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iV-POLAR LOGIC OF CLASSES

LEON BIRNBAUM

1 Class calculus In the following we make reference to certain notions
without explaining them, but they have the usual meaning. Among these
notions are: set, element, belonging, nonbelonging, decomposition, validity,
etc.*

1.1| General definitions

D l . l : A set Mι is a subset of the set M, if all elements of the set Mι are
elements of M. If Mγ is a subset of the set M, then M is an extended set
(extension) of ML.

D1.2: We call bidisjunctive subsets of the set M two subsets Mι and M2,
which have no common elements; that is to say, if an element belongs to the
subset M1 this element does not belong to the subset M2, while if an element
belongs to the subset M2 that element does not belong to the subset Mγ.

D1.3: We call n-disjunctiυe subsets of the set M the subsets Mz , i =
1, 2, . . ., n, in a way that these subsets should be bidisjunctive in pairs.

D1.4: If a set can be decomposed following a certain criterion (intensional
or extensional) into n ^-disjunctive subsets, so that each element of the set
M should be at the same time an element of one of these subsets, then these
subsets are called classes. In order to differentiate between the classes
and the other subsets, we shall indicate the classes with «, , i = 1, 2, . . ., n.
The n classes will be listed arbitrarily and numbered al9 a2, . . ., an.
Although the listing has been made arbitrarily, it will be maintained
throughout the calculation. The deduced formulas for sets and subsets will
be, of course, valuable for classes as well.

D1.5: If a set can be decomposed into n classes, we say that this set has
variance n, and the classes of this set are n-variant. If to each element of

*Concerning the notion of polarity, see Leon Birnbaum, "Algebre et logique tripolaire,"
Notre Dame Journal of Formal Logic, vol. XVII (1976), pp. 551-564.
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an ^-variant class there is one sole element of each of the other n-1

n-variant classes corresponding, then these classes are called n-polar.

1.2 Alphabet

a, b, c, . . ., ai, a2, . . . class variables (classes)

M, P, Q, . . ., Mίf M2, sets (subsets)

e symbol of belonging (binary predicate)

symbol of equivalence (binary predicate)

K* z = 1, 2, . . ., n symbols of complementations

(unary functors)

Ui z = 1, 2, . . ., w rc-ary operants

(, ) parentheses.

Observations:

1. Equivalence is a reflexive, symmetrical and transitive relationship.

2. In a set M of variance n each ^-variant subset has n - 1 com-

plementary subsets K^Mj, t = 1, 2, . . ., n. The subset M̂  and the other

n - 1 complementary subsets of this subset are ^-disjunctive subsets.

KM Mi is to be read "complement of order t of the subset M, as compared to

the set M".

3. An w-ary operant Û  will be followed by n sets (subsets, classes) —

different or not—and in this case Ό%PιP2 Pn

 w ϋ l be called an operation.

1.3 Definitions and abbreviations

D1.6: KM«& = /̂ «£+/, αjfee M, fe, ί = 1, 2, . . ., w and (ak are classes).

D1.7: U^{MS}1>W =df Όn

kMιM2 . . . Mn k = 1, 2, . . ., «.

or

U^{M5}s(l(W) = r f / U^M,M2 . . . Mn, k = 1, 2, . . ., n.

D1.8: Perm{Ms}1/W represents the set of permutations of the n elements Msy

s = 1, 2, . . ., w.

D1.9: Perm{Ms}1#n is any permutation of the set Perm {Ms}ι>n, that is to say

^em^{M5}1(We Perm {Ms}1>n.

D1.10: U^{M S } 1 ( ^, pe N (set of natural numbers), p Φ n, (composed operation)

is an operation U^ of n operations Un

k, which in their turn are operations of

n operations Un

k, etc., to the complete exhaustion of the p sets Ms. For

example:

Uj{Ms}lfll2 = Ul(UΪ{M s} l f l l)(u;{M s}Λ + l i 2 Λ) . . .

. K{Ms}^n+ltnη,

Ίi nq < p < nq+i, q = 0, 1, 2, . . ., then the p sets Λff i = 1, 2, . . ., />,

will be completed to wί+1 through the repetition of nq+1 - p sets. Which set

and how many times it is going to be repeated is established arbitrarily.

Examples:
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1. Uj{M s} l i 5 = U^(UlM1M27kΓ3)(UlM4M5M5)(U3

3M5M5M5)

or

Vk{Ms}i.s = U |(U|M 1 M 2 M 3 )(U|M 2 M3M 4 )(U|M 3 M 4 M 5 ) , etc.

2. Ufe{M s} 1 ( 3 = Ό7

k ML M2 M2 M2 M3 M3 M3

o r

Uί{Ms} l f3 = {J7

kMιMιMLMiMιM2M3, etc.

Dl.ll: uLiί^^}s(M) = Λ fc, *= 1, 2, . . ., n, M, e M.

3β are called n-variant class constants.

D1.12: u K ^ i s ( i , » ) =rf/ M, Mt e M, t= 1, 2, . . ., ft.

D1.13: c{Ms}un =df (U?{/CX} s(i f») = M) Mse M, s = 1, 2, . . ., ft

D1.14: Uκ

n

tt+,{Ps}i)W =rf/ U*{Ps}liW ue N, υ = 1, 2, . . ., n.

D1.15: K^K^M, =rf/ K^M, M l C M, p, ̂  = 1, 2, . . ., w.

