equiv_{\infty \lambda}$ $\left(M, f_{\beta}\left(\delta_{\gamma}^{*}\right), \beta,\left\langle a_{\nu}\right\rangle_{\nu<\delta_{\rho}}\right.$). Now, define f_{α} so that $f_{\alpha}(\nu)=a_{\nu}$, for $\nu<\delta_{\rho}$, and f_{α} will extend f_{β}.

Finally, suppose α is a limit ordinal. This is the more interesting situation. Let us suppose that for each $\beta<\alpha$ we have defined f_{β} as required with domain $\gamma_{\beta} \in C$. Let $\mu=\bigcup_{\beta<\alpha} \gamma_{\beta}$. Then $\mu \in C$ since C is closed. We will let $\delta_{\alpha}=\mu$ and define $f_{\alpha}=\bigcup_{\beta<\alpha} f_{\beta}$. We must show that this choice will satisfy our requirements. First, the requirements on the domain and range are satisfied by induction. Since $\mu \in C, \mu \notin S$. Thus, $\Re \vDash \forall \bar{x}_{\mu}\left(\bigwedge_{\beta<\mu} \varphi_{\beta^{*}}\left(\bar{x}_{\beta}\right) \rightarrow \varphi_{\mu^{*}}\left(\bar{x}_{\mu}\right)\right)$. Since $\Re \equiv_{\infty \lambda} \Re, \Re \vDash$
$\forall \bar{x}_{\mu}\left(\bigwedge_{\beta<\mu} \varphi_{\beta} *\left(\bar{x}_{\beta}\right) \rightarrow \varphi_{\mu^{*}}\left(\bar{x}_{\mu}\right)\right)$. Furthermore, since for each $\beta<\alpha\left(\mathfrak{M}, \gamma_{\beta^{*}}\right) \equiv_{\infty \lambda}$ ($\mathfrak{R}, f_{\beta}\left(\gamma_{\beta}^{*}\right)$), we also have $\mathfrak{N} \vDash \varphi_{\beta^{*}}\left(f\left(\gamma_{\beta^{*}}\right) \mid \beta\right.$), and hence $\mathfrak{N} \vDash \bigwedge_{\beta<\mu} \varphi_{\beta^{*}}\left(f\left(\gamma_{\beta^{*}}\right) \mid \beta\right)$. Consequently, we must also have $\Re \vDash \varphi_{\mu^{*}}\left(f\left(\mu^{*}\right)\right.$). Then, of course, $\left(\Re, \mu^{*}\right) \equiv_{\infty \lambda}$ ($\Re, f\left(\mu^{*}\right)$), and this finishes the proof in the first case.

We now must consider the more difficult case in which S is stationary. Our object is to prove the following:
Claim If S is stationary, then K has 2^{λ} nonisomorphic models.
For each $\sigma \in 2^{\lambda}$ we will construct a model $\Re_{\sigma} \in K$ with universe λ such that if $\sigma \neq \sigma^{\prime} \in 2^{\lambda}$, then $\Re_{\sigma} \neq \Re_{\sigma^{\prime}}$. This will, of course, prove the claim.

In order to carry out the above, for each $\alpha<\lambda$ and $\eta \in 2^{\alpha}$ we will define ordinals $\delta_{\eta}, \rho_{\eta}<\lambda$ and a function $f_{\eta}: \delta_{\eta} \stackrel{\frac{1-1}{\text { onto }}}{ } \rho_{\eta}$. We regard f_{η} as defining a model \Re_{η} with universe δ_{η}. The isomorphism type of \Re_{η} is obtained by letting $t p\left(\delta_{\eta}^{*}, \Re_{\eta}\right)=t p\left(f_{\eta}\left(\delta_{\eta}^{*}\right)\right.$, M), for quantifier-free formulas. We also need to control $\tau_{\eta}=t p_{\infty \lambda}\left(f_{\eta}\left(\delta_{\eta}^{*}\right), \mathfrak{M}\right)$. The idea is to view \Re_{η} as an approximation to \Re_{σ} with universe λ where $\eta=\sigma \mid \alpha$. In order for this to make sense, we must arrange things so that if $\alpha<\beta$, then $\tau_{\sigma \mid \alpha} \subseteq \tau_{\sigma \mid \beta}$, though not necessarily so that $f_{\sigma \mid \alpha} \subseteq f_{\sigma \mid \beta}$. In fact, this last requirement would create serious problems when we had to "split" so as to obtain nonisomorphic models at the end. On the other hand, a certain amount of this sort of extension is necessary in order to have $\mathfrak{M}_{\sigma} \equiv{ }_{\infty \lambda} \Re$.

