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A SEMANTICAL ACCOUNT OF THE
VICIOUS CIRCLE PRINCIPLE

PHILIP HUGLY and CHARLES SAYWARD

Russell claimed that statements about all propositions are meaningless
(Russell [4], p. 63 and Russell and Whitehead [5], p. 37). Here we attempt
to give formal expression of Russell's view by developing a semantical
account of propositional quantification that has the vicious circle principle
as a consequence. According to the account we give the vicious circle
principle bears an interesting relation to the view that there are no
extraordinary sets (sets which are members of themselves).

1 We focus on a particular formal system, F, which contains these
symbols: I (a binary connective to be read 'The proposition that . . . is the
same as the proposition that '), Π (the universal quantifier), sentence
variables {p0, ply p2, . . .), sentence constants {q0, qly q2 . . . ) . F contains
as formulas pn, q^ \φψ and nonvacuous quantifications Ώpnψ(pn). A sentence
is a formula with no free occurrences of variables.

Philosophical considerations count against interpreting Π substitution-
ally. Consider, for example, that all instances of 'Some sentence of English
says that p' are true, but its universal quantification seems false. It seems
false because for any language there are more truths and falsehoods (e.g.,
about numbers) than can be expressed in that language. So a model of F
has to be so defined that, for some model 9W, Tlpnψ(pn) is false in9W while
ψ(a) is true in 9W for every admissable substituend a of the variable pn.
Such a model must consist in part of a set of propositions such that each of
the α's get assigned a proposition but some of the propositions get assigned
to no a.

Next a semantical account of F must provide a way of evaluating
identities

\qonρoρo ,

IΠA>A>Π/>iA ,

and so on. One way of dealing with this is to structure the domain so that it
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consists of three sorts of elements: those propositions expressed by the
constants (elementary propositions), those expressed by the identities,
those expressed by the quantifications. (If F contained the truth functional
connectives, the domain would have to contain negative propositions that get
assigned to negation sentences, disjunctive propositions that get assigned to
disjunctive sentences, and so on.)

On the basis of such considerations we define a domain as follows:

A domain D is a union of sets Do, Du . . ., Diy . . . Do is a set consisting of
at least three objects. Dn+1 is Dn plus all nonempty subsets of Dn.

A domain consists of three different sorts of elements: (i) basic ele-
ments belonging to Do (think of these as elementary propositions); (it) one
or two membered sets (think of these as identity propositions); (in) sets
consisting of at least three elements (think of these as quantification
propositions). The elementary propositions are to be assigned to the
sentence constants; identity propositions get assigned to identity sentences;
quantification propositions get assigned to quantification sentences.

A second component of a model is a function that does this assigning.
We call such a function a proposition function. Formally a proposition
function / maps {q0, q± . . .} into Do (the elementary propositions) and is
defined for compound sentences as follows:

(fi) /(l0ψ)={Λ0),/(ψ)}
(ίii) f(Upnψ(pn)) = {f'(ψ(qk)) Qk is the first constant not occurring in ψ(pn)
and f1 agrees with / for all constants except possibly q^}.

Now a sentence φ will be true (false) in a model just in case the
proposition φ expresses in the model, f(φ), is true (false). So a third
component is a function that assigns truth values to the propositions com-
prising a domain. An evaluation function v maps Do into {l, 0} and is
defined for complex propositions as follows:

(vi) If x and y are elements of D, v({x, y}) = 1 if x = y; otherwise v({x, y}) = 0.
(vii) If A is a three or more membered set that is an element of D, v(A) = 1
if v(x) = 1 for all xeA; otherwise v(A) = 0.

A model is a triple, (D,/, v), where D is a domain, / a proposition
function and v an evaluation function. A sentence φ is true in a model,
(D,f,v), if and only if v(f(φ)) = 1. Validity and the consequence relation
are defined in the usual way.

2 The sentence

nρo\ρopo

says all elementary propositions are self identical; it does not say anything
about all propositions. Generally, a universal quantification Upnψ(pn) says
something about all elementary propositions.

Changes are possible which permit one to go beyond talk of elementary
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propositions. For example, we might introduce into F sentence variables
of different levels:

Pi, PI,

Po, Pi,
. 2 .2

Po> Pi>

Similarly, for constants:

q°o, ? ? , . . .

<2θ, <7l,
2 2

4o, Qi>

The idea would be that

should say something about all elements of D^ (all h-level propositions),
and that a constant qjj; should express some particular proposition in D^
(some particular h-level propositions).

The only changes needed would be in the definition of proposition
function /.

(fi)* f(Qh

k)eDh

(fii)* f(\φψ) = {f(φ),f(ψ)}
(This is the same as before.)
(fin)* f(Upnψ(Pn) = {/'(Ψiqjί)): q\ is the first sentence constant of level h
not in ψ and / ' agrees with / except possibly for what is assigned to q%}

Take an example. The sentence

says all 1-level propositions are true. The proposition this expresses,
f('TLplPo'), is a second level proposition (a member of D2). In fact,
A'UPoPo) =D1sinάD1eD2.

So we can talk about all elementary propositions, all 1-level proposi-
tions, all 2-level propositions, etc. Can we talk about all propositions? Is
it possible to effect changes such that a quantification says something about
all members of D?

Evidently not. Suppose variable β is introduced to range over all
elements of D so that Uββ expressed the proposition that all members of D
are true. This very proposition— f(Uββ)—would itself be a member of D.
Thus D would have to be a member of itself. Similarly, in order for Uβ\ββ
to say all propositions are self identical D would have to contain an
extraordinary set as member.
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Our definition of a domain permits a domain to be neither an extraor-
dinary set nor to contain extraordinary sets as members. Thus, from the
perspective we have sought to express formally, the cost of construing a
quantification as expressing a proposition about all propositions would
require changing the definition of a domain so as to allow the existence of
extraordinary sets. Such sets are radically counterintuitive; this is a point
stressed by such authors as Frankel and Suppes, and, we think, evident in
itself. (See Frankel [2], pp. 425-426, Suppes [6], pp. 53-55).

3 Were our semantical account of propositional quantification the only one
available, we feel a strong case would have been made for Russell. But
there does exist an alternative account given by Grover in [3] using ideas
from Belnap in [1]. On the Belnap-Grover account talk about all proposi-
tions would be possible. So our account does not settle matters. None-
theless (we think) an advance has been made, since it is now possible to
discuss whether Russell was right in a more definite way than before,
namely, by comparing two formal theories.
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