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N-POLAR LOGIC OF CLASSES
LEON BIRNBAUM
1 Class calculus In the following we make reference to certain notions

without explaining them, but they have the usual meaning. Among these
notions are: set, element, belonging, nonbelonging, decomposition, validity,
etc.*

1.1 General definitions

D1.1: A set M, is a subset of the set M, if all elements of the set M, are
elements of M. If M, is a subset of the set M, then M is an extended set
(extension) of M,.

D1.2: We call bidisjunctive subsets of the set M two subsets M, and M,,
which have no common elements; that is to say, if an element belongs to the
subset M, this element does not belong to the subset A, while if an element
belongs to the subset M, that element does not belong to the subset M.

D1.3: We call n-disjunctive subsets of the set M the subsets M;, i =
1, 2, . .., n, in a way that these subsets should be bidisjunctive in pairs.

D1.4: If a set can be decomposed following a certain criterion (intensional
or extensional) into n n-disjunctive subsets, so that each element of the set
M should be at the same time an element of one of these subsets, then these
subsets are called classes. In order to differentiate between the classes
and the other subsets, we shall indicate the classes with a;,7 =1, 2, . . ., n.
The n classes will be listed arbitrarily and numbered a,, a,, . . ., ap.
Although the listing has been made arbitrarily, it will be maintained
throughout the calculation. The deduced formulas for sets and subsets will
be, of course, valuable for classes as well.

D1.5: If a set can be decomposed into # classes, we say that this set has
variance n, and the classes of this set are n-variant. If to each element of

*Concerning the notion of polarity, see L€on Birnbaum, “Algébre et logique tripolaire,”
Notre Dame Journal of Formal Logic, vol. XVII (1976), pp. 551-564.
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an n-variant class there is one sole element of each of the other -1
n-variant classes corresponding, then these classes are called n-polar.

1.2 Alphabet

a, b, c,..., a,a,... class variables (classes)
M,P,Q, ..., M, My, . .. sets (subsets)
€ symbol of belonging (binary predicate)
= symbol of equivalence (binary predicate)
K'i=1,2,...,n symbols of complementations
(unary functors)
Usji=1,2,...,n n-ary operants
() parentheses.

Observations:
1. Equivalence is a reflexive, symmetrical and transitive relationship.

2. In a set M of variance » each nm-variant subset has # - 1 com-
plementary subsets KyM,, ¢ = 1, 2, . . ., n. The subset M; and the other
n - 1 complementary subsets of this subset are #n-disjunctive subsets.
K,i,M,- is to be read ‘‘complement of order ¢ of the subset M; as compared to
the set M”’.

3. An n-ary operant Uj will be followed by » sets (subsets, classes)—
different or not—and in this case U;P,P, . . . P, will be called an operation.

1.3 Definitions and abbreviations

D1.6: Kndg =4 Gps, Gre M, k, t=1,2, ..., nand (@ are classes).

DL.7: Up{M} , =ay UM, M, . . . M, k=1,2,... n
or

Ul Mshsm =ap UM Mo - . . M, E=1,2,...n.

D1.8: Perm{M,}, , represents the set of permutations of the n elements Mg,
s=1,2,...,n.

D1.9: @{Ms}l,,, is any permutation of the set Perm {M,}, ,, that is to say

@{MS}M € Perm {Ms}ly,,.

D1.10: Uz{M,}, ,, pe N (set of natural numbers), p # n, (composed operation)
is an operation UZ of n operations UZ, which in their turn are operations of
n operations UZ, etc., to the complete exhaustion of the p sets M;. For
example:

UM} 2 = URWUHM} ) UM 20 -
e UM} 2o

En?<p<n?™ q=0,12,... thenthepsetsM; i=1,2,...,p,
will be completed to n?" through the repetition of n?*' - p sets. Which set
and how many times it is going to be repeated is established arbitrarily.
Examples:
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1. U3{ M} s = UR(URM, M, M) (URM, Ms Mj) (U3 My My Ms)
or

UM} s = UR(UL M, M, M) (U My My M) (U My My Ms), etc.
2. UMM} 5 = UL M, My My My My My M,

or

Ui{ M}, 5 = UL M, M, M, M, M, M, M, etc.

DL.11: Upo AEKuM, boim) =0y, R, E=1,2, .. ., m, Mye M.
J} are called n-variant class constants.
D1.12: UHKSM, fsm) =af M, Mye M, t=1,2, ..., n
D1.13: C{M},, =g WHE M}y, = M) Mie M,s=1,2,...,n
D1.14: Uil Psh,w =45 Ui Pshn ue Nyv=1,2, ... n
D1.15: K§KEM, =4 K4, MyeM,p,g=1,2, ... n
1.4 Tevms and formulas Each n-variant class variable, n-variant class
constant, or set, represents an n-variant (z-polar) term. If b is an
n-variant term, then Kyb, be M, i = 1, 2, . . ., n, are n-variant terms as
well.