In the construction we will use two combinatorial principles which hold in L. The first is that \diamond_{X} holds for each stationary $X \subseteq \lambda$. We state \diamond_{X} in the following form:

For each $\alpha<\lambda$ there are $\eta_{\alpha} \neq \nu_{\alpha}$ and $g_{\alpha}: \alpha \rightarrow \alpha$ such that for any $\sigma \neq$ $\sigma^{\prime} \in 2^{\lambda}$ and $g: \lambda \rightarrow \lambda$,

$$
\left\{\alpha \in X: \sigma\left|\alpha=\eta_{\alpha}, \sigma^{\prime}\right| \alpha=\nu_{\alpha} \text { and } g \mid \alpha=g_{\alpha}\right\}
$$

is stationary in λ.
The second is due to Beller and Litman [1]:
Let X be stationary in λ. Then there is a set $X_{0} \subseteq X$, and for each limit $\alpha<\lambda$ a set C_{α} such that:
(i) X_{0} is stationary in λ
(ii) for all $\alpha<\lambda, X_{0} \cap \alpha$ is not stationary in α
(iii) C_{α} is closed unbounded in α
(iv) $C_{\alpha} \cap X_{0}=0$
(v) if γ is a limit point of C_{α}, then $C_{\gamma}=C_{\alpha} \cap \gamma$.

Now, since S is stationary we may apply the Beller-Litman principle and obtain sets $S_{0}, C_{\alpha}, \alpha<\lambda$ as described. Now we begin the details of the argument. Leaving the construction for the end, let us assume that for each $\alpha<\lambda$ and $\eta, \nu \in 2^{\alpha}$ we have defined $\delta_{\eta}, \rho_{\eta}<\lambda$ and f_{η} such that
(1) $f_{\eta}: \delta_{\eta} \frac{1-1}{\text { onto }} \rho_{\eta}$
(2) if $\beta<\alpha$, then $\delta_{\eta \mid \beta} \leqslant \delta_{\eta}, \rho_{\eta \mid \beta} \leqslant \rho_{\eta}$, and $\tau_{\eta \mid \beta} \subseteq \tau_{\eta}$
(3) if $\alpha \notin S_{0}, \alpha$ a limit ordinal, and δ is a limit point of C_{α}, then $f_{\eta \mid \delta} \subseteq f_{\eta}$
(4) $\alpha \subseteq \delta_{\eta}, \alpha \subseteq \rho_{\eta}$
(5) if $\alpha \in S_{0}, \delta_{\eta_{\alpha} \mid \beta}, \rho_{\eta_{\alpha} \mid \beta}, \delta_{\nu_{\alpha} \mid \beta}, \rho_{\nu_{\alpha} \mid \beta}<\alpha$ for all $\beta<\alpha$ and $g_{\alpha}: \alpha \frac{1-1}{\text { onto }} \alpha$, then $\left\langle f_{\eta_{\alpha}}\left(g\left(\alpha^{*}\right)\right)\right\rangle$ and $\left\langle f_{\nu_{\alpha}}\left(\alpha^{*}\right)\right\rangle$ realize contradictory $L_{\infty \lambda}$-types.
We may now form models \Re_{σ} for each $\sigma \in 2^{\lambda}$ as described earlier. We show now that these models behave as claimed.
A. If $\sigma \neq \sigma^{\prime} \in 2^{\lambda}$, then $\Re_{\sigma} \neq M_{\sigma^{\prime}}$.