1.4 Terms and formulas Each ^-variant class variable, n-variant class

constant, or set, represents an ^-variant (w-polar) term. If b is an

^-variant term, then K^b, beM, i - 1, 2, . . ., n, are ^-variant terms as

well.

If bi, i - 1, 2, . . ., n, are ftft-variant terms, then U^{δs} ln, fe = 1,

2, . . ., ft, are ft-variant terms as well. If a and 6 are ft-variant terms, then

ae b and a - b are formulas of the ft-variant class calculus (of the ft-polar

class logic).

In the following, particular cases are given for n = 2 and ft = 3 for

certain formulas. For n - 2 we note that \}\MιM2 - Mι U M2, U2M1M2 =

Mv Π M2 and 3? = p .

1.5 System of axioms

Axl K^Mi = Mi, where M x e M

Ax2 K^U^{MS}1(W = UV{K^M s} s ( 1 > / 2), where Ms e M, q, j = 1, 2, . . ., n

For ft = 2; q = 1: K j U ^ U M2) = K ^ Π KMM 2

q = 2: KM(ML (ΊM2) = K M M L U KMM 2

F o r ft = 3; j = 1; ? = 1: K^U?M 1 M 2 M 3 = UgKiiM,. K M M 2 K ^ M 3

j = 2; g = 1: K M U 3

X M 1 M 2 M 3 = U . K M M ^ M M . K ^ M ,

j = 1; g = 2: K\A\S\MιM2M3 = ϋ l K ^ M ^ ^ K ^ M ,

= 2; <? = 2: K^U 2

3 M 1 M 2 M 3 = U?K^M1K
2

MM2K^M3

j = 1; tf = 3: K M U 3 M : M 2 M 3 = ujKiMxKMMgKjiiΛfa

j = 2; ̂  = 3: K 2

M U 3 M L M 2 M 3 = U ^ K ^ M . K ^ K ^ M , .

Ax3 U.J{Ms} l fβ = UΪPerm{M s} l f Λ, where fe= 1, 2, . . ., ft.

F o r n=2; k= 1: Mv U M 2 = M2 U M L

^ = 2: MJL Π M 2 = M 2 Π M L .



368 LEON BIRNBAUM

Forn = 3: U3

kMιM2M3 = Ό3

kM2MιM3 £ = 1 , 2 , 3

Ό3

kMιM2M3 = Ό3

kM3MιM2 k = 1, 2, 3,

etc.

Ax4 Un

k(Un

k{Ms}Ltn){Ms}n+lt2n^
= Ul(Un

k{Ms+i}s{lιn)) {Ms+i}s(n+ι>2n.ύ

where k = 1, 2, . . ., n, i = 1, 2, . . ., n - 1, M2w_1+/7 = Mp, p = 1, 2, . . ., w.

For w = 2; A? = 1: (Mi U M2) U M3 = (M2 U M3) U ML

k = 2: (Mx Π M2) Π M 3 = (M2 Π M3) Π Λf̂

For w = 3; i = 1: u | (U|MX M2 M3) M4 M5 - U | (U|M 2 M 3 M 4 )M 5 M 1

* = 2: uI(UlM 1 M 2 M 3 )M 4 M 5 = Ui(u |M 3 M 4 M 5 )M 1 M 2 ,

fe = 1, 2, 3.

Ax5 U ^ j M s K ^ i U ίΛK,,, = U ^ u L ί M s } , ^ . ^ , } ^ ^ ) where i = 1, 2, . . ., n.

For w = 2; z = 1: I Π (Pι U P 2) = (M Π PA) U (M Π P 2)
z = 2: I U (P L Π P 2) = (M U PL) Π ( I U P 2 ) .

For n = 3; u L ^ i ^ ί U ? Λ - P 2 - P 3 )
= U ? ( U ? + 1 M 1 M 2 P L ) ( U ? + 1 M L M 2 P 2 ) ( u L ^ i M 2 P 3 ) where z = 1, 2, 3.

1.6 Preliminary notions—the axioms of the calculus The sequence

σ(n, i), n> i, is determined as follows:

σ(n, i) = i - 1, i - 2, . . ., 2, 1, n, n - 1, . . ., i + 1, i

Example: σ(7, 4) = 3, 2, 1, 7, 6, 5, 4

Let a set of w natural numbers {v{}, i = 1, 2, . . ., n, be given, so that
Vi ^ 1 and î t <w. The numbers v{ can be different from each other or not.
Example: {v{}= 1, 2, 4, 4, 4, 5, 6. Since the number of terms is 7, we shall
consider n = 7. Placing the numbers of ι/, , according to the order of the
sequence σ(n,i), we obtain the sequence τ(n,i). In the above example we can
state: τ(7,4) = 2, 1, 6, 5, 4, 4, 4.

We write τι for the first term of the sequence τ(n,i). In our case
τ 1 = 2.

AxCl u M s } s ( l , w ) = 3?χ, * = 1, 2, . . ., w

Example: We are to calculate the class constant equivalent to the expres-
S l O n . a - U 8 Λ5X %*! %$! ^ 2 Λ5 2 \ 5 4 ^ 4 \ $ 8 \ $ 9 V 1 0 '%J i iO 1 1 'O 1 2.