If b;,4=1,2, ... n are nn-variant terms, then Uy{b.}, ,, k=1,
2, ..., n, are n-variant terms as well. If a and & are n-variant terms, then

ac b and a = b are formulas of the n-variant class calculus (of the n-polar
class logic).

In the following, particular cases are given for » = 2 and # = 3 for
certain formulas. For » = 2 we note that UM, M, = M, U M,, UM, M, =
M, N M, and J% = ¢.

1.5 System of axioms
Axl KyM, = M,, where M,c M

Ax2 KJUH{M} , = Us AK M} ), Where Moe M, g, j=1,2, ..., 7

Forn=2; qg=1: Ky(M, UDM,) = KyM, N KyM,
g=2: Ky(M, N M,) = KyM, U KyM,

Forn=3; j=1; ¢=1: KyUlM, M, M, = USKyM, KyM,KyM,
j =2 q=1: KyUIM, M: My = USKiGM, Ky MK M,
j=1,9=2: K;AUngMzMs = UgKIblM1KItIMzKIhM3
j=25 =2 KyU;M, M, My = UTKjM KyM,KyM,
j=1;9=3: KltiU§M1M2M3 = U?KltiMlKItiMzKllea
j=2; =3 KRUIM, M, M, = USKEM KYM,K5iM,.

P
Ax3 U{M} , = UpPerm{M,}, ,, where k=1,2, ..., n.

Forn=2;k=1. M,UM,=M,UM,
k=2: M{NM,=M,NM,.
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For n=3: UM, M, M, = U} M, M, M, k=1,2,3
UE M, M, My = Ui My M, M, k=1,2,3,

etc.

Ax4 UZ(UZ{Ms}l,n){Ms}nH,2n-1
n n
= Uk(Uk{Ms+i}s(l.n)) {Ms+i }s(n+1,2n—1)
where k=1,2,...,n,i=1,2, .. ,0 -1, My yp=M,, p=1,2,..., n
Forn=2, k=1 (M,UM,)UM,;= (M,UM,; UM,
k=2 (M,NM;) N My= (MyN Mj;)N M,.

i

UZ(UngMzMa) M, Ms = UE(U2M2M3M4)M5M1

Forn=3; i=1:
i=2: US(URM, M, M) My My = Ui (UM, M, Mg) M, M,

1

k=1, 2 3.
Ax5 U?+1{MS}1,71-1 U?{Pt}l,n = U?{U?—H{Ms}l,n—lpt}t(l,n) wherei=1,2, ... n

Forn=2,i=1: MN(P,UP,)=(MNP,)U (MN Py)
i=2: MU(P,NP)=(MUP)N(MUP,).

For n = 3; U},, M, M,(U} P, P, P,)
= U3(U3, M, M, P,)(U},, M, M, P,)(U},, M, M, P;) wherei=1, 2, 3.

1.6 Preliminary notions—the axioms of the calculus The sequence
o(n, i), n > i, is determined as follows:

o, i) =i-1,i-2,...,2, L,n,n-1,...,0+1,4
Example: o(7,4)=3,2,1,17,6,5, 4

Let a set of » natural numbers {vi}, i=1,2,... n,be given, so that
v; 21 and v; <n. The numbers v; can be different from each other or not.
Example: {v,}=1, 2, 4, 4, 4, 5, 6. Since the number of terms is 7, we shall
consider » = 7. Placing the numbers of v;, according to the order of the
sequence o(r, %), we obtain the sequence 7(,%). In the above example we can
state: 7(7,4)=2,1, 6, 5, 4, 4, 4.

We write 7, for the first term of the sequence 7(#,i). In our case
T, = 2.

AXC1l UR{J) Jsum =7,k =1,2,...,7

Example: We are to calculate the class constant equivalent to the expres-
sion: @ = Ug*J1* I I1%35°35°34°32°35° I 11311305

0(13,8) =1, 6, 5, 4, 3, 2, 1, 13, 12, 11, 10, 9, 8,

{vit=1,1,1,2,2,4,4,8, 9,10, 11, 11, 12.

7(13,8)=4,4,2,2,1, 1,1, 12, 11, 11, 10, 9, 8.

7, = 4. Consequently a = J}°.

Forn=2k=1: pUM=M.
k=2 DN M=9.

AxC2 If C {M}, ,, then U{ M}, = My, E=1,2,...,n
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Forn=2,k=1: If C M\ M,, then M, U M, = M,.
k=2 IfCc M\M,, then M, N M, = M,.