Suppose to the contrary that g is an isomorphism from \mathfrak{M}_{σ} onto $\mathfrak{m}_{\sigma}^{\prime}$. In particular then, $g: \lambda \xrightarrow[\text { onto }]{\frac{1-1}{\longrightarrow}} \lambda$. It is then easy to see that the set $A=\left\{\alpha<\lambda: g: \alpha \frac{1-1}{\text { onto }} \alpha\right\}$ is closed unbounded in λ. By assumption, the set $B=\left\{\alpha \in S_{0}: \sigma\left|\alpha=\eta_{\alpha}, \sigma^{\prime}\right| \alpha=\nu_{\alpha}\right.$ and $\left.g \mid \alpha=g_{\alpha}\right\}$ is stationary in λ. Furthermore, by condition (2), the set $C=\left\{\alpha<\lambda: \delta_{\eta_{\alpha} \mid \beta}, \rho_{\eta_{\alpha} \mid \beta}, \delta_{\nu_{\alpha} \mid \beta}, \rho_{\nu_{\alpha} \mid \beta}<\alpha\right.$ for all $\left.\beta<\alpha\right\}$ is also closed unbounded in λ. Thus $A \cap B \cap C$ is not empty. Now, for $\alpha \in A \cap B \cap C$, by condition (5) $\left\langle f_{\eta_{\alpha}}\left(g\left(\alpha^{*}\right)\right)\right\rangle$ and $\left\langle f_{\eta_{\alpha}}\left(\alpha^{*}\right)\right\rangle$ realize contradictory types. Since these are respectively just the types of $g^{-1}\left(\alpha^{*}\right)$ in \Re_{σ} and α^{*} in $\Re_{\sigma^{\prime}}, g$ is not an isomorphism, contrary to our assumption.

Consider the set

$$
F=\left\{f_{\sigma \mid \delta}: \delta \text { is a limit of } C_{\alpha} \text { for some } \delta<\alpha<\lambda, \alpha \notin S_{0}\right\} .
$$

By definition of \Re_{σ}, F is a set of partial isomorphisms from \Re_{σ} to \mathfrak{M}. By conditions (3) and (4) and the properties of the Beller-Litman family, F is seen to have the Karp back-and-forth property corresponding to $L_{\infty \lambda}$, since λ is regular.
C. The construction can be carried out.

The proof is by induction on $\alpha<\lambda$. For $\alpha=0$ and η the empty sequence we may take $\delta_{\eta}=\rho_{\eta}=f_{\eta}=0$. For $\alpha=\beta+1$ and $\eta \in 2^{\alpha}$, we may disregard condition (3) and by a previous observation, since without loss of generality we may assume S_{0} contains only limit ordinals, we may also disregard (5). It is quite easy to satisfy conditions (1), (2), and (4). Simply let $\delta_{\eta}=\delta_{\eta \mid \beta}+1, \rho_{\eta}=\rho_{\eta \mid \beta}+1$ and $f_{\eta}=f_{\eta \mid \beta} \cup\left\{\left\langle\delta_{\eta \mid \beta}, \rho_{\eta \mid \beta}\right\rangle\right\}$. The above conditions will then hold by induction.

For α a limit ordinal we will consider two subcases separately, determined by whether or not C_{α} contains a last limit point. Before doing this we make the following subclaim.
Subclaim Without loss of generality we may assume that for every $\alpha \in S_{0}$, C_{α} has no last limit point.
Proof: First, we consider the case in which $\lambda=\aleph_{1}$. It is easy to see that without loss of generality we could have assumed that S_{0} contained only ordinals γ such that $\gamma>0$ and if $\xi<\gamma$, then $\xi+\omega<\gamma$. Now, if $\alpha \in S_{0}$, choose $\alpha_{n}<\alpha, n<\omega$ such that $\alpha_{n}+\omega<\alpha_{n+1}, \alpha_{n}$ is a limit ordinal, and $\alpha=\bigcup_{n<\omega} \alpha_{n}$. Now let $C_{\alpha}=$ $\left\{\alpha_{n}+k: n \in \omega, 1 \leqslant k \leqslant \omega\right\}$. Then $C_{\alpha} \cap S_{0}=0$ and C_{α} has no last limit point.

Now we consider the case in which $\lambda>\aleph_{1}$. First we consider the easy case in which S_{0} contains only ordinals of cofinality $\geqslant \aleph_{1}$. Now if γ were the last limit point of C_{α}, then since C_{α} is closed unbounded in α we would have $\gamma=\gamma_{0}<\gamma_{1}<, \ldots$, an ω-sequence of elements of C_{α}, viz., the successors of γ in
C_{α} increasing to α, and contradicting the assumption that α has cofinality $\geqslant \aleph_{1}$.
Next we consider the more general case.
Stage A : We define by induction on $n \in \omega$, for every increasing sequence v of length n of ordinals $<\lambda$, a closed, bounded subset C_{v} of λ with last element a limit such that