σ(13,8) = 7, 6, 5, 4, 3, 2, 1, 13, 12, 11, 10, 9, 8,
{Vi}= 1, 1, 1, 2, 2, 4, 4, 8, 9, 10, 11, 11, 12.
τ(13,8) = 4, 4, 2, 2, 1, 1, 1, 12, 11, 11, 10, 9, 8.
Ti = 4. Consequently α = 3 4

3 .

For w = 2, ^ = 1: 0 U M = M .
fe = 2: pΠ M= p.

AxC2 // c {MS}1)W, ίΛew U,^MS}1 ) W = M ^ k = 1, 2, . . ., n
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For n = 2, k = 1: If Q MYM2, then ML U M2 = M2.

fc = 2: Tjf c M ^ g , ί/zew MlC\M2 = Mλ.

1.7 Certain theorems of class calculus

Tl K ^ M L = K\MV Mve M, ue N, v = 1, 2, . . ., n

Proof: (D1.15) K^+X = K^K^MX

(D1.15) K? + X = K W ^ M K M ^ I

(Axl) κΓX=KjiM/" e S

T2 anu+v= av ave M, ue N, v = 1, 2, . . ., n

Proof: (D1.6) anu+v= Knuav

(D1.15) α β l ί + ι ; = KJSKE . . . KJjKία

/ * * \ u times

(Axl) anu+v= av

T3 Ul{as}ι+p,π+P= Uliasl.n pe N, k = 1, 2, . . ., n

Proof: Follows from T2 and Ax3.

T4 U I K J Λ . ) = UJKK,. *. < = 1, 2, . . ., n

Proof: Follows from T3.

T5 K'S3ιΓ=3^+? ϊ , * = 1 , 2, . . . , «

Proof: By replacing the sets with classes in D l . l l :

(Di.ii) κS3ί=κjSuΓ+1{κSβ1}s(1(),) « i e M

(Ax2) K«3^= Uί^+iίKSKjϊαJ.α.,,)
(D1.15) KjS^U^ICfl.Ld,,)
(D1.6) Kj3j= U t+,+1{«1+i+s}s( l,β)

(T4) KS3Ϊ= U^+i{fli+s}i.«
(Di.6) κ232=uA + < + 1{κ3βi},( l.,)
(Di.ii) κ'3^3^,

T6 3»β+«/= 3* we ΛΓ, υ = 1, 2, . . ., n

Proof: (Dl.ll) 3B"a+,= C i ί W * , . ) M i e M

(D1.14) 3 5 ^ = U^JK^Mj^^^

(Dl.ll) 3n

B

B+,= 3?:

T7 3S= M.

Proof: Follows from Dl.ll and D1.12.

T8 0^M3L = 35U fe = 1, 2, . . ., w

Proof: (T7) U^M3L = U ^ 3 , %
(AxCl) D | M 3 t i = 3 ^

For « = 2, fe = 1: M U M = M.
fe = 2 : M r\<p = <p.

For w = 3, UiMMM = M.
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U|MM3? = 3 3 or U^M33

L3? = 3?
U3MM33, = 3g or UgMSaβg = 32

T 9 Όn

kM%n

k = M k = 1, 2, . . . , n

Proo/; (T7) U^M3* = 1^3%
(AxCl) Un

kM%l=3H
(T7) Un

kM%n

k = M

For n= 2, k = I: MU β = M
k = 2: i n i = I

For w = 3: U?MM3' = M or U 3M3 33 3 = M
UlMMSl - M or u|M3a32 = M
U\MMM = M

T10 OJ3; = 3^ p, k = 1, 2, . . ., K

Proof: Follows from AxCl.

Ti l u M l i H = M

Proof: Follows from AxCl, taking into account D1.12.

T12 ϋ"kM = M k = 1, 2, . . ., n

Proof: Follows from T10, taking into account D1.12.

T13 UΓ+ 1{K^PS}S ( 1,B ) = y}uΛ^qMtKl'tPs}s(ι,n) Pse M, k, q, t = 1, 2, . . ., n

Proof: (Tl) ϋn

k+i{K^Ps}s(l,n) = ϋn

k+ι{K%+nPs}s(ι,n)

(Tl) UΪMPsULn) = Ur+1{K«+"-'+'Ps}s(1,B)

(D1.15) Uί+1{K«Ps}s(li),) =Uί+1{Kjf'K5-'Pϊ}s(l,,)

T14 C {Ms}1()1 = C {κ;-χ + s } s ( ι , s ) Ms eM, Mn+v = Mυ,q, υ = 1, 2, . . ., n

Proof: (D1.13) c {Λfs}lf), = \J"{K^sMs}lin

(D1.7) C {Λίs}lfI, = UΓίK 'Λίx K^2M2 . . . K ^ M ^
K T'M, κ;-*-1Mf,1 . . . KlM^K^M^MJ

(D1.15; Axl; Tl) C { M 5 } U - U ^ C ^ C M j C - 2 ( K ; % )

• KJΛ(K^qMq.1)K"M-"MqK
n

M-ι(^-'lMίl+i)
• • • κΓ(κrΛ4-2)κΓ 1(κS"X.L)κ^(κs- ?MB))

(Ax3; Ax4) c {Ms}ι>n = WΛK^iK^M^) K^2(K^*M?+2)
. . . K^(K" ί l % ? . 2 )Ki(K s

M -χ. 1 )CM ί )
(D1.7) C {Ms\,n = UΐίKJϋ-'ίKjj;-^^)}^,,,)
(D1.13) c {MΛ,B = c {K^χ + S } s ( 1 , κ )