1.7 Certain theorems of class calculus

T1 K4 M, = KyM, M,e M, ue N, v =
Proof: (D1.15) Ki"'M, = Ky'KyM,
(D1.15) K§™'"M, = KgKy . . . KyKuyM,
N
untv v ¥ times
(AX].) KM M1= KMM1
T2 Apuiv= Ay a,e M, ue Nyv=1,2,...
Proof: (D1.6) apurv= Kiay
(D1.15) @pyiw= KiKi . . . KjKya
\M_/
(AXI) Apu+v= Qy u times
T3 Uz{as}up,n«rp: UZ{as}l,n peN,k=1,2,...
Proof: Follows from T2 and Ax3.
T4 Uz{asw’}sﬂ,n) = UZ{as}l,n k, i= L, 2, CEE
Proof: Follows from T3.
T5  KySk= by, q, k=
Proof: By replacing the sets with classes in D1.11:
(D1.11) K%3§= K it Uk {Ki @ s, m)
(Ax2) Kﬁ%;: UZ+q+1{KI?1+EIf{aL}s(1,ﬂ)
(D1.15) Kg‘las: Uk+q+1{K;\14 al}s(l,n)
(D1.6) KM3ﬁ= Uk+q+1{a1+ +s}s(l,n)
(T4) Kgisﬁ= U£+q+1{a1-§§l,n
(D1.6) Ka3k= Uk+q+1{KMal}s(1,rz)
(D1.11) K§3%= %,
T6 3:u+y= 32 ueN,v=1,2,...
Proof: (D1.11) Jpus0= Upuron{KuM Fsm
(D1.14) Jjurw= Upu {KuM s m)
(D1.11) Jjue0= J7
T7 =M.
Proof: Follows from D1.11 and D1.12.
T8 U MJpn = I k=

Proof: (T7) UrML-, = Updndia,
(axC1) UM, =

Forn=2k=1: MUM =M.
k=2 MNQ=0.

For n = 3, USMMM = M.

1,2 ...

1,2 ...

1,2, ...

369
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U MMSY3 = 33 or USMIIJS = 33
USMMSE = I3 or USMIEIS = 33

T9 UM} =M k=1,2,...,n
Proof: (T7) M3} = Ui 3,34
(AxC1) UjM3% =3,
(T7)  UpMSL=M
Forn=2,k=1: MUQP=M
=2 MNM=M
For n=3: USMMI® = Mor UIMI3J} =M
USMM3 = M or USMI3I3 =M
USMMM = M
TI0  U;Q;=9) pk=1,2,...,n
Proof: Follows from AxCl.
Til  U{Sh.=M
Proof: Follows from AxC1, taking into account D1.12.
T2 UiM=M B=1,2,...,n
Proof: Follows from T10, taking into account D1.12.
T13 Ut K AP sum = Uk KE KN 'Ptsmy  PseM,k, g, t=1,2,.. ., n
Proof: (T1) U%+1{szs}s(l,n) = UZH{K%MPtsgs(lm)
(T1) Uk+1{KgPs}s(l,n) = UZ+1{Kq+" Ps}s(l.ﬂ)
(D1.15) Ugn {K Psbsqrmy = Uk {KE" K Pt n)
T14 - {Ms}l,n =C {K'[zi-quH}s(l,n) Ms e M, Myyy=My, g, v=1,2,...,n
Proof: (D1.13) c{M}, , = UH{K} M},
(D1.7) C{Mh,» = UT(KY "M Ky PM, . KT,
K IMy Ky My, . . K3 My Ky M,y M)
(D1.15; Ax1; T1) € {M},, = UT(KE T (KR IM,) Ky 72 (K M)
e K (K M) K M Ky (K M)
e KK IM, ) KT (KM, ) K (K TOM,,))
(Ax3; Ax4) c {Msh,n = U?(K;fl-l(K:{_quH) K;-Z(K'ﬂ-qun)
- K (KA M) Ky (K M) Ky IM)
(D1.7) c }Ms%,n = U’IEK;{-S(K;';M,HS)}S(W
(D1.13) CiMsh,n=C KZ-quH s(1,n)
2 N-polar judgements
2.1 Definitions
D2.1:a¢3£.=d/.aeK',Q',k s k=1,2,...,n

that is to say, in @ # J} we understand that a belongs to the set M, but is not
equivalent to the class constant J;, which also belongs to the set M.
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D2.2: (k, ) {bsh,, =af Upn{ KE™""bsm k=1,2,. . ,m-1,4=1,2,...,n
Uk KR 05 s m # e

D2.3: (n, 1) {bsh,n =ay UH{KY ™" bsteun i=1,2,...,mn

D2.4: Jy, =4 (R, 0 {bsh,, Bt=1,2,...,n

Jpi(k, t = 1,2, . . ., n) are called n-polar judgements, where k is an

indicator of quality and ¢ an indicator of quantity. After the different values
taken by the indicators # and ¢, there will exist n® types (kinds) of n-polar
judgements. Each z-polar judgement is going to have n b5 terms.