1. $C_{v l l}$ is an initial segment of C_{v}, for $l<n$
2. the last element of C_{v} is bigger than the last element of v (for $n>0$)
3. the set $S_{v}=\left\{\delta: \delta<\lambda, C_{v}\right.$ is an initial segment of $\left.C_{\delta}, c f(\delta)=\aleph_{1}\right\}$ is a stationary subset of λ.
The C_{v} 's may be defined as follows. First let $C_{\langle \rangle}=\phi$. Assume C_{v} is defined. For each $\alpha<\lambda$ and for every $\delta \epsilon S_{v}$, except for $<\lambda$ many, there is an initial segment $C_{v, \alpha, \delta}$ of C_{δ} with last element $\gamma(v, \alpha, \delta)$ a limit $>\alpha$, and bigger than the last element of C_{v}. By Fodor's Lemma there is some γ such that $\left\{\delta \in S_{v}: \gamma(v, \alpha, \delta)=\right.$ $\gamma\}$ is stationary. Now define $C_{v}^{\wedge}\langle\alpha\rangle=C_{\gamma}$.
Stage B: Now we redefine the C_{δ} 's to satisfy the requirements. We let

$$
\begin{aligned}
& C^{*}=\left\{\delta: \text { if } v \in \delta^{<\omega}, \text { then } C_{v} \subseteq \delta\right\} \\
& S_{0}^{*}=S_{0} \cap C^{*} \\
& C_{\delta}^{*}= \begin{cases}C_{\delta} & \text { if } \delta \notin S_{0}^{*} \text { or } c f(\delta) \geqslant \aleph_{1} \\
\bigcup_{n} C_{v \mid n} & \text { if } \delta \text { not as above, where } \\
v \in \delta, \text { increasing and unb }\end{cases}
\end{aligned}
$$

It is easy to check that the sets $S_{0}^{*}, C_{\delta}^{*}$, satisfy the requirements for S, C_{δ}.
We now may return to the limit case of the construction. We consider first the case in which C_{a} has a last limit point β. We may write $C-\beta$ as $\left\{\beta=\beta_{0}, \beta_{1}, \beta_{2}, \ldots\right\}$ with $\beta_{n}<\beta_{n+1}, n \in \omega$. By the subclaim we may assume $\alpha \notin S_{0}$ and so we need not be concerned with the "splitting" condition (5). Let $\delta=\bigcup_{n \in \omega} \delta_{\eta \mid \beta_{n}}, \rho=\bigcup_{n \in \omega} \rho_{\eta \mid \beta_{n}}$ and $\tau=\bigcup_{n \in \omega} \tau_{\eta \mid \beta_{n}}$. Then τ is an $L_{\infty \lambda}$-type realized in $⿰ \zh9 丿$. To see this we use the fact that for $n<m, \tau_{\beta_{n}} \rightarrow \exists \vec{x} \tau_{\bar{\beta}_{m}}(\vec{x})$, where \vec{x} is the sequence of variables $\left\langle x_{\xi}\right\rangle_{\delta_{n \mid \beta_{n}} \leqslant \xi<\delta_{\eta \mid \beta}}$, to construct a realizing sequence (recall that τ is equivalent to a formula in $L_{\mu \lambda}$ for some fixed μ sufficiently large). Then $\tau_{\eta \mid \beta} \vDash \exists \vec{x} \tau\left[f_{\eta \mid \beta}\left(\delta_{\eta \mid \beta}^{*}\right), \vec{x}\right]$, where \vec{x} is the sequence of variables $\left\langle x_{\xi}\right\rangle_{\delta_{\eta \mid \beta} \leqslant \xi<\delta}$. Now, select a sequence $a^{*}=\left\langle a_{\xi}\right\rangle_{\delta_{\eta \mid \beta} \leqslant \xi<\delta}$ of elements of \mathfrak{M} such that $\mathfrak{M} \vDash \tau\left[f_{\eta \mid \beta}\left(\delta_{\eta \mid \beta}^{*}\right)\right.$, a^{*}]. Now, define f_{η}^{\prime} so that f_{η}^{\prime} extends $f_{\eta \mid \beta}$ and so that $f_{\eta}^{\prime}(\xi)=a_{\xi}$ for $\delta_{\eta \mid \beta} \leqslant \xi<\delta$. Now, let ρ_{η} be large enough to contain range $f_{\eta}^{\prime} \cup \rho$. Next, choose δ_{η} so that $\overline{\overline{\delta_{\eta}-\delta}}=\overline{\overline{\rho_{\eta}-\left(\text { range } f_{\eta}^{\prime} \cup \rho\right)}}$. Finally extend f_{η}^{\prime} to f_{η} taking the elements of $\delta_{\eta}-\delta 1-1$ onto the elements of ρ_{η} - (range $f_{\eta}^{\prime} \cup \rho$) in any way whatsoever. This will satisfy conditions (1)-(4), by induction.