2 N-polar judgements

2.1 Definitions

D2.1: α * 3£ . = ( ί / . «e K B Λ , * = 1, 2, . . ., n

that is to say, in a Φ 3^ we understand that α belongs to the set M, but is not
equivalent to the class constant 3^, which also belongs to the set M.
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D2.2: (k, t) {bs\n =dj ^lA^MrSt'"lbs}s^.n) k = 1, 2, . . ., n - 1, t = 1, 2, . . ., n

D2.3: (n,t){bs\>n =df U^K*'"'" 1^}^) i = 1, 2, . . ., »

D2.4: J M =rf/ (M){&sL, k , t = 1 , 2 , . . . , n

^k,t(k> ί = 1, 2, . . ., n) are called n-polar judgements, where & is an

indicator of quality and ί an indicator of quantity. After the different values

taken by the indicators k and t, there will exist n2 types (kinds) of n-polar

judgements. Each n-polar judgement is going to have n bs terms.

2.2 Examples: For n = 2 there will exist 22 = 4 types of bipolar judge-

ments. Let P and Q be subsets of the set M, of variance 2. We note:

ϋ2

LPQ = PΌ Q; Ό2

2PQ = P Π Q; Kι

MP = K P; 3? = (Z\

The four types of bipolar judgement are going to be:

1. J M = (1,1)PQ = Pn KQ. (pa κ<? Φp)

Particular negative judgement: PoQ.

2. J 1 > 2 = (1,2)PQ = PΠQ. (PΠQφft)

Particular affirmative judgement: PiQ.

3. J 2 ? 1 = (2, 1)PQ = KPU Q.

Universal affirmative judgement: PaQ.

4. J 2 ? 2 = (2,2)PQ= KPU KQ.

Universal negative judgement: PeQ.

For n = 3 there will exist 32 = 9 types of judgements. Take P, Q, R as

three subsets of the set M, of the variance 3. According to the definitions

D2.2, D2.3, and D2.4 there are:

1. J 1 ? 1 = (1,1)PQR = UlPK^QK^R ({J3

2PKl

MQK2

MR ^ 3 ? )

2. J 1 ) 2 = (1,2)PQR = U3

2PKlQKl

MR (UlPK^QK^R * 3?)

3. J l j 3 = (1,3)PQΛ = Ό3

2PQR (U3

2PQR Φ 3?)

4. J 2 ' x = (2, 1)PQΛ = Ό3

3K
ι

MPK2

MQR (ϋl^PK^QR Φ 3J)

5. J 2 ) 2 = (2,2) PQR = Ό3

3K
ι

MPQKΪR ({J3

3K
ι

MPQK2

MR Φ 3 | )

6. J 2,3 = (2,3)PQΛ = U?Kj|IFKiQ,Kjl.JR (U^K^PK^QK^ ^ 3J)

7. J 3 ) 1 = (3, 1)PQR = ΌlK2

MPQKι

MR

8. J 3 , 2 = (3, 2)PQi? = UlK^PK^QR

9. J3,3 = (3?3)PQE = ulK2

MPK%QKiR

We consider in'J 3 2-β -M, consequently J 3 ? 2 = ΌIK^PK^QM. According

to AxC2 UIKMPKMQM ? = M. Consequently, according to definition D1.13:

J 3 ) 2 = (3, 2)PQR = cPQR. According to the same deduction we get:

J β i *-i= fan - l){Q s } l i β . = . c{Q s } l f β

2.3 Relationships among the different types of judgements The rules of

immediate inference are as follows:



372 LEON BIRNBAUM

Rl Contradiction rule:

KMJ<M = h+q.t k, t, q = 1, 2, . . ., n

Proof: Follows from Ax2.

R2 Obversion rule:

(k, t) {Qs\n =(k,t + q) { K f 'v)Qs}s{Un) k, t, q = 1, 2, . . . n

Proof: Follows from T13.

R3 (Simple) conversion rule:

(k,n){Qs}Un = (&,tt)Perm{Qs}1(W k = 1, 2, . . ., n

Proof: Follows from Ax3.

R4 Subalternation rule:

c{J ί f /+ί-i}?( l fW) n - prime number, t = 1, 2, . . ., n.

Proof:

(R4.1) (D1.13;R1) U ^ K ^ J , , ^ } ^ ) = U ^ J ^ ^ . J ^ ^ )

(R4.2) (D2.3) J ^ . , = ^{^t+q-lU-qbs}sU,n)
(R4.3) (D1.15) Λ , ^ = U ^ K ^ ' ^ Kn^bs}sM

(R4.4) We note \C^ι'qbs = cs, hence R4.3 becomes:

(R4.5) *n.^-l = VnAK5Mi+q'l)Cs}sU.n)

Introducing this value into R4.1, we get:

(R4.6) U Ή K Γ W I W ) = u!{u!{κf+^ι>cs}s(1,B)}?(IiB)

(R4.7) (Ax3; Ax4) ^1{Kn^ΛqMrι}q(ι,n)

- U U U I 1 N Λ I cs ϊq(ι,n) ίs(ί,n)

According to an arithmetical theorem we get:

(R4.8) (D1.12) UΪ{K1f
+ ?- ι )c s} ί ( l,n) = u : { K ^ s } f ( l , B ) = M

Consequently:

(R4.9) UΪ{κ;-%, ( + ? . 1 } ί ( l , n ) =M

Now consider s Φ ny (n being a prime number). According to D1.13 R4 is
proved for s Φ n.