2.2 Examples: For n = 2 there will exist 2° = 4 types of bipolar judge-
ments. Let P and @ be subsets of the set M, of variance 2. We note:
U2PQ=PUQ; UsPQ=PNQ, KyP=KP; I =¢.

The four types of bipolar judgement are going to be:

1.y, =(1,1)PQ=PNKQ. (PNKQ=#Q)
Particular negative judgement: Po@.

2. J1y2=(1,2)PQ=PﬂQ. (PNQ =)
Particular affirmative judgement: Pig@.

3.z, = (2,1)PQ = KPU Q.

Universal affirmative judgement: Pa@.

4. Jz. = (2,2) PQ = KPU KQ.

Universal negative judgement: Pe@.

For n = 3 there will exist 32 =9 types of judgements. Take P, @, R as
three subsets of the set M, of the variance 3. According to the definitions
D2.2, D2.3, and D2.4 there are:

1. J,,,= (1,1) PQR = U; PKyQKyR (USPKyQKER # J3)
2. J.,5 = (1,2) PQR = U PKiQKyR (U3 PKEQKNR + J3)
3.J,5=(1,3)PQR = U; PQR (U3 PQR # 3J))
4. J;,, = (2,1) PQR = U KyPKyQR (USKyPK QR # J3)
5. Jz,, = (2,2) PQR = USKyPQKHR (USK4PQKAR #+ I
6. Js,5 = (2,3) PQR = USKyPKyQKyR (UK yPKNQKNR # J3)
7. Js,, = (3,1) PQR = UIK§PQKyR

8. Js 2 = (3,2) PQR = UIKyPKyQR

9. Js5 = (3,3) PQR = UKiPK}QK{R

We consider in'J; , R = M, consequently J; , = UIKj§PKy@M. According
to AxC2 USKjPKyQM = M. Consequently, according to definition D1.13:
Js,2 = (3,2) PQR = C PQR. According to the same deduction we get:

N (n, n - 1) {Qs}l,n C= Q{Qs}l,n

2.3 Relationships among the diffevent types of judgements The rules of
immediate inference are as follows:
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R1 Contradiction rule:

Kidir = g s Rot,q=1,2,...,n
Proof: Follows from Ax2.
R2 Obversion rule:

(k’t) {Qs}l,n = (k’ l+ q){Kzi(s_l)Qs}s(l,n) k, t, q=1, 2, —
Proof: Follows from T13.
R3 (Simple) conversion rule:

o~

(k,n) {Qsh,n = (k,n) Perm {Q.},, k=1,2,...,n
Proof: Follows from Ax3.
R4 Subalternation rule:

g{Jq,Hq_l}q(l,,,) 7 - prime number, t =1, 2, . . ., n.
Proof:

(R4.1) (D1.13; R1) UHKE g sug-fgtm = Ul nigei g m)

(R4.2) (D2.3) g = U K,a((”‘f';’""fg)s}su,n)

(R4.3) (D1.15) 3 reg-r = UK K0 by )

(R4.4) We note K9, = c,, hence R4.3 becomes:

(R4.5) J.n,t+q-l = U?{K;i(prq— l)Cs}s(L,n)

Introducing this value into R4.1, we get:

(R4.6) UT{K'fsl-qu,Hq-L}q(l,n)_: UT{UYL‘{K;('H'I—DCs}s(l,n)}q(l,n)
R4.7) (Ax3; Ax4) UK Yy rigeitgm

= UHUY{K; # Ve }q(l,n) Youm
According to an arithmetical theorem we get:
(R4.8) (D1.12) UHK™T Ve Y = U{Kbicshom = M
Consequently:
(R4.9) UKy rgmitam = M

Now consider s # n, (n being a prime number). According to D1.13 R4 is
proved for s # n.

For s = n we get ¢, = Ky "%, (R4.4). In this case through the substitution of
this value in R4.8, we get:

(R4.10) UKy "B, ym) = M

Rule R4 is thus demonstrated, but only for the case when the polarity
(variance) of the sets is expressed by a prime number. We can deduce
that a subalternation relationship exists only among judgements of prime
polarity.