We now consider the case in which C_{α} has no last limit point. First, in view of condition (3) we may define a function f by $f=\cup\left\{f_{\eta \mid \beta}: \beta\right.$ is a limit point of $\left.C_{\alpha}\right\}$. Now, if $\alpha \notin S_{0}$ we may define $f_{\eta}=f$ and δ_{η} and ρ_{η} in the obvious way.

Finally let us suppose $\alpha \in S_{0}$ and condition (5) does apply, with all notation as in the condition. Let us also assume that $\left\langle f\left(g\left(\alpha^{*}\right)\right)\right\rangle$ and $\left\langle f_{\nu_{\alpha}}\left(\alpha^{*}\right)\right\rangle$ do realize the same type, where f_{ν} is defined (without having any difficulties) as
$\bigcup\left\{f_{\nu^{\prime} \beta}: \beta\right.$ is a limit point of $\left.C_{\alpha}\right\}$ ．If they realize different types then we can just let $f_{\eta_{\alpha}}=f$ ，etc．Now we must＂split＂．This is no problem since $\alpha \in S_{0}$ ． Simply choose a sequence $\left\langle a_{\xi}\right\rangle_{\xi<\alpha}$ of elements of $⿰ ⿰ \zh9 丶 刀 l$ such that for each $\beta<\alpha$ ， $\left\langle a_{\xi}\right\rangle_{\xi<\beta}$ realizes $\tau_{\eta \mid \beta}$ ，but $\left\langle a_{\xi}\right\rangle_{\xi<\alpha}$ and $\left\langle f\left(\alpha^{*}\right)\right\rangle$ realize contradictory types．Now， define $f^{\prime}: \alpha \rightarrow M$ by $f^{\prime}(\xi)=a_{g^{-1}(\xi)}$ ．Finally，let $f_{\eta_{\alpha}}$ extend f^{\prime} and be from some ordinal 1－1 onto another ordinal containing $\bigcup_{\beta<\alpha} \rho_{\eta_{\alpha} \beta}$ in its range．Then $f_{\eta_{\alpha}}$ ， along with the obvious choices for $\delta_{\eta_{\alpha}}$ and $\rho_{\eta_{\alpha}}$ will satisfy all conditions since $\alpha \in S_{0}$ and so condition（3）is vacuous．

NOTE

1．Remark added in proof：Now we know that the theorem is false for λ weakly compact；it is possible to get any number of models between 1 and λ^{+}．See［9］．

REFERENCES

［1］Beller，A．and A．Litman，＂A strengthening of Jensen＇s \square principles，＂The Journal of Symbolic Logic，vol．45，no． 2 （1980），pp．251－264．
［2］Chang，C．C．，＂Some remarks on the model theory of infinitary languages，＂pp．36－63 in：The Syntax and Semantics of Infinitary Languages，Lecture Notes in Mathematics， 72，ed．，J．Barwise，Springer， 1968.
［3］Hiller，H．L．and S．Shelah，＂Singular cohomology in L，＂Israel Journal of Mathematics， vol． 2 （1977），pp．313－319．
［4］Nadel，M．and J．Stavi，＂L L_{∞}－equivalence，isomorphism and potential isomorphism，＂ Transactions of the American Mathematical Society，vol． 236 （1978），pp．51－74．
［5］Palyutin，E．A．，＂Number of models in $\mathrm{L}_{\infty} \omega_{1}$ theories，II，＂pp．443－456 in Algebra I Logika，vol．16，no． 4 （1977）；English translation in Algebra and Logic，vol．16，no． 4 （1977），pp．299－309．
［6］Scott，D．，＂Logic with denumerably long formulas and finite strings of quantifiers，＂ pp．329－341 in The Theory of Models，North Holland， 1965.
［7］Shelah，S．，＂The consistency of $\operatorname{Ext}(\mathrm{G}, \mathrm{Z})=\mathrm{Q}$ ，＂Israel Journal of Mathematics，to appear in 1980.
［8］Shelah，S．，＂Various results in mathematical logic，＂Notices of the American Mathe－ matical Society，vol．25，no． 2 （1978），p．A－247．
［9］Shelah，S．，＂On the number of non－isomorphic models of power $\lambda \equiv_{\infty \lambda}$ to a model of power λ ，when λ is weakly compact，＂to appear in this Journal．

[^0]: *This research was partially supported by the NSF and by the United States Israel Binational Science Foundation grant 1110.