For s = nwe get cn = K̂ " "qbn (R4.4). In this case through the substitution of
this value in R4.8, we get:

(R4.10) U?{KΓ"\W) =M

Rule R4 is thus demonstrated, but only for the case when the polarity
(variance) of the sets is expressed by a prime number. We can deduce
that a subalternation relationship exists only among judgements of prime
polarity.

R5 (Total) contraposition rule:

(*> 1) iQs\n = (k, 1) {K&QsΛ*-qUl.n) ? = 1, 2, . . ., W
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Proof: Follows from T14, by the substitution of q with n - q.

R6 Technical rule 1

^un-vv.t = <*v,t- ueN, v = 1, 2, . . ., n

Proof: Deducible from D1.15 and Axl.

R7 Technical rule 2

Ίk.un+v= *k,v ue N, v = 1, 2, . . ., n

Based on Rules R1-R5 we get for n = 2 (a prime) the following

immediate inferences. We shall use the notation introduced in 2.2. The

formulas in parentheses are the basis of these inferences.

a. Immediate direct inferences:

a.01 K(1,1)PQ = (2, 1)PQ i.e., K(PoQ) = P a Q (Rl)

a.02 K(1,2)PQ = (2,2)PQ i.e., K(PiQ) = PeQ (Rl)

a.03 K(2, 1)PQ = (1, l)PQ i.e., K(PaQ) = PoQ (Rl)

a.04 K(2, 2)PQ = (1,2) PQ i.e., K(Pe Q) = P i Q (Rl)

a.05 (1,1)PQ = (1,2)PKQ i.e., PoQ = P i KQ (R2)

a.06 (1,2)PQ = (1, 1)PKQ i.e., PiQ = Po KQ (R2)

a.07 (2, 1)PQ = (2,2)PKQ i.e., P a Q = Pe KQ (R2)

a.08 (2,2)PQ = (2, 1)PKQ i.e., PeQ = PaKQ (R2)

a.09 (1,2)PQ = (1,2)QP i . e . , P i Q = Q i P (R3)

a.10 (2,2)PQ = (2,2)QP i . e . , P e Q = Q e P (R3)

a.11 (1,1)PQ c (2,2)PQ i.e., PoQ c P e Q (R4)

a.12 (1,2) PQ c (2,1) PQ i . e . , P i Q c P a Q (R4)

a.13 (2, 1)PQ = (2, 1)KQKP i.e., P a Q = KQa KP (R5)

a.14 (1,1)PQ = (1,1)KQKP i.e., PoQ = KQ o KP (R5)

b. Immediate inferences deducible from direct inferences:

b.01 K(2,2)PQ c (2, ί)PQ (a.04; a.12)

b.02 K(2,1)PQ c (2, 2)PQ (a.03; a.11)

b.03 (1,1)PQ c K(1,2)PQ (a.11; a.02)

b.04 (1,2)PQ c K(1,1)PQ (a.12; a.01)

b.05 K(2, 1)PQ c K(1,2)PQ (a.03; a.02; a.11)

b.06 K(2,2)PQ c K(1,1)PQ (a.04; a.01; a.12)

b.07 (1, 2)PQ c (2, l)QP (a.09; a.12)

b.08 (1,1)PQ c (2, 2)QP (a.11; a.10)

b.09 (1, 1)PKQ c (2, 1)PQ (a.06; a.12)

b.10 (1,2)PKQ c (2,2)PQ (a.05; a.ll)

b.l l (2, 2)PQ = (2, DQKP (a.10; a.08)

b.12 (1,2)PQ = (1,1)QKP (a.09; a.06)

b.13 (1,1)PQ c (2, 1) KQP (a.06; a.09; a.12)

b.14 (1,2)PQ c (2,2)KQP (a.05; a.ll; a.10)

b.15 (1,2)PQ c (2, DKQKP (a.12; a.13)

b.16 (1,1)PQ c (2,2)KQKP (a.14; a.ll)

b.17 (2, ί)PQ = (2, 2) KQP (a.07; a.10)
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b.18 (1, 1)PQ = (1, 2) KQP (a.05; a.09)

b.19 (1, l)PQ c (2, 1)QKP (a.11; a.10; a.08)

b.20 (1,2)PQ c (2,2)QKP (a.09; a.12; a.07)

b.21 (1, 2)PQ c (2, 1) KPKQ (a.09; a.12; a.13)

b.22 (1, l)PQ c (2, 2) KPKQ (a.14; a.11; a.10)

b.23 (1, l)PQ c (2, 1)KPQ (a.05; a.09; a.12; a.13)

b.24 (1,2)PQ c (2,2)KPQ (a.09; a.06; a.11; a.10)

The notation A c B was used instead of c AB.