R5 (Total) contraposition rule:

(k’ 1){Qs}l,n = (k> 1) {Kzstz-q s(1,n) q= 1’ 2’ e R
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Proof: Follows from T14, by the substitution of ¢ with n - ¢.
R6 Technical rule 1
Yunsvt =du,1 ueN,v=1,2,...,n
Proof: Deducible from D1.15 and Ax1.
R Technical rule 2
N PN ueN,v=1,2,...,n

immediate inferences.

a. Immediate direct inferences:

Based on Rules R1-R5 we get for » = 2 (a prime) the following
We shall use the notation introduced in 2.2. The
formulas in parentheses are the basis of these inferences.

a.01 K(1,1)PQ = (2,1) PQ i.e., K(PoQ)=PagQ R1)
a.02 K(1,2)PQ = (2,2)PQ i.e., K(PiQ) = Pe@ R1)
a.03 K(2,1)PQ = (1,1)PQ i.e., K(Pa@)=PoQ R
a.04 K(2,2)PQ = (1,2) PQ i.e., K(Pe®)=PiQ (R1)
a.05 (1,1)PQ = (1,2)PKQ i.e., PoQ = PiK@ (R2)
a.06 (1,2)PQ = (1,1)PKQ i.e., PiQ = PoK@ (R2)
a.07 (2,1)PQ = (2,2) PKQ i.e., Pa@ = PeK@ (R2)
a.08 (2,2)PQ = (2,1)PKQ i.e., Pe@ =PakKQ R2)
a.09 (1,2)PQ = (1,2)QP ie., PiQ =QiP (R3)
a.10 (2,2)PQ = (2,2)QP i.e., PeQ =QeP (R3)
a.ll  (1,1)PQ C (2,2)PQ i.e.,, PoQ C PeQ (R4)
a.l2 (1,2)PQ c (2,1)PQ i.e.,, PiQ C Pag@ (R4)
a.l3  (2,1)PQ = (2,1)KQKP i.e., PaQ =KQaKP (R5)
a.14 (1,1)PQ = (1,1)KQKP i.e., PoQ =KQoKP (R5)
b. Immediate inferences deducible from direct inferences:

b.01 K(2,2)PQ c (2,1)PQ (a.04; a.12)
b.02 K(2,1)PQ C (2,2)PQ (a.03; a.11)
b.03 (1,1)PQ c K(1,2) PQ (a.11; a.02)
b.04 (1,2)PQ c K(1,1)PQ (a.12; a.01)

b.05 K(2,1)PQ C K(1,2)PQ
b.06 K(2,2)PQ C K(1,1)PQ

(a.03; a.02; a.11)
(a.04; a.01; a.12)

b.07 (1,2)PQ c (2,1)QP (a.09; a.12)
b.08 (1,1)PQ c (2,2)QP (a.11; a.10)
b.09 (1,1)PKQ c (2,1)PQ (a.06; a.12)
b.10  (1,2)PKQ C (2,2)PQ (2.05; a.11)
b1l (2,2)PQ = (2,1)QKP (2.10; 2.08)
b.12  (1,2)PQ = (1,1)QKP (2.09; 2.06)

b.13  (1,1)PQ C (2,1)KQP
b.14 (1,2)PQ C (2,2)KQP

(a.06; a.09; a.12)
(a.05; a.11; a.10)

b.15 (1,2)PQ C (2,1)KQKP (a.12; a.13)
b.16 1,1)PQ c (2,2)KQKP (a.14; a.11)
b.17 (2,1)PQ = (2,2)KQP (a.07; a.10)
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b.18
b.19
b.20
b.21
b.22
b.23
b.24

LEON

(1,1)PQ = (1,2)KQP
(1,1)PQ c (2,1)QKP
(1,2)PQ C (2,2)QKP
(1,2)PQ C (2,1)KPKQ
(1,1)PQ C (2,2)KPKQ
(1,1)PQ c (2, )KPQ
(1,2)PQ c (2,2)KPQ

BIRNBAUM

The notation A ¢ B was used instead of C AB.

(a.11;
(a.09;
(a.09;
(a.14;
(a.05; a.09;

(a.05;

a.10;
a.12;
a.12;
a.ll;
a.12;

a.09)
a.08)
a.07)
a.13)
a.10)
a.13)

(a.09; a.06; a.11; a.10)

c. The immediate inferences for n = 3 are given below:

Ky(1,1) PQR = (2,1) PQR
Ku(l,2) PQR = (2,2) PQR

c.01
c.03
c.05
c.07
c.09
c.11
c.13
c.15
c.17

c.37
c.39
c.41
c.43
c.45

Ku(1,3)PQR
Ku(2,1) PQR
Ku(2, 2) PQR
Ku(2,3)PQR
Ku(3, 1) PQR
Ku(3,2)PQR
Ky (3, 3) PQR

o006 60

Cc
Cc
C
C
C
C
Cc
Cc
Cc
Cc
Cc
C
c

c.417
c.48
c.49

{1 | T I (A

(2,3)PQR
(3,1)PQR
(3,2) PQR
(3,3)PQR
(1,1)PQR
(1,2) PQR

= (1,3) PQR

.19
.20
.21
.22
.23
.24
.25
.26
.27
.28
.29
.30
31
.32
.33
.34
.35
.36

(1, 1) PQR
(1, 1) PQR
(1, 2) PQR
(1,2)PQR
(1,3)PQR
(1,3) PQR
(2,1)PQR
(2, 1) PQR
(2, 2) PQR
(2, 2) PQR
(2,3)PQR
(2, 3) PQR
(3, 1) PQR
3,1)PQR
(3, 2) PQR
(3, 2) PQR
(3,3)PQR
(3, 3) PQR

(1,3)PQR = (1,3)PRQ
(1,3)PQR = (1,3)QPR
(1,3)PQR = (1,3)QRP
(1,3)PQR = (1,3)RPQ
(1,3)PQR = (1,3)RQP

c{(1,1)PQR
c{1,2)PQR
c{(t,3)PQR

c.02 Ki(1,1)PQR = (3,1)PQR
c.04 Kj(1,2)PQR = (3,2)PQR
c.06 Ki(1,3)PQR = (3,3)PQR
c.08 Ki(2,1)PQR = (1,1)PQR
.10 Ky(2,2)PQR = (1,2)PQR
c.12 K§(2,3)PQR = (1,3)PQR
c.14 Kj(3,1)PQR = (2,1)PQR
c.16 Ki(3,2)PQR = (2,2)PQR
c.18 Kj(3,3)PQR = (2,3)PQR

(1,2) PKyQ@KyR

(1,3) PKiQKuR

1,3) PKyQKER
1,1) PKEQKnR
1,1) PKyQKgR
1,2) PKiQKuR
2, 2) PKyQKpR
2, 3) PKiQKyR
(2,3) PKyQKuR
(2, 1) PKAQKMR
(2, 1) PKyQK@gR
(2, 2) PK4QKWR
(3, 2) PKyQKgR
(3,3) PKyQKyR
(3, 3) PKyQKxR
(3, 1) PKiQK\MR
(3, 1) PKyQKuR
(3, 2) PKi@QKyR

c.38

(
(
(
(
(
(

L | | | | T | | | | { | A | N | O | N

c.40
c.42
c.44
c.46

(2,3)PQR = (2,3)PRQ
(2,3)PQR = (2,3)QPR
(2,3)PQR = (2,3)QRP
(2,3)PQR = (2,3)RPQ
(2,3)PQR = (2,3)RQP

2,2)PQR (3,3)PQR}
(2,3)PQR (3,1)PQR}
(2,1)PQR (3,2)PQR }
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.50 (1,1)PQR = (1, 1) KyRKyPKy@
51 (1,1)PQR = (1, 1) KyQKARKEP
52 (2,1)PQR = (2, 1) KyRKyPKy®Q
53 (2,1)PQR = (2,1) KyQKZRKLP
54 (3, 1) PQR = (3,1) KyR KyPKy@Q
.55 (3,1)PQR = (3,1) KRQKARKELP

o 0006000

With the aid of the above direct immediate inferences the composed
immediate inferences of the tripolar judgements can be formed.

3 N-polar syllogistics

3.1 Preliminary notions An n-polar syllogism is formed out of
n n-polar judgements—presumptions—from which, according to certain
laws, a new m-polar judgement—the conclusion—is deducible. We remind
the reader that each n-polar judgement has n terms. Each term of the
conclusion will be a term of at least one of the suppositions. The terms of
the suppositions, which are also terms of the conclusion, are called
principal tevms of the presumptions. The terms of the presumptions, which
are not principal terms, are called middle terms. Each presumption will
contain for n = 2 a single middle term, while for n > 2, there will exist
(n - 1)/2 or (n+ 1)/2 different middle terms. Each middle term will be a
term of at least two succesive presumptions. Between each two principal
terms of a presumption we can interpose a maximum of (z - 1)/2 different
middle terms. Between two middle terms of a presumption there can be a
maximum of (# - 1)/2 principal terms. The total number of principal terms
of the presumptions of a syllogism will be #, while the total number of
presumptions of a syllogism of n-polar kind will be # - 1. Each principal
term, except the first and the last (of the conclusion), will be at the same
time a term of at least two succesive presumptions. The first principal
term (of the conclusion) will be the first principal term of the last
presumption; while the last principal term (of the conclusion) will be the
last principal term of the first presumption. If we number the principal
terms of a syllogism in the order in which they are to be found in the con-
clusion, then in each presumption the principal terms will appear in as-
cending order of their indices.