c. The immediate inferences for n = 3 are given below:

c.Ol Ki(l, 1) PQR = (2,1) PQR c.02 K^(l, 1)PQR = (3, 1)PQR

c.03 Ki(l,2)PQΛ = (2,2)PQR c.04 κ£(l, 2)PQ# = (3, 2)PQR

c.05 Kι

M(l,3)PQR = (2,3)PQR c.06 Kj5(l,3)PQΛ = (3,3)PQΛ

c.07 Ki(2, 1)PQΛ = (3, DPQ/2 C.08 K^(2, 1)PQR = (1, 1)PQΛ

c.09 Kι

M(2,2)PQR = (3, 2)PQR c.lO K^(2, 2)PQΛ = (1, 2)PQΛ

c.l l Ki,(2,3)PQΛ = (3,3)PQ,R c.12 K^(2,3)PQi? = (1,3)PQJR

c.13 Ki(3, 1)PQR = (1, 1)PQΛ c.14 K^(3, I)PQR = (2, 1)PQΛ

c.15 Ki(3, 2)PQi? = (1,2) PQR c.16 K^(3, 2)PQi? = (2, 2)PQi?

c.17 Ki(3,3)PQΛ = (1,3)PQR c.18 K^(3, 3)PQi? = (2, 3)PQR

c.19 (1, l)PQi? = (1, 2)PKι

MQK^R

c.20 (1,1)PQΛ = (l,3)PK5QKjiΛ

c.21 (1,2)PQΛ = (l,3)PKiQκ3Λ

c.22 (l,2)PQR = (l,l)PKiQK|iΛ

c.23 (1, 3)PQ# = (1, DPKiQK^Λ

c.24 (1,3)PQΛ = (1,2)PK^QKM

1

JR

c.25 (2, 1)PQΛ = (2, 2)PK^QK^

c.26 (2, 1)PQΛ = (2,3)PK^QKM

1

JR

c.27 (2,2)PQR = (2,3)PKJΛQK*R

c.28 (2, 2)Pζ)i? = (2, DPK^QK^R

c.29 (2,3)PQR = (2, l)PK^KM

2i?

c.30 (2,3)PQR = (2,2)PKάQKάR

c.31 (3, 1)PQΛ = (3, 2)PK^QKM

2i?

c.32 (3,1)PQΛ = (3,3)PK^QK^

c.33 (3,2)PQR = (3,3)PK^QK^R

c.34 (3, 2)PQR = (3,1)PKfaKάR
c.35 (3,3)PQi? = (3,1)PK^KM

2,R

c.36 (3,3)PQΛ = (3,2)PK^QKΛ1

1i?

c.37 (1,3)PQΛ = (1,3)PRQ c.38 (2, 3)PQR = (2, 3)PRQ

c.39 (1,3)PQΛ = (1,3)QPΛ c.40 (2, 3)PQR = (2,3)QPR

c.41 (1,3)PQΛ = (1,3)QRP c.42 (2, 3)PQR = (2, 3)Qi?P

c.43 (1,3)PQR = (l,3)RPQ c.44 (2, 3)PQi? = (2, 3)RPQ

c.45 (1,3)PQΛ = (l,3)RQP c.46 (2,3)PQi? = (2, 3)i?QP

c.47 c{(l, 1)PQΛ (2,2)PQR (3,3)PQRJ

c.48 c{(l,2)PQΛ (2,3)PQΛ (3,1)PQΛ}

c.49 Q {(1,3)PQR (2,1)PQR (3,2)PQR}
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c.50 (l,l)PQR = (UDK^RKJίPφ

c.51 (1, l)PQR = (1, l)κ£QK£Λ.K£P

c.52 (2, 1)PQR = (2, 1) K^RK^PK^Q

c.53 (2, 1)PQΛ = (2, 1) K J Q K ^ K J P

c.54 &,l)PQR = &,l)KJjίRKι

MPKι

MQ

c.55 (3,1)PQΛ = (3,1)KSQKSΛK^P

With the aid of the above direct immediate inferences the composed

immediate inferences of the tripolar judgements can be formed.

3 N-polar syllogistίcs

3.1 Preliminary notions An n-polar syllogism is formed out of

n n-polar judgements—presumptions—from which, according to certain

laws, a new ft-polar judgement—the conclusion—is deducible. We remind

the reader that each ft-polar judgement has n terms. Each term of the

conclusion will be a term of at least one of the suppositions. The terms of

the suppositions, which are also terms of the conclusion, are called

principal terms of the presumptions. The terms of the presumptions, which

are not principal terms, are called middle terms. Each presumption will

contain for n = 2 a single middle term, while for n > 2, there will exist

(n - l)/2 or (ft + l)/2 different middle terms. Each middle term will be a

term of at least two succesive presumptions. Between each two principal

terms of a presumption we can interpose a maximum of (ft - l)/2 different

middle terms. Between two middle terms of a presumption there can be a

maximum of (n - l)/2 principal terms. The total number of principal terms

of the presumptions of a syllogism will be ft, while the total number of

presumptions of a syllogism of ft-polar kind will be ft - 1. Each principal

term, except the first and the last (of the conclusion), will be at the same

time a term of at least two succesive presumptions. The first principal

term (of the conclusion) will be the first principal term of the last

presumption; while the last principal term (of the conclusion) will be the

last principal term of the first presumption. If we number the principal

terms of a syllogism in the order in which they are to be found in the con-

clusion, then in each presumption the principal terms will appear in as-

cending order of their indices.