According to the placement of the middle terms of the » presumptions
of an n-polar syllogism, the syllogisms can be classified in syllogistical
figures. Out of the set of syllogistical figures we shall detach one—the fun-
damental syllogistical figure—in which, in each presumption, between two
principal terms following one another there will be a middle term, while
between two middle terms following one another there will be a principal
term. The first presumption has as its last term the last principal term,
while the last presumption has as its first term the first principal term.

Examples of fundamental syllogistical figures:
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n=2 n=3 n=>5
(ky, t))mPy (Ry,t,) Py, Py (ki t)) Pymig Pymg Ps
(ky, ;) Pyim (Ry, ty)m, Pym, (Royt) myPyms Pymy
(Ro,20) P, P, (Bs,t3) P ym Py (k3, 13) Pymiy Py Py
(ko to) P, Py Py (Ryy ty)m, Pym, Pymg

(ksyt5) Py, Pymy Py
(ko, to) P\ P, Py Py Py

In these examples the principal terms are P;, ¢ =1, 2, ..., n, while the
middle terms arem;,j=1,2,...,n-1.

A more concentrated notation for syllogisms, which will be used in
this paper, is the following:

Uz{"ks,ts}s(l,n) = Jko»fo ’

where Jp,:, S=1, 2, ... n, are the presumptions, and Ji,,, is the
conclusion. The symbol => indicates ‘“from . . . results . . .”’. Thus,
a=>b is read: from a results b.

3.2 Formation vules for valid n-polar syllogisms

Rgl Each syllogism (n-polar syllogism) will contain as presumptions #n - 1
judgements J, ;, of which a maximum of one will have ¢ # n - 1.

Rg2 One of the judgements (not exhausted in Rgl, there being # judge-
ments) can be:

a. J,prpyt2n-1,p=1,2,..., n-1, if the other » - 1 judgements
are of type J,, ,-1.

b. J,,_p,,,_,,_l, p=1,2,..., n-1,if one of the other n - 1 judgements is
of type J,,: and t #n - 1.

3.3 About the type of the conclusion judgement The axioms of n-polar
syllogistic are:

AxS1 UZ{Jks,ts}s(l,n) éJlirk2+...+Ie,,,t1+12+...+t,,-1
AxS2 U:{Jn,ls}s(l,n) g"nﬂ,tﬁlﬁ---ﬂn

Remark: If from the same presumptions different conclusions are deduced
according to these two axioms, both syllogisms are valid.

From the above statement we can conclude: The type of the conclusion
judgement does not depend on the syllogistical figure; it depends only on the
types of the presumption judgements.

In the case of the judgements of type J,., according to rule R3 of
(simple) conversion on judgements, there will exist n! cases when the type
of the conclusion judgement will be deducible according to AxS1, and n!
cases when the type of the conclusion judgement will be deducible according
to AxS2. Consequently we can state that the minimal number of n-polar
syllogistical figures is 2n!.
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3.4 Valid bipolar syllogisms
A. Deducible according to AxS1

Z(Jz 1d20) =2y Barbara
(J2 2Jz, 1) =>Jz 2 Celarent, Cesare
u (J“ 12)=>J1 2 Darii, Datisi
2(J2 24, 2)@J1 . Ferio, Ferison, Fresison, Festino
Z(Jz 1 2 z) = s, Camestres, Camenes
2("2 1 1, 1) $J1 1 Baroco
2(J1 2d21) =J1 2 Disamis, Dimaris
z(J1 1J2 1)=>J1 | Bocardo
B. Deducible according to AXS?2
Us(Jg,1d2,0) =0, Barbari, Darapti, Bramantip
2(J2 2J2 l)=>J1 N Celaront, Cesaro, Felapton, Fesapo
U (Jg 1J2 2) =>J1 L Camestrop, Camenop
3.5 Skelches of valid bipolar syllogisms As mentioned above, there will

be at least 2.3! = 12 tripolar syllogistical figures. We shall analyze neither
the forms of the syllogistical figures nor how many and which of the
tripolar syllogisms belong to each of these syllogistical figures.

We present below sketches of the tripolar syllogisms, out of which the
tripolar syllogisms can be obtained by permutation of the types of the
presumptions. The sketches of the syllogisms below have been made
according to the rules of formation for the valid syllogisms; the type of the
conclusion judgement has been deduced according to the axioms of the
syllogism; and each of the syllogisms belongs to at least one of the
syllogistical figures. The sketches of the tripolar syllogisms are the
following;