According to the placement of the middle terms of the n presumptions

of an ft-polar syllogism, the syllogisms can be classified in syllogistical

figures. Out of the set of syllogistical figures we shall detach one—the fun-

damental syllogistical figure—in which, in each presumption, between two

principal terms following one another there will be a middle term, while

between two middle terms following one another there will be a principal

term. The first presumption has as its last term the last principal term,

while the last presumption has as its first term the first principal term.

Examples of fundamental syllogistical figures:
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n = 2 n = 3 n = 5

(kι,tι)mP2 {kutι)P2m2P3 (kι,tι)P3m3P^rn^P5

(k2,t2)Pιm {k2,t2)mιP2m2 (k2,t2)m2P3m3P^m4i

(ko,to)PιP2 (k3,t3)PιmιP2 (k3,t3)P2m2P3m3P4

(kQ,to)PiP2P3 {k^tA)mιP2m2P3m3

(k5,t5)PιmιP2m2P3

(ko,tQ)PιP2P3PAP5

In these examples the principal terms are P^ i = 1, 2, . . ., n, while the
middle terms are πij, j = 1, 2, . . ., n - 1.

A more concentrated notation for syllogisms, which will be used in
this paper, is the following:

UwiAs,/s}s(i,«) =^J'ko,to,

where Jι&s,ίs, s = 1, 2, . . ., n, are the presumptions, and Λ0,ί0 is the
conclusion. The symbol =#> indicates "from . . . results . . . " . Thus,
a => b is read: from a results b.

3.2 Formation rules for valid n-polar syllogisms

Rgl Each syllogism (n -polar syllogism) will contain as presumptions n - 1
judgements J,w>ί, of which a maximum of one will have t Φ n - 1.

Rg2 One of the judgements (not exhausted in Rgl, there being n judge-
ments) can be:

a. Jn_pj-p, t Φ n - 1, /> = 1, 2, . . ., n - 1, if the other n - 1 judgements
are of type J ^ ^ .

b. άn-Ptn-p-ι> /> = 1, 2, . . ., w - 1, if one of the other n - 1 judgements is
of type Jn,t and t Φ n - 1.

3.3 About the type of the conclusion judgement The axioms of n-polar
syllogistic are:

A x S l U*{ <iks, ts } s(i,«) = ^ Jk1+k2+.. .+kn, t1+t2+.. .+tn-ι

AxS2 U^{Jn#/s}s(ifW) =#> J«-i,f1+/2+...+/n

Remark: If from the same presumptions different conclusions are deduced
according to these two axioms, both syllogisms are valid.

From the above statement we can conclude: The type of the conclusion
judgement does not depend on the syllogistical figure it depends only on the
types of the presumption judgements.

In the case of the judgements of type JΛ | W, according to rule R3 of
(simple) conversion on judgements, there will exist n\ cases when the type
of the conclusion judgement will be deducible according to AxSl, and n\
cases when the type of the conclusion judgement will be deducible according
to AxS2. Consequently we can state that the minimal number of n-polar
syllogistical figures is 2n!.
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3.4 Valid bipolar syllogisms

A. Deducible according to AxSl

U2( J 2 ) i J 2 ) i ) = ^ J2,i Barbara

U2(J2>2^2,1) =^>^2,2 Celarent, Cesare

U2( J2,1^1,2) ==^>Ji,2 Dari i , Datisi

^2(^2,2 ^1,2)=^ Ji,i F e r i o , Fer i son, Fres i son, Festino

U 2 (J 2 , i ^2,2) ==^> ^2,2 C a m e s t r e s , Camenes

U 2 ( J 2 , i J i , i ) = ^ J i , i Baroco

U^Ji,2*^2,1) ==^>Ji,2 Disamis, Dimaris

Us( Ji,i J 2,i) = ^ Ji,i Bocardo

B. Deducible according to AxS2

U 2 ( J 2 > 1 J 2 j l ) =#> J 1 > 2 Barbar i , Darapti, Bramantip

U2(J2?2J2,i) => J i, i Celaront, Cesaro, Felapton, Fesapo

^2(^2,1 ^2,2) = ^ Ji, i Camestrop, Camenop

3.5 Sketches of valid bipolar syllogisms As mentioned above, there will

be at least 2.3! = 12 tripolar syllogistical figures. We shall analyze neither

the forms of the syllogistical figures nor how many and which of the

tripolar syllogisms belong to each of these syllogistical figures.

We present below sketches of the tripolar syllogisms, out of which the

tripolar syllogisms can be obtained by permutation of the types of the

presumptions. The sketches of the syllogisms below have been made

according to the rules of formation for the valid syllogisms; the type of the

conclusion judgement has been deduced according to the axioms of the

syllogism; and each of the syllogisms belongs to at least one of the

syllogistical figures. The sketches of the tripolar syllogisms are the

following;

A. Deducible according to AxSl:

Ski U
3

3
(J3,

2
J3,

2
J3,2)=^J3,

2

Sk2 U
3
( J

3 J 2
J

3 J 2
J

2
,

1
) = ^ J

2
,

1

Sk3 U3
3
(J3,

2
J3,2Jl,3)=^Jl,3

Sk4 U^(J
3 ? 2

J
3 > 2

J
3 j 3

)=^J3,3

Sk5 U3(J
3 ) 2

J3,2^2,2)=^ ̂ 2,2

Sk6 U
3

3
(J

3 ? 2
J

3 > 2
J

1 ) 1
)=^J

1 ? L

Sk7 U
3
( J

3 ? 2
J

3 J 2
J

3 J 1
) = ^ J

3
, I

Sk8 U ^ ( J
3 J 2

J
3 J 2

J
2 ) 3

) ^ J
2 > 3

Sk9 U
3
(J

3 )
2 U3,2 «1,2/

 =
^

>
 "1,2

SklO Ui(J
3)2
J

3
,

3
J2,l)=M2,2

Skll U^Js^J^J^sJ^Jl,!
Skl2 U^(J

3 ) 2
J

3 ) 1
J

2 ) 1
)^J

2 ) 3

Skl3 U^(J
3 ) 2

J
3 ; 1

J
ι
,

3
)^J

1 ) 2

B. Deducible according to AxS2:

Skl4 Ul(J 3 , 2 J 3 , 2 J 3 , 2 )=^J 2 , 3

S k l ϋ U 3 ( J 3 ? 2 J3,2*^3,3/ = ^ > ^2,1

Skl6 U 3

3 ( J 3 , 2 J 3 ) 2 J 3 ) 1 ) ^ J 2 ) 2
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4 Variance of sets

4.1 About the subvariances of the sets As defined in D1.5, the char-
acteristic of a set to permit its discomposition into several classes is
called variance of this set. The classes of an n-variance set are n-variant
classes. A set of variance n can have any number of subvariances. For
example, let a set of variance 3, be denoted M3, its classes are a\, a\, and
a\. The superior index shows the variance of the set, the classes of which
are a\, a\, and a\. The set M3 has subvariance 2 with its classes a\ - \}\a\a\
and a\ = a\\ or a\ = U\a\a\ and a\ = a\\ or a\ = \}\a\a\ and a\ = a\. The set M3

can be discomposed into two bivariant classes in three ways.

A set of the variance 7, M7, which has classes a], i - 1, 2, . . ., 7, has:

1. subvariance 2 (in 105 ways) with bivariant classes of the following
form:

a\ = uliϋlalaDiϋlalal) a\ = \y\a\(υ\a\<ΓΊ).

2. subvariance 3 (in 70 ways) with trivariant classes of the following
form:

a\ = \S\a\a\a\ a\ = \}\a\a\a\ a\ = a7

Ί.

3. subvariance 4 (in 35 ways) with 4-variant classes of the following
form:

a\ = \}\a\a\a\a\ a\ - a\ a% = a\ a\ = aΊ

Ί.

The number of subvariances of a set with variance n is equal to the
number of the divisors of n - 1 smaller than n - 1. If pl9 p2, . . ., pk are
these divisors, the subvariances will be rij = 1 + pj, where j = 1, 2, . . ., k.
A set M of variance 13 will have 5 subvariances, since the divisors of
13 - 1 = 12, smaller than 12, are pι = 1; p2 = 2; p3 = 3; />4 = 4; p5 = 6, and the
set M will have subvariances 2, 3, 4, 5, and 7. Since each whole number
has the divisor 1, each set of any variance will have the subvariance 2.

4.2 About the complements of a subset Given the sequence of inclusions
c{Ms}1(p, we shall consider each M ; as a class of M; + 1 . If Mk has variance
q, then Mfe_L will have q - 1 complements with respect to M&. If M&+1 is a
set of variance my then Mfe will have m - 1 complements with respect to
Mfe+i. The number of the complements of the set Mk_ι with respect to Mk+1

is established according to the following sentence:

"The variance and subvariance of M&+i with respect to Mk_ι will be
equal with the common subvariances {or common variances) of M&+1

andMk."

E.g., taking Mk as a set of variance 5, and Λ4+1 as a set of variance 7, the
subvariances and variance of M& are r = 2, 3, 5, and the subvariances and
variance of Λ4+1 a r e r = 2, 3, 4, 7. The common subvariances are r = 2 and
r = 3. The set M ^ will have one (when r = 2) or two (when r = 3) comple-
ments with respect to Mk+ι. If Mk+ι has classes b], i = 1, 2, . . ., 7, while
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one of these classes, b[, has classes α*, j = 1, 2, . . ., 5, then considering
Mk-i = <A, the complement of Mk-ι with respect to il4+1 will be in the case of
the common variance r = 2:

κA4+1Λ4-i = U?(U?(U?^)(U?ί4^)UΪ((U?ftM)U?(UΪ64

76Ϊ)(UΪ6ϊ6ϊ))).

The complements of M*_i with respect to A&+1 in the case of the subvariance
r = 3 will be of the form:

K«A+1M*-i = UΪ(U?β|α*α*)(UΪ67

26Ϊ6l).
κS 4 + 1 Λί*. 1 =U^(UΪ6 ϊ6 j6 7

7 ) .

There exist a great number of ways of expressing these complements.

4.3 About the univariant class The univariant classes of a set are those
classes which have no complements with respect to the extended set of this
class nor with respect to the extended sets of this extended set. In other
terms:

All the extended sets of this class are equivalent to each other, and each of
these sets is equivalent with the given class.

An example of a univariant class is the set of all sets. On a set of
variance 1 are defined a single operant Uj and a single symbol of
complementarity K1. Let M be a univariant class, that is to say n = 1.
According to AxC2 (1.5) we have:

[j\M = M.

According to Axl we have:

That is to say: The complement of a univariant set (particular case: the
set of all sets) as compared to itself is just this univariant set (the set of
all sets).

Ecole professionale
Dej, Roumanie