A. Deducible according to AxS1:

Skl U (J3 stz 32)=>J32
Sk2 U (J3 2J3 sz 1)©J2 1
Sk3 (Jg 2J3 2J1 3)©J13
Sk4 U (J32J32J3 3)%‘J33
Sk5  U3(Js 2J32J2 2)$J22
Sk6 U3 (J3 st 2J1 1)$J1 1
Sk7 3(J3 2J3 zJa 1)=>J3 1
Sk8 3(\’3 2J3 2J2 3) #Jz 33
Sk9 U3 (Js 2J3 2J1 2)=\"J12
Sk1i0 U (J3 2J3 3J2 1)%"2 2
Sk1l U3(J, 293 3Jl 3)f»Jl 1
Sk12 U3 (Ja 2\'3 1J2 V) $J2 3
Sk13 U3(J, 2J3 1y, ) =J,, ,2

B. Deducible according to AxS2:
Sk14 U3(J3,2d5,5d5,0) = Jss
Sk15 Ug(J3,2J3,2J3,3)@J2,1
Sk16 U3(Js,2ds,2d5,)) = Jo
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4 Variance of sets

4.1 About the subvarviances of the sets As defined in D1.5, the char-
acteristic of a set to permit its discomposition into several classes is
called variance of this set. The classes of an n-variance set are n-variant
classes. A set of variance » can have any number of subvariances. For
example, let a set of variance 3, be denoted M?, its classes are a, a3, and
a3. The superior index shows the variance of the set, the classes of which

are @}, @}, and aj. The set M® has subvariance 2 with its classes a’ = U%3a;

and a; = a3; or a® = U%%a3 and @ = a; or @® = U%ad and a = a3. The set M*
can be discomposed into two bivariant classes in three ways.

A set of the variance 7, M’, which has classesa},i=1, 2, ..., 7, has:

1. subvariance 2 (in 105 ways) with bivariant classes of the following
form:

ai = Ui(Ujaia;) (Ulaza, a3 = Ulas(Ulagay).

2. subvariance 3 (in 70 ways) with trivariant classes of the following
form:

a® = Uldlala; a3 = UVla,alal a = a..

3. subvariance 4 (in 35 ways) with 4-variant classes of the following
form:

a: = Uldlayaya, ai = a; a; = ag a; = ai.

The number of subvariances of a set with variance »n is equal to the
number of the divisors of n - 1 smaller than n - 1. If p,, p,, . . ., pp are
these divisors, the subvariances will be #; =1 + p;, where j=1, 2, .. ., k.
A set M of variance 13 will have 5 subvariances, since the divisors of
13 - 1 =12, smaller than 12, are p, = 1; p, = 2; p; = 3; p, = 4; ps = 6, and the
set M will have subvariances 2, 3, 4, 5, and 7. Since each whole number
has the divisor 1, each set of any variance will have the subvariance 2.

4.2 About the complements of a subset Given the sequence of inclusions
c {Ms},,,, we shall consider each M; as a class of M;,,. If M, has variance
q, then M,_, will have ¢ - 1 complements with respect to M. If M, is a
set of variance m, then M, will have m - 1 complements with respect to
M,,,. The number of the complements of the set M,_, with respect to M,,,
is established according to the following sentence:

“The varviance and subvaviance of My,, with vespect to My_, will be
equal with the common subvariances (or common vaviances) of My,
and My.”

E.g., taking M, as a set of variance 5, and M,,, as a set of variance 7, the
subvariances and variance of M, are ¥ = 2, 3, 5, and the subvariances and
variance of M,,, are v = 2, 3, 4, 7. The common subvariances are 7 = 2 and
7= 3. The set M,_, will have one (when 7 = 2) or two (when 7 = 3) comple-
ments with respect to M,,,. If M,,, has classes b;, i=1, 2, ..., 7, while
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one of these classes, b], has classes a}, j=1, 2, ..., 5, then considering
M,_, = &, the complement of M,_, with respect to M., will be in the case of
the common variance 7 = 2:

Kipa, Me-r = UT(UT(UTa3a3) (Ulaias) US((UTh05) UT(UTDbZ) (UTheh7))).

The complements of M., with respect to M., in the case of the subvariance
v = 3 will be of the form:

Kty Me-1 = U(Ulazazas) (U1b36305).
Kitgy Me-1 = U3a5(UiDsbeh7).
There exist a great number of ways of expressing these complements.
4.3 About the univariant class The univariant classes of a set are those
classes which have no complements with respect to the extended set of this

class nor with respect to the extended sets of this extended set. In other
terms:

All the extended sets of this class are equivalent to each other, and each of
these sets is equivalent with the given class.

An example of a univariant class is the set of all sets. On a set of
variance 1 are defined a single operant U, and a single symbol of
complementarity K'. Let M be a univariant class, that is to say n = 1.
According to AxC2 (1.5) we have:

UIM = M.
According to Ax1 we have:
KyM = M.

That is to say: The complement of a univariant set (particular case: the
set of all sets) as compared to itself is just this univariant set (the set of
all sets).

Ecole professionale
Dej, Roumanie





